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Abstract—Influence models enable the modelling of the spread
of ideas, opinions and behaviours in social networks. Bounded
rationality in social network suggests that players make non
optimum decisions due to the limitations of access to information.
Based on the premise that adopting a state or an idea can be
regarded as being ‘rational’, we propose an influence model
based on the heterogeneous bounded rationality of players in
a social network. We employ the quantal response equilibrium
model to incorporate the bounded rationality in the context of
social influence. The bounded rationality of following a seed or
adopting the strategy of a seed would be negatively proportional
to the distance from that node. This indicates that the closeness
centrality would be the appropriate measure to place influencers
in a social network. We argue that this model can be used
in scenarios where there are multiple types of influencers and
varying payoffs of adopting a state. We compare different seed
placement mechanisms to compare and contrast the optimum
method to minimise the existing social influence in a network
when there are multiple and conflicting seeds. We ascertain that
placing of opposing seeds according to a measure derived from a
combination of the betweenness centrality values from the seeds
and the closeness centrality of the network would provide the
maximum negative influence.

I. INTRODUCTION

Influence modelling in social networks is a key research
problem with many applications over different domains. As a
motivating example, consider the scenario where the present
discussion on global-warming is operating in online social
media and in social networks in general. With the issue of
global warming, the actions of individuals, organisations and
governments are deeply influenced by several key individuals
who may be scientists, political figures and social figures.
Thus, modelling the influence of such key players over the
rest of the network would be an important research problem
as it affects the spread of information over the network. This
information spread may be key in determining the subsequent
actions that would affect the resolution or the aggravation of
the issue at hand.

Numerous attempts have been made to model the influence
in a social context. Two classical models are linear threshold
model and the independent cascade model [1]. Both these
models take into account the neighbourhood effect of adopting
a particular state by a node in the social network. Social
influence modelling tries to address the optimisation problem

of finding the optimum configuration of seeds to maximise the
social influence. Under both these models, the optimisation
problem of selecting the most influential nodes has been
shown to be an NP-hard problem[1], [2]. Therefore, greedy
algorithm is often used to come up with an approximated
solution [2]. Another approach to model social influence has
been to use the Page-rank algorithm based models, especially
with respect to measuring the influence of micro blogs[3].
Game theoritic influential models too have been suggested
to model social influence, where social influence is modelled
as a strategic game[4], [5]. However, these models assume
the prevalence of perfect rationality in players making their
decision to adopt a particular state, even though in real-world
players are boundedly rational [6]. In this work, we present a
social influence model that is based on the bounded rationality
of players in a social network. In the proposed model, the
rationality of following an influencing node or adopting a
strategy would be negatively proportional on the distance from
the seed.

The rest of this paper is organised as follows. In the next
section, we discuss the relevant background knowledge for
our work. In particular, we discuss about the social networks,
existing social network influence models and game theory.
Then, we present our influence model based on bounded
rationality and quantal response equilibrium model. Next, we
simulate the propagation of social influence when seeds are
placed at different configurations. We propose an efficient
mechanism to find the optimum placement of seeds to counter
the influence of existing seeds, when there are multiple types
of contending seeds. Finally, we discuss our results and present
our conclusions.

II. BACKGROUND

In this section, we will discuss some of the key background
knowledge that is essential for our discussion.

A. Social networks

A social network can be considered as a network structure
that consists of social actors[7]. Analysis of social networks
can be done based on different disciplines, such as psychol-
ogy, sociology and statistics[7]. With the advent of complex
network analysis[8], [9], [10], [11], there has been keen interest

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

33ASONAM '15, August 25-28, 2015, Paris, France 
© 2015 ACM. ISBN 978-1-4503-3854-7/15/08 $15.00 
DOI: http://dx.doi.org/10.1145/2808797.2808886



in using network analysis to study social networks as complex
systems[9], [12]. In particular, the scale-free and small-world
models that are prevalent in complex networks are prevalent
in social networks[9].

In addition to the Scale-free networks, we would be using
Erdos-Renyi (ER) random networks[9] and well-mixed net-
works in our study. The ER random networks are generated
by randomly connecting links while in well-mixed networks
all nodes are connected to each other. These models are used
as reference models. These models help us to evaluate how the
social influence model that we propose perform under varying
topologies.

B. Influence modelling in social networks

Modelling of influence in social networks have gained
much interest in the recent past. This is partly due to the
potential that the emergence of online social networks present,
in myriad of fields from online marketing of products to
political campaigns[13], [14], [15], [16]. Especially due to
advent of ‘viral marketing’ where word of mouth is used as a
form of advertising through social media, the importance of so-
cial influence modelling has become even more prevalent[17],
[14]. One key advantage in online social networks is it is
possible to harness the meta information about the social
network such as the underlying topology and the weights
of the links, based on the data that is captured from the
social interactions[14]. The key challenge in social influence
modelling would be to identify the placement of ‘seeds’ or
the influencing agents that would be able to create a cascading
effect in the network, where the maximum possible number of
nodes in the network are affected. This problem becomes even
more complex when there are multiple types of contending
seeds are in operation[18], [4]. Two main classes of influence
or diffusion models are found in the literature, namely the
linear threshold model and independent cascade model. Apart
from that, recent interest has emerged on network topological
influence models based on the Page-rank algorithm, and even
based on game-theoretic models[3], [4]. Following is a brief
introduction to some of the common social influence models
found in the literature.

1) Linear threshold model: One of the most common
models used to model social influence is the linear threshold
model[1]. The assumption that is made in this model is that
a node has a binary state of being active or inactive, with
respect to a particular state that it is under influenced. Each
node would have a random variable that dictates the fraction
of nodes based on whose state which, it will switch or keep
its current state. Formally put, each node v would have a
threshold θvε[0, 1] that is randomly selected, which denotes
the fraction of neighbours of node v that has to be active in
order for node v to be active and vice-versa. Each node is
affected by each neighbour w according to a weight bv,w such
that,

∑
w♦v bv,w ≤ 1, where we use the ♦ symbol to mean

‘neighbour of’. A node is activated when the total weight of
its active neighbours is at least θv:

∑
w♦v bv,w ≥ θv

The random assignments of threshold θv account for the
lack of knowledge of intrinsic latent tendencies of nodes to
adopt neighbour strategies.

2) Independent Cascade model: In the independent cas-
cade model [1], when a node v becomes active, it has a
single chance of activating each currently inactive neighbour
w. Each activation attempt would succeed with probability
pvw. Here too, the influence is defined in a binary fashion while
multiple influence types are not considered. An extension for
the independent cascade model has been proposed which allow
the inclusion of negative opinions[18].

3) Page-Rank based influence models: Page rank algorithm
was initially used by Google to rank the web pages based
on rankings of their neighbourhood[19]. It can effectively be
used to measure social influence, particularly in online social
networks such as the blogsphere. Page-rank with prior has been
suggested as one such possible influence model[20], which
has been used to measure social influence in collaboration
networks. It has also been used to evaluate microblog users’
influence[3]. However, Page-rank is generally sought after to
quantify the influence or the rank of each node rather than to
identify to find the optimum seed arrangement to maximise or
minimise social influence.

C. Game theory

In our influence model, we employ a game theoretic
approach to quantify influence. Game theory is the science of
strategic decision making[21], [22], [23], [24]. Different games
such as the prisoner’s dilemma game and the coordination
game have been proposed to model different strategic decision
making scenarios[21], [25], [26]. One of the pivotal concepts
of Game theory is Nash equilibrium[27]. Nash equilibrium
suggests that there exists one of more equilibria in strategic
decision making scenarios, from which no player would benefit
by deviating. One of the key assumptions in Nash equilibrium
is that the players are fully rational[28]. In other words, it as-
sumes that the players have full knowledge of the strategies and
the payoffs of the opponents and would not have any cognitive
or temporal limitation in calculating the optimum strategy[28].
The equivalent concept of Nash equilibrium in populations of
players is the evolutionary stability of strategies[29], [30], [31].
If a strategy is evolutionarily stable, it would be able to wipe
out any competing mutated strategies.

The assumption of full rationality does not hold for real-
world players as they tend to have ‘bounded rationality’.
Bounded rationality is the non-optimal rationality of players
due to the limitations of cognitive capacity, information avail-
ability or the computational time available for a player[6]. For
this reason, the behaviour of real-world players may deviate
substantially from Nash equilibrium[32].

1) Quantal response equilibrium: Quantal response equi-
librium is a generalisation of Nash equilibrium, that accounts
for the boundedly-rational or noisy agents. Probabilistic choice
models are often used to incorporate stochastic elements in to
the analysis of individual decisions. Quantal response equilib-
rium (QRE)[28] presents an analogous way to model games
with noisy players. Probabilistic choice models such as logit
and probit models are based on quantal response functions.
They have the inherent feature where the deviations of optimal
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decisions are negatively correlated with the associated costs.
Thus, in the QRE model, players are likely to select better
choices than worse choices, although there is no guarantee
that they will always select the best possible choice. Consider
the payoff matrix given in Fig. 1, for a generic normal-form
game. The logit function given in Eq.1 is often used to derive
the equilibrium probabilities at QRE[28], [33].

Fig. 1: The payoff matrix of a generic normal form game.

P i
j =

eλiEui(sij ,Pj)

∑
k e

λiEui(sik,Pk)
(1)

Here, P i
j is the probability of player i selecting the strategy

j. Eui(sij , Pj) is the expected utility to player i in choosing
strategy j, given that other players play according to the
probability distribution Pj . The total number of strategies that
player i can choose from is given by k.

QRE produces a mixed strategy equilibrium, where the
choice probabilities give the equilibrium probabilities of a
player with a particular value of bounded rationality. In the
logit QRE function given in Eq.1, λi is known as the rationality
parameter of player i. By varying it, it is possible to vary player
i’s ability to respond to the opponent’s strategy distribution and
the payoffs obtained under each strategy. Accordingly, ratio-
nality parameter can be regarded as a measure of a player i’s
rationality. It has been shown that as λi → ∞, the equilibrium
gets closer to the Nash equilibrium, and as λi → 0, the player
would operate in a totally random (thus irrational) fashion[28].
Within this range, the rationality parameter would produce
equilibria of boundedly rational players. For instance, based on
this property, a topological model of bounded rationality has
been proposed[34]. Thus, we can use this QRE logit function
to derive the equilibrium probability distributions of players
who operate under non perfect rationality.

III. MODELING INFLUENCE USING BOUNDED
RATIONALITY

Based on the background theoretical knowledge, we
present a social network influence model based on game theory
and bounded rationality of nodes. We first model the social
influence of nodes as an influence game, where there would
be influencing nodes or ‘seeds’ and followers operating in
a network of players. The seeds would continue to operate
with a permanent binding to a particular state. This inclination
may be due to some external knowledge or an incentive the

seed may have from the external environment. In the context
of a influencer-follower scenario, the bounded rationality of
a follower would be a ‘rationality of following’. Higher the
rationality of a follower with respect to a seed, higher the
probability of it following the state of the seed. In this social
influence model, we assume that the rationality parameter of
a particular follower is negatively proportional to its distance
from the seed. This assumption would account for the random
noise that would be accumulated as the followers move further
from a seed. Based on the rationality of following, we can
measure the probability of a follower being at the state of the
influencing node or the seed node. Thus, our model does not
produce a binary outcome where the followers would be active
or inactive in a binary fashion, rather the result would be a
probability on which a follower would adopt the probability of
the influencer. In a game theoretic terminology, the follower’s
probability distribution would be a mixed strategy equilibrium,
where the two strategies would be whether to adopt the strategy
of the seed or not. Formally put, the follower probability pn,s
of adopting the active state s of the seed would be,

Pn,s =
eβn,i.Us.Pi,s

eβn,i.Us.Pi,s + eβn,i.U−s.Pi,−s
(2)

where,

Pn,s - Probability of the follower node n being at state s
(active state)
βn,i - Following rationality of node n with respect to node i
Us - Utility of adopting the state s
Pi,s - Probability of the influencer i being in state s (this is
always 1)
Pi,−s - Probability of the influencer i being not in state s
(this is always 0)
U−s - Utility of not being in state s (inactive state)

We add random noise to the followers with the assumption
that the rationality of a node of following the influencer is
negatively proportional to the distance from the seed or the
influencer. Thus, βn,iα

1
dn,i

where dn,i is the distance along
the shortest path from the influencer i to node n along the
shortest path. As the follower moves further from the seed, the
rationality parameter reaches 0, making them behave randomly.
If the followers are placed closer to the seed, then there would
be higher rationality and thus a higher probability of following
the state of the seed. Another important factor to note is the not
only the distance from the seed, but also the reward or utility
of adopting the state too play a significant role in determining
whether a follower would adopt the state of the seed. We can
extend the above model to a case where there are multiple
seeds or influencers instead of a single influencing node.

Pn,s =

∑N
i=1 e

βn,i.Us.Pi,s

∑N
i=1 e

βn,i.Us.Pi,s +
∑N

i=1 e
βn,i.U−s.Pi,−s

(3)

where N is the total number of influencers in the network.
In the above model, each node would have a separate ratio-
nality parameter for each influencer, based on the distance to
them. Thus, it would capture the varying network distances
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from each influencer to more accurately predict the status of
the follower.

This would imply that in a population that is closely knitted
would have a higher tendency of following a seed compared to
a population that is sparsely connected. Further, small-world
networks[9] would tend to leverage social influence as they
have relatively low average path lengths[9].

IV. MODELING SOCIAL INFLUENCE UNDER OPPOSING
INFLUENCERS USING BOUNDED RATIONALITY

The model we introduced could be used to model the
influence of a single type of influencers. Yet, in most real-world
social influence scenarios, there would be conflicting interests
at play. There would be influencers with a negative influence as
well as positive influence on the same state. In addition to that,
there could be instances where there are multiple influencers
that are mutually exclusive from each other. A good example
of this are political campaigns where there would be more
than two candidates running. Thus, we can easily extend the
above model to account for two opposing types of influencers
of states S1 and S2 as given in Eq. 4.

Here,

Pn,S1
- Probability of the follower node n being at state

S1

βn,i - Following rationality of node n with respect to the
influencer i
βn,j - Following rationality of node n with respect to the
influencer j
US1

- Utility of adopting the state S1

Pi,S1
- Probability of the influencer i being in state S1 (this

is always 1)
Pi,−S1

- Probability of the influencer i not being in state S1

(this is always 0)
Pi,S2

- Probability of the influencer j being in state S2 (this
is always 1)
Pi,−S2

- Probability of the influencer j not being in state S2

(this is always 0)
U−S1

- Utility of not being in state S1

US2
- Utility of adopting the state S2

U−S2
- Utility of not being in state S2

The rationality parameters with respect to each influencer
would again be dependent on the distance of the node in
concern from each of the influencers. Note that the followers
can take either of the two states S1 or S2 under the influence
of the two types of influencers. However, it does not account
for a neutral state where the followers may not follow either
of the two types of influencers. If a neutral state is considered,
then the numerator should only contain the exponent of S1,
as in that case a node being influenced to be in state −S2

does not mean it would automatically adopt S1. Further, it is
possible to extend the same model to take into account multiple
types of influencers and not just two opposing types, since
every influencer state can be regarded as a possible strategy a
follower could adopt with heterogeneous rationality levels.

V. OPTIMIZING INFLUENCE USING BOUNDED
RATIONALITY MODELS

In this section, we propose a method to place the influ-
encers in order to maximise their influence on the population,
based on the bounded rationality based influence models that
we’ve proposed. We mainly look at two scenarios. One is
where the network has only a single type of influencers and
the requirement is to select the placement of influencers to
miaximize their influence. This is termed as the influence
maximisation problem in the literature[1]. The other is the
scenario where the network two kinds of opposing influencers.
Supposing the network is already occupied with one type of
influencers, we need to identify the optimum way of placing
the rivalling set of influencers, so that the influence of the
originally placed influencers is minimised. These optimisations
would be applicable to the influencer-follower game that we
discussed earlier and also more general strategic decision
making situations.

Firstly, lets consider a scenario where there is only one type
of seeds or influencers in a network in a influencing game.
Since the bounded rationality of following is inversely pro-
portional to the distance of the followers from the influencing
node. Thus, the influencers are best placed in a network where
the distance to the followers is minimum. The natural candidate
to locate that placement would be the closeness centrality of
the network, since closeness centrality is used to identify the
nodes that have average minimum shortest path distance to the
other nodes within the network. The Eq.5 depicts the equation
for calculating the closeness centrality of a node. When the
influencers are placed according to the closeness centrality of
network, the influence on the rest of the network would be
highest, when there is only one type of positive influence at
play.

CH(x) =
∑

y "=x

1

d(y, x)
(5)

where d(y, x) would be the distance along the shortest path
from node x to node y.

Next we’ll look at what would be the most optimum
method to place the rivalling or conflicting influencers when
there are multiple opposing influencers in operation. Assuming
that the original influencer or influencers are already placed
in a network, there would be two factors that affect the
effectiveness of the rivalling influencers. Those two factors
are,

Active factor - The distance from the rivalling
influencers to the follower nodes in the network

Passive factor - The ability of the rivalling in-
fluencers to ‘block’ the influence of the original
influencers

The first factor could be measured using the closeness
centrality of the network. We call it an active factor since the
oppposing nodes would directly influence the remaining nodes
in the network to follow them. The second factor becomes
relevant since the rationality is spread through the network
topology. If a node is occupied by an opposing influencer, then
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Pn,S1
=

∑N
i=1 e

βn,i.US1
.Pi,S1 +

∑M
j=1 e

βn,j .U−S2
.Pj,−S2

∑N
i=1 e

βn,i.US1
.Pi,S1 +

∑N
i=1 e

βn,i.U−S1
.Pi,−S1 +

∑M
j=1 e

βn,j .US2
.Pi,S2 +

∑M
j=1 e

βn,j .U−S2
.Pi,−S2

(4)

it no longer would take part in spreading the influence of the
original influencers. From the perspective of the original set
of influencers, the opposing influencers would cease to exist
in the network, in their quest to spread their influence. Thus,
simply by being placed in positions where the distance from
the original influencers to the followers could be increased, the
rivalling influencers can minimise the influence of the original
set of influencers. In other words, the opponent influencers
are best placed in ‘between’ the original influencers and the
followers of the network. Thus, another well-known centrality
measure, which is the betweenness centrality can be employed
to identify the topological positions where the influence of the
original influencers would be minimised. However, we need
not calculate the betweenness cetrality values of all nodes in
the network to identify these positions. Only the betweenness
cetrality values for the original influencers would be sufficient
to identify the topological positions where there influece can
most effectively be interfered. We call this the passive factor
of negative influence since the opponent influencers reduce
the influence of the original influencers simply by passively
occupying the high betweenness centrality nodes.
By combining these two active and passive negative factors,

we can derive a measure that could be used to identify the
positions where it would be most effective to place the negative
influence seeds. Thus, we can propose an algorithm to opti-
mally place the negative influencers in a network where there
are already existing positive influencers. Algorithm 1 details
out the steps to calculate the proposed combined measure. In
step 1, the betweenness centrality values from the original seed
set gives the positions where the influence of the original seed
set would be hindered, had them been occupied by rivalling
seeds. On the other hand, the closeness centrality of the entire
network is measured so that the opposing seeds would be
‘closest’ to the other nodes distributed in the network. By
combining these two measures, it is possible to come up with
the optimum metric, according to which the opposing seeds
may be distributed in the network.

Algorithm 1: Optimum influence arrangement of nega-
tive influencing seeds, when a network is already occu-
pied with positive influencing seeds.
Data: Network topology, Seeds
Result: Optimum arrangement of opposing seeds

1 calculate the betweenness centrality values of the nodes
from the original set of seeds;

2 calculate the closeness centrality of the entire network;
3 get the average measure of these two measures;
4 order them in descending order;
5 place the opposing seeds in the order of the combined
measure;

A. Complexity analysis
Influence maximisation is an optimisation problem that is

tries to optimally place the seeds in order to the influence

spread. Under the independent cascade model and linear
threshold model, the influence maximisation becomes an NP-
hard problem[1]. Therefore, in order to solve them, it is
necessary to employ a greedy algorithm to find the optimum
seed arrangement. The greedy algorithm of optimising in-
fluence spread outperforms the degree and centrality based
heuristics[1], [2]. Still, it requires an approximation using the
Monte-Carlo simulations of the influence cascade model over
a number of interactions to obtain an accurate estimation of the
influence spread. Thus, it may be inefficient in a sufficiently
large network with multiple seeds involved.

Using the proposed bounded rationality based influence
model, we can propose an exact algorithm to identify the
optimium set of influencers without depending on heuristics.
The time complexity of finding the optimum placement of a
single type of influencers would be O(V,E) where V would be
the number of vertices and E would be the number of edges
in the network, which is the time complexity of calculating
the closeness centrality. The time complexity of optimising
the negative influence when there are opposing influencers
would be O(V,E)+O(VS , E), where VS would be the initial
set of seed nodes. Based on the proposed influence model,
it is possible to measure the actual optimisation problem
in polynomial time. Also, instead of an approximation, it
is possible to derive an exact solution using the bounded
rationality based influence model.

VI. METHODOLOGY

In this section, we present the methodology used to perform
simulations to demonstrate the applicability of the bounded
rationality based influence model. First, we compare three
different network topologies, scale-free, ER random and well-
mixed, in how they would facilitate the influence spread under
a bounded rationality influence model. In order to do that,
we place a seed at the hub of each network and measure the
average probability of following the seed, over the network.
The network with the lowest diameter would be the one that
facilitates most influence. The two states that we consider are
either active or inactive states where active refers to adopting
the state of the influencer. However, since the QRE model gives
a probability distribution of whether a node would follow the
influencer or not, the outcome would not be a binary state
distribution, rather a probability distribution of being in the
active state. The payoff of adopting the state of the seed is set
to be 1 and not adopting the state is set to 0.

pn1
=

e(βni
.p1

i .1)

e(βni
.p1

i .1) + e(βni
.p0

i .0)
(6)

Here pn1
would be the probability of node n being in state

1, where state 1 denotes being active and 0 denotes being
inactive. βni

would be node n’s ‘rationality of following’ with
respect to the influencer i, which would be dependent on node
n’s distance along the shortest path from the influencer i.
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Therefore, βni
= c/dni

where c is a constant and dni
is the

distance of node n from node i along the shortest path. 1 and
0 are the payoffs of state 1 and 0 respectively.

Next, in order to test how the payoff of following affects the
probability distribution of following the seed, we performed
the same experiment while varying the payoff of the active
state. A scale-free topology was used for this simulation and
the variation of the average probability of following over the
payoff of the active state was observed.

Then, we observed the optimum method to reduce the
influence of the hub by placing opposing influencers in the
network. To test this, we considered two different scenarios.
In the first one, the hub is placed with the original influencing
node and 4 opposing influencers are distributed according to
different configurations. In the first configuration, they are
placed in the remaining hubs in the order of the degree.
In the next two configurations, the opponents are placed in
the order of betweenness from the hub and the closeness
centrality of the network, respectively. In the 4th configura-
tion, the opponents are placed in the order of the combined
measure that we presented in algorithm 1. We compared and
contrasted the variation of negative influence by observing
the adoption probability under these 4 configurations. The
same experiment was then repeated for multiple conflicting
influencers on both sides. The original set of influencers were
randomly distributed and 4 opposing influencers are placed
according to the four configurations mentioned above. This
experiment was repeated over 20 iterations to account for the
effect of randomness in the initial configuration of influencers.
We assume that the followers would adopt either of the active
or the negatively active states, thus they wouldn’t be in an
inactive state. It should be noted that an inactive state could
also be incorporated by extending the QRE model that we use.
The payoffs of following each type of influencers were set to
2 and 1 respectively. In each type of influencer, the payoff of
not following the influencer would be a negative payoff of -
2 and -1 respectively. Eq. 7 shows how the probability of a
node being in state s, which is the state of the original set of
influencers, being calculated using QRE and distance induced
bounded rationality.

Here, pn1
would be the probability of node n adopting state

s. βni
would be the rationality of following the influencers

of state s where N is the number of such influencers. Also,
βnj

would be the rationality of following the influencer of
state −s where M would be the number of such influencers.
2 and -2 are the payoffs of either following or not following
the influencers of state 1. 1 and -1 are the payoffs of either
following or not following the influencers of state −s. The
rationalities of following would be inversely proportional to
the distance from each influencer. For instance, the rationality
βnj

of following an influencer of type j is set as c/dnj
where c

is a constant and dnj
is the distance from node n to influencer

j.

These experiments enable us to evaluate how the bounded
rationality based influence modelling can be applied in a
influencer-follower scenario, where there are a dedicated set of
influencers or seeds and the rest of the population is following
them.

VII. RESULTS
The table I shows the comparison of the average following

probability under the three network topologies considered. As
the table shows, the scale-free topology facilitates the highest
average following probability compared to the ER random and
lattice topologies. This is due to the fact that a scale-free
network of a comparative size and average degree may have a
lower diameter compared to a ER-random or a lattice network.

TABLE I: The average probability of following the seed in
different topologies
Network topology Average probability of following
Scale-free 0.95
ER Random 0.89
Lattice 0.51

The Fig. 2 depicts the variation of the following probabil-
ities in a scale-free network, when the seed is placed at the
hub and when the payoff for adopting the state of the seed is
increased. As shown in the figure, there is a clear positive
correlation between the payoff of the active state and the
influence spread. Thus, this shows that not only the topology
of the network and the positioning of the seed(s) but also the
payoff of the active state is critical in determining the spread
of influence.
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Fig. 2: The variation of the probability of following against
the payoff of the active state.

Next, we depict the results when two conflicting types of
influencers are placed in a scale-free network. The original
influencer is placed in a hub and 4 opposing influencers are
place according to 4 different configurations. Namely, they
are placed according to the degree centrality of the network,
betweenness centrality from the hub, closeness centrality of
the network and a combination of the 2nd and 3rd measures
(as discussed in algorithm1). Fig. 3 shows the comparison
when the influencing seed is placed the hub in opposition
to 4 counter influencers in the same 4 configurations. As
the figure shows, the combined measure method proposed in
algorithm 1 gives the best results in terms of maximising the
negative influencer, thereby reducing the average probability
of following. The table II shows the average probability of

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

38



pns
=

∑N
i=1 e

(βni
.ps

i .2) +
∑M

j=1 e
(βnj

.ps
j .−1)

∑N
i=1 e

(βni
.ps

i .2) + e(βni
.p−s

i .−2) +
∑M

j=1 e
(βnj

.ps
j .−1) + e(βnj

.p−s
j .1)

(7)

following when the opposing seeds are placed in the 4 different
configurations. The results reiterate that it is the negative seed
placement method discussed in the algorithm 1 that provides
the optimum reduction of the influence from the original seed.
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Fig. 3: The variation of the probability of following against
the distance from seed placed at hub in a scale-free network.
4 opposing seeds are placed in the order of (i) degree,
(ii) betweenness from the hub, (iii) closeness centrality, (iv)
combination of both of 2 & 3.

TABLE II: The average probability of following the seed
in different topologies. The opposing seeds are placed in 4
different configurations.
Opposing influencer configuration Average following probability
Degree 0.29
Betweenness (hub) 0.21
Closeness 0.79
Combined measure (2 & 3) 0.19

Fig. 4 depicts the variation of following probability against
the average distance from the influencing seeds when multi-
ple original influencers are placed randomly. The results are
averaged over 20 independent runs. As the figure depicts, it is
the combined measure used to determine the placement of the
opposing seeds that mitigate the influence of the original set
of influencers, most effectively. This is further confirmed by
the comparison of average probabilities of following, given in
table III.

VIII. CONCLUSION AND FUTURE WORK
In this work, we propose a novel social influence model

based on the bounded rationality of agents in a social network.
First, we model the social influence as an influence game
where there are two types of players, influencers and followers.
The followers are assumed to be following the influencers
based on a measure of bounded rationality, which is inversely
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Fig. 4: The variation of the probability of following against the
average distance from seeds placed at random positions in a
scale-free network. The opposing seeds are placed in the order
of (i) degree, (ii) betweenness from the hub, (iii) closeness
centrality, (iv) combination of both of 2 & 3. The results are
averaged over 20 independent runs.

TABLE III: The average probability of following the randomly
placed seeds in different topologies. The opposing seeds are
placed according to four different configurations.
Opposing influencer configuration Average following probability
Degree 0.30
Betweenness (seeds) 0.19
Closeness 0.95
Combined measure (2 & 3) 0.04

proportional to their distance from the influencers. Based on
this model, we show that scale-free networks facilitate social
influence compared to ER random and lattice networks.

We then extend this model to scenarios where there are
multiple and opposing seeds. We propose a method to opti-
mally place the negative seeds to minimise the influence of
the original set of positive influencers. In this method, the
opponents are placed according to the order of a combined
centrality measure, which is the average of the betweenness
centrality from the original seeds and the closeness centrality
of the nodes within the network. We demonstrate that in
general, placing the opponents in the order of betweeness
centrality from the original seeds, thereby ‘interfering’ their
influence to the rest of the network, is more effective than
choosing the nodes that have higher closeness centrality within
the entire network to place the rivalling influencers. Moreover,
the proposed combined centrality measure performs best in
maximising the negative influence, when the original seed is
placed at the hub, or when multiple original seeds are randomly
distributed.
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To our understanding, this is the first attempt to model
the social influence using bounded rationality and the QRE
model. The applications of such a model could be myriad,
especially as it allows the computation of social influence in a
computationally efficient manner. Moreover, as it is based on
game theoretic principles, it allows the payoff of following an
influencer or adopting a strategy to be a key variable in the
modelling, which is not present in the standard social influence
models. Countering the influence of an existing network is a
critical problem that may have many applications in scientific,
social and political networks. Thus, the combined centrality
measure of placing opponent nodes and strategies may be
quite useful in negatively affecting existing social influence.
This model can be even applied to model social influence in
scenarios where there are multiple types of influencers and
strategies, such as in a political campaign.

As future work, this model may be extended to model
the influence in strategic decision making among players
in a social network. Also, the possibility of utilizing other
centrality measures such as the eigenvector centrality and k-
core centrality could be evalutated in placing the opponent
seeds. While betweenness centrality and closeness centrality
provide the most evident centrality measures to place the seeds,
there may be other centrality measures that could be useful for
this purpose. While the simulations conducted here are mainly
based on theoretical network models such as the ER model
and the Scale-free model, applying the given method on real
world networks would help to further validate the applicability
of the proposed influence model.
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[32] P. A. Haile, A. Hortaçsu, and G. Kosenok, “On the empirical content of
quantal response equilibrium,” The American Economic Review, vol. 98,
no. 1, pp. 180–200, 2008.

[33] B. Zhang, “Quantal response methods for equilibrium selection in
normal form games,” Available at SSRN 2375553, 2013.

[34] D. Kasthurirathna and M. Piraveenan, “Topological distribution of
bounded rationality in network-based games,” Under Review, 2015.

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

40




