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Abstract Influence models enable the modelling of the

spread of ideas, opinions and behaviours in social net-

works. Bounded rationality in social networks suggests that

players make non-optimum decisions due to the limitations

of access to information. Based on the premise that

adopting a state or an idea can be regarded as being ‘ra-

tional’, we propose an influence model based on the

heterogeneous bounded rationality of players in a social

network. We employ the quantal response equilibrium

model to incorporate the bounded rationality in the context

of social influence. We hypothesise that bounded

rationality of following a seed or adopting the strategy of a

seed is negatively proportional to the distance from that

node, and it follows that closeness centrality is the appro-

priate measure to place influencers in a social network. We

argue that this model can be used in scenarios where there

are multiple types of influencers and varying pay-offs of

adopting a state. We compare different seed placement

mechanisms to compare and contrast the optimum method

to minimise the existing social influence in a network when

there are multiple and conflicting seeds. We ascertain that

placing of opposing seeds according to a measure derived

from a combination of the betweenness centrality values

from the seeds, and the closeness centrality of the network

provide the maximum negative influence. Further, we

extend this model to a strategic decision-making scenario

where each seed operates a strategy in a strategic game.

Keywords Social influence � Game theory � Bounded
rationality

1 Introduction

Influence modelling in social networks is a key research

problem with many applications over different domains. As

a motivating example, consider how the present discussion

on global warming takes place in online social media and

in social networks in general. With the issue of global

warming, the actions of individuals, organisations and

governments are deeply influenced by several key indi-

viduals who may be scientists, political figures and social

figures. Thus, modelling the influence of such key players

over the rest of the network is an important research

problem as it affects the spread of information over the

network. This information spread may be key in deter-

mining the subsequent actions that affect the resolution or

the aggravation of the issue at hand.

Numerous attempts have been made to model the

influence in a social context. Two classical models are

linear threshold model and the independent cascade model

(Kempe et al. 2003). Both these models take into account

the neighbourhood effect of adopting a particular state by a

node in the social network. Social influence modelling tries

to address the optimisation problem of finding the optimum

configuration of seeds to maximise the social influence.

Under both these models, the optimisation problem of

selecting the most influential nodes has been shown to be

an NP-hard problem (Kempe et al. 2003, 2005). Therefore,

greedy algorithm is often used to come up with an
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approximated solution (Kempe et al. 2005). Another

approach to model social influence has been to use the

PageRrank algorithm-based models, especially with

respect to measuring the influence of microblogs (Huang

and Xiong 2013). Game-theoretic influential models too

have been suggested to model social influence, where

social influence is modelled as a strategic game (Clark and

Poovendran 2011; Tzoumas et al. 2012). However, these

models assume the prevalence of perfect rationality in

players making their decision to adopt a particular state,

even though in real-world players are boundedly rational

(Gigerenzer and Selten 2002; Kasthurirathna and Pir-

aveenan 2015).

In this work, we present a social influence model that is

based on the bounded rationality of players in a social

network. In the proposed model, the rationality of follow-

ing an influencing node or adopting a strategy is negatively

proportional to the distance from the seed. The bounded

rationality-based probability of following is quantified

using the quantal response equilibrium model (Goeree

et al. 2008), which is based on a logit function. Based on

the proposed model, we propose an optimisation technique

to select the topological positions of the most influential

nodes in a social network. Further, we argue that the pro-

posed optimisation technique is more computationally

efficient than the standard linear threshold and independent

cascade models. Also, we propose an optimisation tech-

nique to place the negative influencers, provided that a set

of influencers are already existing in a network. Thereby,

we show that the average of closeness centrality and the

betweenness centrality from the original set of influencers

results in a measure that can be used to identify the opti-

mum positions to place the negative influencers. We apply

the proposed optimisation technique to the Wiki-vote real-

world network (Leskovec and Krevl 2014) to further val-

idate the proposed social influence model and the optimi-

sation technique. However, when we place the opposing

strategies in an alternating fashion, the closeness centrality

gives the best performance in inhibiting the influence of the

original set of influencers. Since the alternating placement

of opposing strategies gives the local optimal solution, the

global optimal solution is not achieved.

Finally, we extend the proposed bounded rationality-

based social influence model to strategic games, where the

social influence is proportional to the tendency of playing

the most optimum strategy, using the prisoner’s dilemma

game as an example. The above-mentioned optimisation

techniques are then shown to be applicable in strategic

game scenarios as well.

The rest of this paper is organised as follows. In the next

section, we discuss the relevant background knowledge for

our work. In particular, we discuss social networks, exist-

ing social network influence models and game theory.

Then, we present our influence model based on bounded

rationality and quantal response equilibrium model. In the

subsequent section, we extend this model into a strategic

decision-making scenario. Next, we simulate the propaga-

tion of social influence when seeds are placed at different

configurations. We propose an efficient mechanism to find

the optimum placement of seeds to counter the influence of

existing seeds, when there are multiple types of contending

seeds. Finally, we discuss our results and present our

conclusions.

2 Background

2.1 Social networks

A social network can be considered as a network structure

that consists of social actors (Knoke and Yang 2008).

Analysis of social networks can be performed based on

different disciplines, such as psychology, sociology and

statistics (Knoke and Yang 2008). With the advent of

complex network analysis (Barabási and Albert 1999;

Albert and Barabási 2002; Ghoshal et al. 2014; Abnar

et al. 2015), there has been keen interest in using network

analysis to study social networks as complex systems

(Albert and Barabási 2002; Newman 2003). Numerous

aspects of social networks such as the evolution of coor-

dination and network robustness have been extensively

studied (Kasthurirathna et al. 2013a, b; Perc and Szolnoki

2008; Borbora et al. 2013; Piraveenan et al. 2013, 2012).

In particular, many social networks are shown to display

both scale-free and small-world characteristics (Albert and

Barabási 2002).

2.1.1 Scale-free model

It has been observed that most of the real-world complex

networks, including social networks, possess a power-law

degree distribution. The networks with such power-law

degree distributions are called scale-free networks, because

their topology is independent of scale. Formally put, the

degree distribution of a scale-free network fits the follow-

ing equation,

pk ¼ ak�c ð1Þ

where k is node degree and c is called the power-law

exponent.

Barabasi–Albert model (1999), which is based on

growth and preferential attachment, can be used to generate

scale-free networks. Preferential attachment suggests that

nodes choose candidates to create links based on a degree-

based preference (Barabási and Albert 1999; Albert and

Barabási 2002).
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In addition to the scale-free networks, we are using

Erdos–Renyi (ER) random networks (Albert and Barabási

2002) and well-mixed networks in our study. The ER

random networks are generated by randomly connecting

links, while in well-mixed networks, all nodes are con-

nected to each other. These models are used as reference

models. These models help us to evaluate how the social

influence model that we propose performs in different

topologies.

2.2 Influence modelling in social networks

Modelling of influence in social networks has gained much

interest in the recent past. This is partly due to the potential

that the emergence of online social networks is present, in

myriad fields from online marketing of products to political

campaigns (Chen et al. 2009; Domingos and Richardson

2001). Especially due to advent of ‘viral marketing’ where

word of mouth is used as a form of advertising through

social media, the importance of social influence modelling

has become even more prevalent (Brown and Reingen

1987; Domingos and Richardson 2001). One key advan-

tage about online social networks is that it is possible to

deduce the meta-information about the social network,

such as the underlying topology and the weights of the

links, based on the data that are captured from the social

interactions (Domingos and Richardson 2001). The key

challenge in social influence modelling is to identify the

placement of ‘seeds’ or the influencing agents that are able

to create a cascading effect in the network, where the

maximum possible number of nodes in the network is

affected. This problem becomes even more complex when

there are multiple types of competing seeds in operation

(Chen et al. 2011; Clark and Poovendran 2011). Two main

classes of influence or diffusion models are found in the

literature, namely the linear threshold model and inde-

pendent cascade model. Apart from that, recent interest has

emerged on network topological influence models based on

the PageRank algorithm, and even based on game-theoretic

models (Huang and Xiong 2013; Clark and Poovendran

2011). Following is a brief introduction to the most com-

mon social influence models found in the literature.

2.2.1 Linear threshold model

One of the most common models for social influence is the

linear threshold model (Kempe et al. 2003). The assump-

tion that is made in this model is that a node has a binary

state of being active or inactive with respect to a particular

influence. Each node has a random variable that dictates

the fraction of nodes based on whose state which, it will

switch or keep its current state. Formally put, each node v

has a threshold hv�½0; 1� that is randomly selected, which

denotes the fraction of neighbours of node v that has to be

active in order for node v to be active and vice-versa. Each

node is affected by each neighbour w according to a weight

bv;w such that
P

w�QðvÞ bv;w � 1 where Q(v) is the set of

neighbours of v. A node is activated when the total weight

of its active neighbours is at least hv:
X

w�QðvÞ bv;w � hv

The random assignments of threshold hv account for the
lack of knowledge of intrinsic latent tendencies of nodes to

adopt neighbour strategies.

The classical linear threshold model is designed so that a

node will have a single binary state. However, in a social

network, there could be opposing or conflicting influences

in place. To account for this possible negative influence, as

extension to the linear threshold model has been suggested

called the competitive linear threshold model (CLT) (He

et al. 2012) that accounts for the possible negative influ-

ences that maybe present in a network. Thus, instead of the

two states inactive and ?active, there are three possible

states in a CLT model, namely inactive, ?active and

-active.

Notice that both the LT and CLT model assume that

nodes switch in a discrete fashion and not in continuous

fashion. The stochastic nature is captured in the random-

ness of the threshold. Also, even under the CLT model, it is

not possible to model influencing scenarios where more

than one positive or negative influence is present. In other

words, there may be scenarios where multiple options are

available for an individual in a social network (such as an

election), where the CLT model could not be applicable.

2.2.2 Independent cascade model

In the independent cascade model (Kempe et al. 2003),

when a node v becomes active, it has a single chance of

activating each currently inactive neighbour w. Each acti-

vation attempt succeeds with probability pvw. Here too, the

influence is defined in a binary fashion while multiple

influence types are not considered. An extension for the

independent cascade model has been proposed which

allows the inclusion of negative opinions (Chen et al.

2011).

2.3 Game theory

In our influence model, we employ a game-theoretic

approach to quantify influence. Game theory is the science

of strategic decision-making (Barron 2013). Further,

repeated strategic games have been extensively used to

model the strategic decision-making in populations of

players (Perc et al. 2013). Different games such as the
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prisoner’s dilemma game and the coordination game have

been proposed to model different strategic decision-making

scenarios (Barron 2013). One of the pivotal concepts of

game theory is Nash equilibrium (1950). Nash equilibrium

suggests that there exists one of more equilibria in strategic

decision-making scenarios, from which no player benefits

by deviating. The key assumption in Nash equilibrium is

that the players are fully rational (Goeree et al. 2008). In

other words, it assumes that the players have full knowl-

edge of the strategies and the pay-offs of the opponents and

do not have any cognitive or temporal limitation in cal-

culating the optimum strategy (Goeree et al. 2008).

The assumption of full rationality does not hold for real-

world players as they tend to have ‘bounded rationality’.

Bounded rationality is the non-optimal rationality of

players due to the limitations of cognitive capacity, infor-

mation availability or the computational time available for

a player (Gigerenzer and Selten 2002). For this reason, the

behaviour of real-world players may deviate substantially

from Nash equilibrium (Haile et al. 2008). In this study, in

order to model the behaviour of boundedly rational fol-

lowers, we employ the quantal response equilibrium (QRE)

model (Goeree et al. 2008).

2.3.1 Quantal response equilibrium

Quantal response equilibrium is a generalisation of Nash

equilibrium, which accounts for the boundedly rational or

‘noisy’ agents. Probabilistic choice models are often used

to incorporate stochastic elements in to the analysis of

individual decisions. Quantal response equilibrium (QRE)

(Goeree et al. 2008) presents an analogous way to model

games with noisy players. Probabilistic choice models such

as logit and probit models are based on quantal response

functions. They have the inherent feature where the devi-

ations of optimal decisions are negatively correlated with

the associated costs. Thus, in the QRE model, players are

likely to make better choices than worse choices, although

there is no guarantee that they will always select the best

possible choice. The logit function given in Eq. (2) is often

used to derive the equilibrium probabilities at QRE (Go-

eree et al. 2008; Zhang 2013).

Pi
j ¼

ekiEu
iðsij;PjÞ

P
k e

kiEuiðsik ;PkÞ
ð2Þ

Here, Pi
j is the probability of player i selecting the

strategy j. Euiðsij;PjÞ is the expected utility to player i in

choosing strategy j, given that other players play according

to the probability distribution Pj. The total number of

strategies that player i can choose from is given by k.

QRE produces a mixed strategy equilibrium, where the

choice probabilities give the equilibrium probabilities of a

player with a particular value of bounded rationality. In the

logit QRE function given in Eq. (1), ki is known as the

rationality parameter of player i. By varying it, it is pos-

sible to vary player i’s ability to respond to the opponent’s

strategy distribution and the pay-offs obtained under each

strategy. Accordingly, the rationality parameter can be

regarded as a measure of a player i’s rationality. It has been

shown that as ki ! 1, the equilibrium gets closer to the

Nash equilibrium, and as ki ! 0, the player operates in a

totally random (thus irrational) fashion (Goeree et al.

2008). Within this range, the rationality parameter pro-

duces equilibria of boundedly rational players. Therefore,

we can use this QRE logit function to derive the equilib-

rium probability distributions of players who operate under

non-perfect rationality. Though there exists other models to

model the non-optimal rationality of players, such as the

near rationality model (Christin et al. 2004), they do not

provide a versatile method to quantify the bounded

rationality of players with a rationality parameter, as the

QRE model does. Heterogeneous QRE model (Rogers

et al. 2009) suggests that there exists a heterogeneity in the

rationality parameters in a population of players. This

heterogeneity of rationality is what we exploit to model the

variation of social influence in a social network. QRE

model has been defined for both the normal-form and

extensive-form games (McKelvey and Palfrey 1995, 1998).

However, we will only consider normal-form QRE in this

study to model the social influence.

In addition to the leader-follower game that is used to

model social influence, we also discuss how the proposed

boundedly rational social influence model may be applied

to generic strategic decision-making scenarios. In order to

do this, we apply the proposed model to a network of

agents that collectively play the prisoner’s dilemma game.

2.3.2 Prisoner’s dilemma

Prisoner’s dilemma (PD) (Rapoport 1965) game is one of

the classical normal-form games that attempt to model self-

interested players. Given the following generic payoff

matrix, the PD game has the inequality u212 � u211 �
u222 � u221 in its payoffs, supposing that the payoff matrix is

symmetric. In other words, the Nash equilibrium occurs

when both the players defect. However, the optimum pay-

offs for both players are gained when both players corpo-

rate, thus creating a dilemma. In this work, the prisoner’s

dilemma was used to model the social influence in the

context of strategic games.
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3 modelling influence using bounded rationality

Based on the background theoretical knowledge, we pre-

sent a social network influence model based on game

theory and bounded rationality of nodes. We first model the

social influence of nodes as a leader-follower game, where

there are influencing nodes or ‘seeds’ and followers oper-

ating in a network of players. The seeds continue to operate

with a permanent binding to a particular state. This incli-

nation may be due to some external knowledge or an

incentive the seed may have from the external environ-

ment. In the context of a influencer-follower scenario, the

bounded rationality of a follower is the ‘rationality of

following’. The higher the rationality of a follower with

respect to a seed, the higher the probability of it following

the state of the seed. In this social influence model, we

assume that the rationality parameter of a particular fol-

lower is negatively proportional to its distance from the

seed. This assumption accounts for the random noise that is

accumulated as the followers move further from a seed.

This assumption is based on the literature in the fields of

social physics, social science and telecommunications,

which suggest that the social influence and social interac-

tions are negatively proportional to the distance between

the nodes in concern (Latané et al. 1995; Liebrand and

Messick 2012; Akerlof 1997; Goldenberg and Levy 2009).

Thus, with respect to the leader-follower game discussed in

this work, the rationality parameter, which denotes the

rationality of following an influencer, can be regarded as

being negatively proportional to the distance between the

nodes in concern. Even though the existing literature sug-

gests that the correlation between the distance and social

influence is an inversely polynomial one, for simplicity, we

assume that there exists a negatively linear correlation

between the distance between the nodes and social

influence.

Based on the rationality of following, we can measure

the probability of a follower being at the state of the

influencing node or the seed node, using the QRE logit

function given in Eq. (2). Thus, our model does not pro-

duce a binary outcome where the followers are active or

inactive in a binary fashion, rather the result is a probability

on which a follower adopts the state of the influencer. In

game-theoretic terminology, the follower’s probability

distribution is a mixed strategy equilibrium, where the two

strategies would be whether to adopt the strategy of the

seed or not. Thus, we can apply the QRE logit function

given in Eq. (2) to the leader-follower game with bound-

edly rational followers. Therefore, the follower probability

pn;s of adopting the active state s of the seed could be

obtained using the Eq. (3).

Pn;s ¼
ebn;i:Us:Pi;s

ebn;i:Us:Pi;s þ ebn;i:U�s:Pi;�s

ð3Þ

where Pn;s—probability of the follower node n being at

state s (active state), bn;i—following rationality of node n

with respect to node i, Us—utility of adopting the state s,

Pi;s—probability of the influencer i being in state s (this is

always 1), Pi;�s—probability of the influencer i being not

in state s (this is always 0) and U�s—utility of not being in

state s (inactive state).

We add random noise to the followers with the assump-

tion that the rationality of a node of following the influencer

is negatively proportional to the distance from the seed or the

influencer. Thus, bn;ia
1
dn;i

where dn;i is the distance along the

shortest path from the influencer i to node n along the

shortest path. As the follower moves further from the seed,

the rationality parameter reaches 0, making them behave

randomly. If the followers are placed closer to the seed, then

there is a higher rationality and thus a higher probability of

following the state of the seed. Another important factor to

note is that not only the distance from the seed, but also the

reward or utility of adopting the state too plays a significant

role in determining whether a follower adopts the state of the

seed. Accordingly, we may extend the single-seed model

given in Eq. (3) to a more general scenario where there are

multiple seeds, as shown in Eq. (4).

Pn;s ¼
PN

i¼1 e
bn;i:Us:Pi;s

PN
i¼1 e

bn;i:Us:Pi;s þ
PN

i¼1 e
bn;i:U�s:Pi;�s

ð4Þ

where N is the total number of influencers in the network. In

the above model, each node has a separate rationality

parameter for each influencer, based on the distance to them.

Thus, it captures the varying network distances from each

influencer tomore accurately predict the status of the follower.

This implies that a population that is closely knitted has

a higher tendency of following a seed compared to a

population that is sparsely connected. Further, small-world

networks (Albert and Barabási 2002) tend to amplify the

effect of social influence as they have relatively low

average path lengths (Albert and Barabási 2002).

4 modelling social influence under opposing
influencers using bounded rationality

The model we introduced could be used to model the

influence of a single type of influencers. Yet, in most real-

world social influence scenarios, there are conflicting

interests at play. There are influencers with a negative

influence as well as positive influence, with respect to a

particular node state. In addition to that, there could be
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instances where there are multiple influencers which are at

cross-purposes from each other. A good example of this is

political campaigns where there are more than two candi-

dates running. Thus, we can easily extend the above model

to account for two opposing types of influencers of states

S1 and S2. Equation (5) shows the equation of a social

influence model where there are multiple and conflicting

influencers. It is important to note that this model may be

extended to capture the influence of more than two types of

influencers, even though in this study we limit our scope to

two opposing types of influencers.

Here, Pn;S1—probability of the follower node n being at

state S1, bn;i—following rationality of node n with respect

to the influencer i, bn;j—following rationality of node n

with respect to the influencer j, Pi;S1—probability of the

influencer i being in state S1 (this is always 1), Pi;�S1—

probability of the influencer i not being in state S1 (this is

always 0), Pi;S2—probability of the influencer j being in

state S2 (this is always 1), Pi;�S2—probability of the

influencer j not being in state S2 (this is always 0), US1—

utility of adopting the state S1, U�S1—utility of not being in

state S1, US2—utility of adopting the state S2and U�S2—

utility of not being in state S2:

The rationality parameters with respect to each influencer

are dependent on the distance of the node in concern from

each of the influencers. Note that the followers can take

either of the two states S1 or S2 under the influence of the two

types of influencers. However, it does not account for a

neutral state where the followers may not follow either of the

two types of influencers. If a neutral state is considered, then

the numerator should only contain the exponent of S1, as in

that case a node being influenced to be in state—S2 does not

mean it would automatically adopt S1. Further, it is possible

to extend the same model to take into account multiple types

of influencers and not just two opposing types, since every

influencer state can be regarded as a possible strategy a fol-

lower could adopt with heterogeneous rationality levels.

5 Modelling strategic influence using bounded
rationality

In addition to social influence, we can use the same

approach to measure the influence of strategic decision-

making scenarios. Game-theoretic models are often used in

observing the evolution of populations of players (Fogel

1993; Santos et al. 2006). The evolutionary dynamics of

the populations help to understand how each strategy per-

forms under different network topologies (Santos et al.

2006). If we assume that certain nodes continue to stick to

a particular strategy irrespective of its environment, due to

some external knowledge or influence external to the net-

work, then we can model them as influencers, while the rest

of the population can be regarded as followers that get

affected by those influencing nodes. For instance, when the

prisoner’s dilemma game is played over a network,

depending on the topological position and arrangement of

each node, different nodes adopt cooperation or defection

(Santos et al. 2006). However, if we assume that the

cooperation or defection tendency of each follower is

affected by the influence by the seeds that stick to a par-

ticular strategy, then we can model the social influence of

strategic games using heterogeneous bounded rationality

and quantum response equilibria.

Equations (6, 7) depict the two logit functions based on

QRE with an influence-rationality parameter to derive the

probability of cooperation in a networked PD game. The

pay-offs given are the payoff values represented in the

generic payoff matrix in Fig. 1.

p1;c ¼
eb1;cðp2;cðu111þð1�p2;cÞðu121ÞÞÞ

eb1;cðp2;cðu111þð1�p2;cÞðu121ÞÞÞ þ eb1;dðp2;cðu211þð1�p2;cÞðu221ÞÞÞ

ð6Þ

p2;c ¼
eb2;cðp1;cðu112þð1�p1;cÞðu212ÞÞÞ

eb2;dðp1;cðu112þð1�p1;cÞðu212ÞÞÞ þ eb2;dðp1;cðu122þð1�p1;cÞðu222ÞÞÞ

ð7Þ

Fig. 1 The payoff matrix of a generic normal-form game

Pn;S1 ¼
PN

i¼1 e
bn;i:US1

:Pi;S1 þ
PM

j¼1 e
bn;j:U�S2

:Pj;�S2

PN
i¼1 e

bn;i:US1
:Pi;S1 þ

PN
i¼1 e

bn;i:U�S1
:Pi;�S1 þ

PM
j¼1 e

bn;j:US2
:Pi;S2 þ

PM
j¼1 e

bn;j:U�S2
:Pi;�S2

ð5Þ
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Here, p1;c and p2;c are the probability of cooperating for

players 1 and 2, respectively. The rationalities b1;c and b1;d
can be used to quantify the influence on player 1 on

cooperating and defecting, respectively. These influences

are determined by the distances from the influencers or

seeds adopting each strategy. Similarly, b1;d and b2;d sig-

nify the influence-based rationalities of defection for

players 1 and 2, respectively. Formally put,

bn;c /
XNc

i¼1

1=dn;ic ð8Þ

where bn;c is the influence-based rationality of cooperating

in node n, dn;ic is the distance of node n from the influencer

i (which is a pure cooperator), and Nc is the total number of

cooperator influencers within the network. The influence-

based rationality of defecting could be calculated in a

similar manner. Thus, each follower captures the influence

of the cooperator and defector influence nodes within the

network, through the distance-based bounded rationality

for each strategy. Similar to the influence game, this model

can be extended to incorporate multiple types of influ-

encers with multiple strategies.

6 Optimising influence using bounded rationality
models

In this section, we propose a method to place the influ-

encers in order to maximise their influence on the popu-

lation, based on the bounded rationality-based influence

models that we have proposed. We mainly look at two

scenarios. One is where the network has only a single type

of influencers and the requirement is to select the place-

ment of influencers to maximise their influence. This is

termed as the influence maximisation problem in the lit-

erature (Kempe et al. 2003). The other is the scenario

where the network has two kinds of opposing influencers.

Supposing the network is already occupied with one type

of influencers, we need to identify the optimum way of

placing the rivalling set of influencers, so that the influence

of the originally placed influencers is minimised. These

optimisations are applicable to the influencer-follower

game that we discussed earlier and also more general

strategic decision-making situations.

Firstly, let us consider a scenario where there is only one

type of seeds or influencers in a network in an influencing

game. Since the bounded rationality of following is inver-

sely proportional to the distance of the followers from the

influencing node, the influence is maximised when the

influencers are placed closer to the followers. The natural

candidate to locate that placement is the closeness centrality

of the network, since closeness centrality is used to identify

the nodes that have average minimum shortest path distance

to the other nodes within the network. Equation (9) depicts

the equation for calculating the closeness centrality of a

node. When the influencers are placed according to the

closeness centrality of network, the influence on the rest of

the network is at the peak, when there is only one type of

positive influence at play.

CHðxÞ ¼
X

y 6¼x

1

dðy; xÞ ð9Þ

where d(y, x) is the distance along the shortest path from

node x to node y.

Next, we will look at what is the most optimum method

to place the conflicting influencers when there are multiple

opposing influencers in operation. Assuming that the

original influencer or influencers are already placed in a

network, there are two factors that affect the effectiveness

of the opposing influencers. Those two forms of negative

influence are as follows:

active negative influence (An)—the distance from the

opposing influencers to the follower nodes in the

network;

passive negative influence (Pn)—the blocking effect of

opposing influencers by their relative placement in the

network topology.

Following are the formal definitions of the active and

passive negative influence components.

Ani / dij; j 2 J ð10Þ

where j is an opposing influencer and J is the set of all

opposing influencers. Ani is the active negative influence

component on node i that is following the influencers, and

dij is the distance of the following node i from the influ-

encer j.

Pni / BCik; k 2 K ð11Þ

where K is the set of all original influencers. BCik is the

betweenness centrality of node i with respect to the set of

original influencers.

The first form of negative influence could be measured

using the closeness centrality of the opposing influencer.

We call it an active factor since the opposing nodes directly

influence the other nodes to follow them, based on how

close the opposing influencers are to the followers. The

second form of negative influence is relevant since the

social influence is spread through the network topology. If

a node is occupied by an opposing influencer, then it does

not take part in spreading the influence of the original

influencers, unlike the regular nodes. From the perspective

of the original set of influencers, the opposing influencers

cease to exist in the network, in their quest to spread their
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influence. Thus, simply by being placed in positions where

the distance from the original influencers to the followers

could be increased, the opposing influencers can minimise

the influence of the original set of influencers. In other

words, the opposing influencers are best placed in ‘be-

tween’ the original influencers and the followers of the

network. Thus, another well-known centrality measure,

which is the betweenness centrality, can be employed to

identify the topological positions where the influence of the

original influencers is minimised. However, we need not

calculate the betweenness centrality values of all nodes in

the network to identify these positions. Only the

betweenness centrality values for the original influencers

are sufficient to identify the topological positions where

their influence can most effectively be interfered with. We

call this the passive negative influence since the opposing

influencers reduce the influence of the original influencers

simply by passively occupying the high betweenness cen-

trality nodes.

By combining these active and passive negative influ-

ence components, we can derive a measure that could be

used to identify the positions where it is most effective to

place the negative influence nodes. Thus, we can propose

an algorithm to optimally place the negative influencers in

a network where there are already existing positive influ-

encers.

Here, n is a node in the set of nodes N. BC(n, s) is the

betweenness centrality of node n with respect to the orig-

inal set of influencers S. CC(n) is the closeness centrality of

each node n. OC(n) denotes the combined measure of

placing the opposing nodes, which is the average of

BC(n, s) and CC(n).

6.1 Complexity analysis

Influence maximisation is an optimisation problem

whereby we try to optimally place the seeds in order to

maximise the influence spread. Under the independent

cascade model and linear threshold model, the influence

maximisation becomes an NP-hard problem (Kempe et al.

2003). Therefore, in order to solve this problem, it is

necessary to employ a greedy algorithm to find the opti-

mum seed arrangement. The greedy algorithm of optimis-

ing influence spread outperforms the degree and centrality-

based heuristics (Kempe et al. 2003, 2005). Still, it requires

an approximation using the Monte Carlo simulations of the

influence cascade model over a number of interactions to

obtain an accurate estimation of the influence spread. Thus,

it may be inefficient in a sufficiently large network with

multiple seeds involved.

Using the proposed bounded rationality-based influence

model, we can propose an exact algorithm to identify the

optimum set of influencers without depending on heuris-

tics. The time complexity of finding the optimum place-

ment of a single type of influencers is O(VE) where V is the

number of vertices and E is the number of edges in the

network, which is the time complexity of calculating the

closeness centrality. The time complexity of optimising the

negative influence when there are opposing influencers is

OðVEÞ þ OðVsEÞ, where Vs is the initial set of seed nodes.

Based on the proposed influence model, it is possible to

measure the actual optimisation problem in polynomial

time. Also, instead of an approximation, it is possible to

derive an exact solution using the bounded rationality-

based influence model.

7 Methodology

In this section, we present the methodology used to per-

form simulations to demonstrate the applicability of the

bounded rationality-based influence model. First, we

compare three different network topologies, scale-free, ER

random and well-mixed, to see how they could facilitate

the influence spread under a bounded rationality influence

model. The networks considered were synthetic networks

that contained 1000 nodes with the average degree of four.

The Scale-free network was generated using the Barabasi–

Albert model (1999). To compare networks, we placed a

seed at the hub of each network and measured the average

probability of following the seed, over the network. The

network with the highest average probability of following

Algorithm 1: Optimum influence arrangement of negative influencing seeds, when a network
is already occupied with positive influencing seeds.
Data: Network topology, Opposing influencers
Result: Optimum arrangement of opposing influencers

1 ∀n, n ∈ N , calculate and assign BC(n, s), s ∈ S;
2 ∀n, n ∈ N , calculate and assign CC(n);

3 OC(n) = BC(n,s)+CC(n)
2 ;

4 Order the nodes according to descending order of OC(n);
5 Place the opposing seeds in the descending order of OC(n);
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is the one that facilitates most influence. The two states that

we considered were either active or inactive states where

active refers to adopting the state of the influencer. How-

ever, since the QRE model gives a probability distribution

of whether a node follows the influencer or not, the out-

come is not a binary-state distribution, rather a probability

distribution of being in the active state. The payoff of

adopting the state of the seed is set to be 1 and not adopting

the state is set to 0.

pn1 ¼
eðbni :p

1
i :1Þ

eðbni :p
1
i
:1Þ þ eðbni :p

0
i
:0Þ

ð12Þ

Here, pn1 is the probability of node n being in state 1,

where state 1 denotes being active and 0 denotes being

inactive. bni is node n’s ‘rationality of following’ with

respect to the influencer i, which is dependent on node n’s

distance along the shortest path from the influencer i.

Therefore, bni ¼ c=dni where c is a constant and dni is the

distance of node n from node i along the shortest path. 1

and 0 are the pay-offs of states 1 and 0, respectively.

Next, in order to test how the payoff of following affects

the probability distribution of following the seed, we per-

formed the same experiment while varying the payoff of

the active state. The same scale-free network that was

generated using the Barabasi–Albert model (1999) was

used for this simulation, and the variation of the average

probability of following over the payoff of the active state

was observed. Since real-world social networks have been

observed to be closely resembling the scale-free topology

(Albert and Barabási 2002), the synthetic network was used

for all the subsequent experiments.

Then, we observed the optimum method to reduce the

influence of the hub by placing opposing influencers in the

network. To test this, we considered two different scenarios

on the scale-free network that was used for the previous

experiments. In the first one, the hub is placed with the

original influencing node and four opposing influencers are

distributed according to different configurations. In the first

configuration, they are placed in the remaining hubs in the

order of the degree. In the next two configurations, the

opponents are placed in the order of betweenness from the

hub and the closeness centrality of the network, respec-

tively. In the 4th configuration, the opponents are placed in

the order of the combined measure that we presented in

Algorithm 1. We compared and contrasted the variation of

negative influence by observing the adoption probability

under these four configurations.

The same experiment was then repeated for multiple

conflicting influencers on both sides. The original set of

influencers were randomly distributed, and four opposing

influencers are placed according to the four configurations

mentioned above. This experiment was repeated over fifty

iterations to account for the effect of randomness in the

initial configuration of influencers. We assume that the

followers adopt either the active or the negatively active

states; thus, they would not be in an inactive state. It should

be noted that an inactive state could also be incorporated

by extending the QRE model that we use. The pay-offs of

following each type of influencers were set to 2 and 1,

respectively. In each type of influencer, the payoff of not

following the influencer is a negative payoff of -2 and -1,

respectively. Equation (13) shows how the probability of a

node being in state s, which is the state of the original set of

influencers, can be calculated using QRE and distance-in-

duced bounded rationality.

pns ¼
PN

i¼1 e
ðbni :p

s
i :2Þ þ

PM
j¼1 e

ðbnj :p
s
j :�1Þ

PN
i¼1 e

ðbni :p
s
i
:2Þ þ eðbni :p

�s
i
:�2Þ þ

PM
j¼1 e

ðbnj :p
s
j
:�1Þ þ e

ðbnj :p
�s
j
:1Þ

ð13Þ

Here, pn1—probability of node n adopting state s, bni—
rationality of following the influencers of state s where N is

the number of such influencers and bnj—rationality of

following the influencer of state �s where M is the number

of such influencers, 2 and -2 are the pay-offs of either

following or not following the influencers of state 1, and 1

and -1 are the pay-offs of either following or not following

the influencers of state �s:

This particular experiment was repeated on a real-world

Wiki-vote network of seven thousand nodes (Leskovec and

Krevl 2014), which has a scale-free topology. This was

done in order to compare the probabilities of following the

influencers in a real-world network, under the four different

configurations considered.

Further, we placed the opposing strategies in an alter-

nating fashion and tested the placement of opposing

strategies according to the above-mentioned four metrics.

This way, we can obtain the sum of the locally optimal

solutions of the placement of opposing strategies. Then, we

compared and contrasted the optimum strategies of placing

the opposing influencers, under the locally optimal and

globally optimal contexts.

Next, we looked at how the strategic game-based

influence operates in a bounded rationality-based influence

model. We used the scale-free network that was used in the

previous experiments to conduct this particular experiment

as well. Specifically, we tested the optimum method to

reduce the influence of already existing influencers. We use

the prisoner’s dilemma game with four cooperators dis-

tributed randomly in the network while four defectors try to

negatively influence to minimise cooperation in the net-

work. The rationality of cooperation and defection is

negatively proportional to the distance to each influencer.

As with the previous experiment, we compare different

opponent placement strategies with the optimum placement
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strategy that we discussed in 1. The pay-offs of the PD

game were set such that u111; u122 ¼ 4; u121; u212 ¼
0; u122; u211 ¼ 5 and u221; u222 ¼ 1. Equations (6, 7) are

used to calculate the probability of cooperation in each

iteration. For each node, the rationality of cooperation and

defection are calculated by taking into account the cumu-

lative effect of influencers of each type. For example, for

node n, the rationality of cooperation is
PN

i¼1
c
dni
, where c is

a constant and N is the number of cooperators in the net-

work, while dni is the distance to each cooperator from the

node.

These experiments enable us to evaluate how the

bounded rationality-based influence modelling can be

applied in a influencer-follower scenario or a strategic

game scenario, where there are a dedicated set of influ-

encers or seeds and the rest of the population is following

them. It should be noted that although we consider only

two types of rivalling influencers or strategies, the bounded

rationality-based influence model could be expanded for

multiple types of influencers and strategies as well.

8 Results

Table 1 shows the comparison of the average following

probability under the three network topologies considered.

As shown in the table, the scale-free topology facilitates

the highest average following probability compared to the

ER random and lattice topologies. This is due to the fact

that a scale-free network of a comparative size and average

degree may have a lower diameter compared to a ER

random or a lattice network.

Figure 2 depicts the variation of the following proba-

bilities in a scale-free network, when the seed is placed at

the hub and when the payoff for adopting the state of the

seed is increased. As shown in the figure, there is a clear

positive correlation between the payoff of the active state

and the influence spread. Thus, this shows that not only the

topology of the network and the positioning of the seeds,

but also the payoff of the active state is critical in deter-

mining the spread of influence.

Next, we depict the results when two conflicting types of

influencers are placed in a scale-free network. The original

influencer is placed in a hub, and four opposing influencers

are placed according to four different configurations.

Namely, they are placed according to the degree centrality

of the network, betweenness centrality from the hub,

closeness centrality of the network and a combination of

the 2nd and 3rd measures (as discussed in Algorithm 1).

Figure 3 shows the comparison when the influencing seed

is placed at the hub in opposition to four counter influ-

encers in the same four configurations. As shown in the

figure, the combined measure method proposed in Algo-

rithm 1 gives the best results in terms of maximising the

negative influencer, thereby reducing the average proba-

bility of following. Table 2 shows the average probability

of following when the opposing seeds are placed in the four

different configurations. The results reiterate that it is the

negative seed placement method discussed in the Algo-

rithm 1 that provides the optimum reduction of the influ-

ence from the original seed.

Figure 4 depicts the variation of following probability

against the average distance from the influencing seeds

Table 1 Average probability of following the seed in different

topologies

Network topology Average probability of following

Scale-free 0.95

ER Random 0.89

Lattice 0.51
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Fig. 2 Variation of the probability of following against the payoff of

the active state
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Fig. 3 Variation of the probability of following against the distance

from seed placed at hub in a scale-free network. Four opposing seeds

are placed in the order of (1) degree, (2) betweenness with respect to

the hub, (3) closeness centrality and (4) combination of both of 2 and

3
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when multiple original influencers are placed randomly. In

order to normalise for the effect of the randomisation of the

positions of the original seeds, the results were averaged

over fifty independent runs. As depicted in the figure, it is

the combined measure used to determine the placement of

the opposing seeds that mitigate the influence of the orig-

inal set of influencers most effectively. This is further

confirmed by the comparison of average probabilities of

following, given in Table 3.

The same set of experiments were run on a Wiki-vote

network of seven thousand nodes (Leskovec and Krevl

2014), in order to test the effectiveness of the proposed

counter-influencing technique using a real-world network.

The probabilities of following against the average distance

from the influencing seeds for the Wiki-vote network are

shown in Fig. 6. Table 5 compares the average probabilities

Table 2 Average probability of following the seed in different

topologies

Opposing influencer configuration Average following probability

Degree 0.29

Betweenness (hub) 0.21

Closeness 0.79

Combined measure (2 and 3) 0.19

The opposing seeds are placed in four different configurations
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Fig. 4 Variation of the probability of following against the average

distance from seeds placed at random positions in a scale-free

network. The opposing seeds are placed in the order of (1) degree, (2)

betweenness with respect to the original influencers, (3) closeness

centrality, (4) combination of both of 2 and 3. The results are

averaged over fifty independent runs

Table 3 Average probability of following the randomly placed seeds

in different topologies

Opposing influencer configuration Average following probability

Degree 0.33

Betweenness (seeds) 0.60

Closeness 0.33

Combined measure (2 and 3) 0.21

The opposing seeds are placed according to four different

configurations
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Fig. 5 The variation of the probability of following against the

average distance from seeds placed at random positions in a scale-free

network. The opposing seeds are placed in an alternating fashion in

the order of (1) degree, (2) betweenness from the original influencers,

(3) closeness centrality and (4) combination of both of 2 and 3. The

results are averaged over fifty independent runs

Table 4 Average probability of following the randomly placed seeds

in different topologies

Opposing influencer configuration Average following probability

Degree 0.96

Betweenness (seeds) 0.95

Closeness 0.79

Combined measure (2 and 3) 0.99

The opposing seeds are placed according to four different configu-

rations in an alternating fashion
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Fig. 6 Variation of the probability of following against the average

distance from seeds placed at random positions in the Wiki-Vote

network. The opposing seeds are placed in the order of (1) degree, (2)

betweenness with respect to the influencers, (3) closeness centrality

and (4) combination of both of 2 and 3. The results are averaged over

fifty independent runs
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of following, in the Wiki-vote network. As these results

from the real-world Wiki-vote network too shows, the

combined measure performs best out of the four metrics

used to place the opposing seeds.

Figure 5 shows the variation of the probability of fol-

lowing against the average distance from the original

influencers, when the opposing strategies are placed in an

alternating fashion. Thus, this is the locally optimal solu-

tion to place the opposing strategies. According to Fig-

ure and Table 4, which shows the average probability of

following, it is evident that placing the opposing strategies

based on closeness centrality gives the optimal solution

under the locally optimal scenario, compared to the other

metrics of placing the opposing strategies.

Next, we present the results for the same set of

experiments repeated for a strategic decision-making sce-

nario, where the PD game is played over a scale-free

network. Figure 7 shows the results for the scenario when

the coordinator seed is placed at the hub, and the defecting

seeds are placed according to the four different configu-

rations discussed above. Similar to the influencer-follower

game, the strategic decision-making scenario too is most

affected when the opposing strategies are placed according

to the combined measure. Table 6 shows the average

probability of cooperation in those four types of configu-

rations of placing the defectors. The placement of

opposing strategies purely based on the betweenness

centrality from the hub adopting the pure coordinator

strategy too facilitates an effective reduction in coopera-

tion in the overall network.

Figure 8 depicts the variation of cooperation against the

average distance from multiple cooperator seeds that are

placed randomly. The defector seeds are placed according

to the four configurations discussed previously. Here too,

the combined method of placing the opposing strategies

make the highest reduction in the cooperator strategy in the

network, further emphasised by the average cooperator

probabilities shown in Table 7.
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Fig. 7 Probability of coordination against the distance from the

coordinator seed placed at hub in a scale-free network. Four defector

seeds are placed in the order of (1) degree, (2) betweenness with

respect to the coordinator, (3) closeness and (4) combination of both

of 2 and 3

Table 6 Average probability of coordination in different topologies

when the cooperator seed is placed at the hub

Opposing strategy configuration Average probability of cooperation

Degree 0.226

Betweenness (hub) 0.209

Closeness 0.335

Combined measure (2 and 3) 0.206

The defector seeds are placed in four different topologies
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Fig. 8 Variation of coordination against the average distance from

coordinators that are randomly placed in a scale-free network. Four

opposing seeds are placed in the order of (1) degree, (2) betweenness

with respect to the coordinators, (3) closeness and (4) combination of

both of 2 and 3

Table 7 Average probability of coordination when the cooperator

seeds are randomly placed in different topologies

Opposing strategy configuration Average probability of cooperation

Degree 0.36

Betweenness (seeds) 0.35

Closeness 0.44

Combined measure (2 and 3) 0.25

The opposing seeds are placed according to four different

configurations

Table 5 Average probability of following the randomly placed seeds

in different topologies in the Wiki-Vote network

Opposing influencer configuration Average following probability

Degree 0.71

Betweenness (seeds) 0.19

Closeness 0.06

Combined measure (2 and 3) 0.01

The opposing seeds are placed according to four different

configurations
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9 Conclusion and future work

In this work, we propose a novel social influence model

based on the bounded rationality of agents in a social

network. First, we model the social influence as an influ-

ence game where there are two types of players, influencers

and followers. The followers are assumed to be following

the influencers stochastically, and their likelihood of fol-

lowing is computed based on their bounded rationality,

which is inversely proportional to their distance from the

influencers. Based on this model, we show that scale-free

networks facilitate social influence compared to ER ran-

dom and lattice networks.

We then extend this model to scenarios where there are

multiple and opposing seeds. We propose a method to

optimally place the negative seeds to minimise the influ-

ence of the original set of positive influencers. In this

method, the opponents are placed according to the order of

a combined centrality measure, which is the average of the

betweenness centrality from the original seeds and the

closeness centrality of the nodes within the network. We

demonstrate that in general, placing the opponents in the

order of betweeness centrality from the original seeds,

thereby ‘interfering’ with their influence on the rest of the

network, is more effective than choosing the nodes that

have higher closeness centrality within the entire network

to place the rivalling influencers. Moreover, the proposed

combined centrality measure performs best in maximising

the negative influence, when the original seed is placed at

the hub, or when multiple original seeds are randomly

distributed. This particular outcome is further validated

from the results obtained using the Wiki-Vote real-wold

network.

We then extend this influence model to strategic deci-

sion-making scenarios in a social network. Here, each node

is assumed to have a level of rationality related to fol-

lowing each particular strategy, and that rationality is

negatively proportional to the distance from each seed with

that strategy within the network. This approach enables us

to model the network with heterogeneous rationalities in

nodes that are dependent on the number of seeds and the

distances from them. Using this model, we could demon-

strate that as with the influence game, strategic games like

the prisoner’s dilemma game could be simulated in a social

network with bounded rationalities that are influenced by

the seeds that have permanently adopted a particular

strategy. The followers adopt their respective strategies

based on the bounded rationality of following each strategy

and their respective payoffs. Based on this model, we

demonstrate that the most efficient way to counter an

existing strategy is to place the seeds with the opposing

strategy in the order of the combined centrality measure of

betweenness from the original strategy seeds and the

closeness centrality of the network. However, when the

opposing strategies are placed in an alternating fashion,

that is, when the local optimal is considered in placing the

opposing strategies, it is the closeness centrality that gives

the best performance in inhibiting the influence of the

original set of strategies.

While this work is primarily based on simulated

experiments, a formal proof of the proposed optimisation

technique proves that the proposed technique gives the

optimal solution. However, in this work, we limit our scope

to the simulated experiments while attempting to formulate

a formal proof could be a possible extension to this work.

To our understanding, this is the first attempt to model

the social influence using bounded rationality and the QRE

model. The applications of such a model could be myriad;

especially, it allows the computation of social influence in

a computationally efficient manner. Moreover, as it is

based on game-theoretic principles, it allows the payoff of

following an influencer or adopting a strategy to be a key

variable in the modelling, which is not present in the

standard social influence models. Countering the influence

of an existing network is a critical problem that may have

many applications in scientific, social and political net-

works. Thus, the combined centrality measure of placing

opponent nodes and strategies may be quite useful in

negatively affecting existing social influence. This model

can be even applied to approximate social influence in

scenarios where there are multiple types of influencers and

strategies, such as in a political campaign. Further research

is needed to explore the applicability of this model in real-

world social networks.
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Haile PA, Hortaçsu A, Kosenok G (2008) On the empirical content of

quantal response equilibrium. Am Econ Rev 98(1):180–200

He X, Song G, Chen W, Jiang Q (2012) Influence blocking

maximization in social networks under the competitive linear

threshold model. In: SDM, SIAM, pp 463–474

Huang L, Xiong Y (2013) Evaluation of microblog users influence

based on pagerank and users behavior analysis. Adv Internet

Things 3(2):34–40

Kasthurirathna D, Piraveenan M (2015) Emergence of scale-free

characteristics in socio-ecological systems with bounded

rationality. Nature Scientific Reports 5

Kasthurirathna D, Piraveenan M, Harre M (2013a) Evolution of

coordination in scale-free and small world networks under

information diffusion constraints. In: Advances in social net-

works analysis and mining (ASONAM), 2013 IEEE/ACM

international conference on IEEE, pp 183–189

Kasthurirathna D, Piraveenan M, hedchanamoorthy G (2013b)

Network robustness and topological characteristics in scale-free

networks. In: Evolving and adaptive intelligent systems (EAIS),

2013 IEEE conference on IEEE, pp 122–129
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