SLRouting: Server Link Router state Routing Protocol
Design and Implementation

Janaka L. Wijekoon
Hiroaki Nishi Laboratory
Dept. of Information and Computer Science
Keio Univ., Yokohama, Japan
janaka@west.sd.keio.ac.jp

ABSTRACT

Packet propagation delay reduction is becoming the primary
concern of the Internet. Internet service providers (ISPs) at-
tempt to optimize packet routing to offer the best route to
their subscribers by achieving desired network performance.
Consequently, a route computation metric that uses packet
propagation delay instead of link state will be a strong incen-
tive for ISP routing optimization, in which case ISPs could
ensure minimal delay route paths for their subscribers. To
this end, we present SLRouting, a novel Interior Gateway
Routing Protocol. SLRouting calculates a composite route
metric using packet waiting delays of servers and routers
as well as the packet propagation delay of network links.
SLRouting computes the route matrix by selecting the mini-
mal delay path for destination networks. This paper presents
the first version of the SLRouting including its theory, de-
sign, and implementation notes. A prototype of the proposed
protocol is implemented using the ns-3 simulator, and the re-
sults were used to evaluate the proposed protocol.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols; C.2.6
[Internetworking]: Routers

General Terms

Design, Experimentation, Performance, Verification

Keywords

Loop-free Hybrid Routing Protocol, Routing Utiliza-
tion, Traffic Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

AINTEC’15, November 18-20, 2015, Bangkok, Thailand.

(©) 2015 ACM. ISBN 978-1-4503-3914-8/15/11 ..$15.00.

DO http://dx.doi.org/10.1145/2837030.2837031

Hiroaki Nishi
Dept. of System Design Engineering
Keio Univ., Yokohama, Japan
west@sd.keio.ac.jp

1. INTRODUCTION

Packet propagation delay, i.e., data download latency,
has become the primary concern regarding Internet per-
formance [11]. To ensure low-latency data delivery, in-
ternet service providers (ISPs) solve the traffic engineer-
ing (TE) problem (i.e., packet routing) [19]. Moreover,
to offer fast data delivery, content providers (CPs) de-
ploy their networks on ISP networks, whereas the end
users can download data from the nearest server [1]. In
general, ISPs are attempting to optimize packet rout-
ing at a given server [15]. However, the distributed
infrastructure of CPs’ server placement violates basic
assumptions of TE; the traffic matrix is point-to-point
and constant [8,19]. Nevertheless, such networks intro-
duce unpredictability in network packet routing [15].

Routing optimization, which finds the best route to a
given destination by achieving desired network perfor-
mance, is a major component of TE [19]. Reference [2]
discusses the urge of contemplating both ISPs’ and CPs’
information for optimal path selection to ensure maxi-
mal routing optimization. Further, among many, refer-
ences [17] and [9] discussed of using dynamically chang-
ing factors for route matrix computation. However, con-
ventional protocols are a lack of considering the CPs’
impact for packet routing [8]. In fact, they do not con-
sider the effects of network components (i.e., packets’
waiting time at a router) for route matrix computation.
To achieve routing optimization, we form a hypothesis
that determines minimal delay route paths by interpret-
ing the states of network devices at a common scale,
time.

This paper proposes a new server link router state
routing protocol, SLRouting. Figure 1 illustrates the
basic concept of SLRouting. SLRouting employs packet
waiting delays on servers (d;) and routers (di) as well
as packet propagation delay of links (d;) to calculate
a composite metric (M;;). The composite metric com-
prises the cumulative packet traveling delays between
two nodes (i.e., ¢ and j). The Bellman-Ford algorithm
[3] is used to select the minimal delay path (henceforth
called the effective path ep) between two nodes. To
ensure loop-free route management, SLRouting incor-

d, (’t,),// N dy (®
s dy, (0
i o(Df-ml @ ey

dyo \(\t}\\ dyp, (©

S

Figure 1: Basic concept of SLRouting (solid line
denotes a direct link; dashed line denotes distance)
i source, k intermediate nodes and j destination; note
that j can be either a route or a server.
Router Metric (dg): average time a given packet has to
wait at the router,
Link Metric (dj;): average time a given packet travel
through the link,
Server Metric (d;): average time a given packet has to
wait at the server.

porates the diffusing computation concept [5] and the
coordinated update approach [7,13]. Thus, SLRouting
can be categorized as a loop-free hybrid IGRP.

The rest of the paper is organized as follows. Sec-
tion 2 briefs the mathematical background of employ-
ing states of the server, router, and a link for compos-
ite metric calculation. Section 3 elaborates the protocol
specifications, including its header structures, route and
neighbor management. Section 4 covers the evaluation
notes, including the limitations of the current version of
the protocol. Finally, Section 5 concludes the paper.

2. SLROUTING STATE OF THE ART

Given the fact that SLRouting employs servers, links,
and routers to calculate the ep between two nodes, the
real challenge is to interpret those parameters at a com-
mon scale wherever they are addable. References [18]
and [10] explain that a router and a server can be rep-
resented using the M/M/1 queue model such that the
packet waiting time at both the server and the router is
measurable. Further, links have their transmission and
propagation delays. In contrast, at a given time ¢ (i.e.,
update arrival time), SLRouting calculates the cumula-
tive packet travel time between two nodes. Using the
Bellman-Ford algorithm, it then selects the path with
the minimum travelling time as the effective path (ep)
(see Fig.1).

A server can be denoted using the M/M/1 queue,
where the Poisson process determines the arrival rate
(As), and job service (ug) has an exponential distribu-
tion. Using the detailed explanation given in [13, 18]
and the Little’s formula [12], at the steady state, the
packet waiting time (d](t)) of a given server j can be
calculated using (1), where j, denotes the server index
andn =1,23, ...

dj, (8) = 1/ (15, () = 23, (1)) (1)

d. dy, dos (0 d
N di, (t)@dklk, (t)/l‘;\dkzi (t) @

dys) K3k (O

R

Figure 2: Five node network example

Reference [10] explains that routers are also developed
on the basis of the queue model. Assuming a Poisson
packet arrival rate (Ag) and exponentially distributed
service rate (ug), similarly, routers can also be observers
by using the M/M/1 queue model. The packet waiting
time (dy(t)) of a given router k can be calculated using
(2), where k,, denotes the router index and n = 1, 2, 3,

di, () = 1/ (r, () = M, (8)) (2)

The packet traveling delay of a link depends on two
major points: 1.) packet transmission delay (Tirqns)
and 2.) packet propagation delay (Tprop). Tirans Of a
link kj (see Fig.1) depends on the available bandwidth
Ly(t) = L. — Li(t) of a link, where L; denotes the used
bandwidth and L. represents the total bandwidth [4].
In this case, for a packet of size Z propagates through
the link, and T}qns can be calculated using (3).

Tirans (t) = Z/LB (t) (3)

Further, T}, of a link depends on the length and the
medium of the link [4]. Consequently, total traveling
delay (dg;(t)) of a given link kj can be written using
(4).

dkj (t) = TpToI)kj (t) + Ttmnskj (t) (4)

2.1 Using the Bellman-Ford algorithm to de-
termine the ep

For the sake of exposition, let us assume a five-node
network as displayed in Fig.2. Note that all nodes are
connected via direct links, and j can be either a server
or a router. Assuming the route is through k1, the to-
tal traveling delay (i.e., composite metric (M;;)) can be
calculated by (5).

M3 (t) = K1[di+dy, +di, |+ K 2(din, +di, k,+diys]+K3[d;]

()
Similarly, the total traveling delay through node k3 can
also be written as as (6).

M3 (t) = Kl[Jﬁdkgﬂim]+K2[dik3+dk3k2+dk2j]+K(3gdﬂ
6
K1, K2, and K3 are controllable coefficient values (hen-
ceforth called K — Values), and Section 2.2 explains
them in detail. SLRouting selects the minimal traveling
delay path between (5) and (6) as the ep;;. The other

Figure 3: A simple, conceptual, graph view of two ISPs
connected by default routes

path will be maintained as the backup path for the given
destination.

Formally, by using Bellman-Ford algorithm and em-
ploying (1), (2), (4), and (5), for a given time ¢, the
total traveling delay of ep;;; D’e?;,;j (t), can be simplified
as (7). Note that (7) assumes the ep;; is through ;.

ME, (1) = din, (8) + ey (8) + M, (1) (7)

2.2 Configurable coefficients (K — Values)

Packet propagation delay is considered to be the most
important factor of Internet performance [11]. There-
fore, as described in Section 2.1, for more accurate or
better route matrix calculation, SLRouting computes
a composite metric using the average packet propaga-
tion delay between two nodes along with three nonneg-
ative coefficient values, K-Values. The K-Values are in-
troduced to enable controllability for composite metric
calculation by considering K1, K2, and K3 for servers,
links, and routers, respectively. Note that ISPs will have
to determine the K-Values according to the requirement
of their subscribers.

Given the fact that SLRouting assumes all servers in
an ISP participate for route matrix computation, the
default K-Values are set as; K1=1, K2=1, and K3=1.
However, in a situation where servers do not participate
in the route matrix calculation (j; node in Fig.3), M;;,
is calculated by setting K-Values as K1=0, K2=1, and
K3=1. In such cases, SLRouting works as a hybrid
routing protocol by controlling only K2 and K3.

Nevertheless, as depicted in Fig.3, ISP1 computes eps
for the routes learned from ISP2 by implicitly setting
K1=0, K2=1, and K3=1. This is because ISP1 as-
sumes that ISP2 used relevant K-Values to calculate
the eps. Note that, this implementation (the first of
SLRouting), is incapable of route conversion, i.e., con-
vert routes from OSPF to SLRouting and vice versa [14].
However, protocol headers are implemented with re-
served bits to introduce such features in future versions
(see Fig.6).

3. SLROUTING SPECIFICATIONS

The SLRouting protocol is built by assuming three
important factors: 1.) within a finite time period a

O,

ﬁ\ Add Neighbor “I” |

Hello

Route Request

<«

'
Time — Response (full table)
! with Split Horizon

—>
Kam Update B-Table

—>

KAM Update N-Table

—>

H
\

Figure 4: Protocol message exchange when an interface
is activated

node should be able to determine the existence of a new
node or the connectivity loss of a neighbor, 2.) the
protocol should ensure the reliability of the route update
messages, and 3.) any route message event should be
processed individually.

The protocol can be divided into two parts: route
management and neighbor management. Neighbor man-
agement ensures the aforementioned first factor, whereas
route management handles the other two factors by us-
ing the defusing computation concept [5] and coordi-
nated update approach [7,13]. SLRouting is intended
to allow routers to exchange information for computing
routes using IPv4-based networks (note that this ver-
sion supports only IPv4). The protocol is developed as
a UDP-based protocol and uses UDP port 275 for its
route advertisements.

3.1 Neighbor management

Each node maintains a list of neighboring/adjacent
nodes to ensure a loop-free route computation. The
neighbor management consists of two major methods:
1.) neighbor discovery, and 2.) maintenance of the
neighbor table including adding, updating, validating,
and deleting neighbor records.

The building of the neighbor table will initiate when
nodes (interfaces) are first activated. When an inter-
face is activated, as shown in Fig.4, the node sends a
hello message using the protocol structure displayed in
Fig.5. When k; receives the hello message, it adds @
to its neighbor table (henceforth called the N-Table)
with relevant information. k; then sends a route re-
quest message (RRQ) to i. After receiving the RRQ
from kq, i sends the route response message (RRS) to
k1, which then updates its routing table according to
the received RRS. Finally, in each KAM Timer interval,
both i and k; exchange Keep-alive Messages (KAMs)
using the same protocol structure displayed in Fig.5.

All records in the N-Table are associated with two
events using two different timers: NbrTimeout, and Gar
bage-collection (default values are listed in Table.1). All
new neighbor records are set as VALID, and events
are scheduled to expire after NborTimeout seconds. For
every received KAM from the neighbors, the timeout
event of that particular neighbor record will be re-set.
However, if the neighbor record does not receive KAMs

Table 1: SLRouting timers and default values

’ Timer \ Description \ Default value ‘
Periodic_Update Amount of time between route updates 20s
TrigMAX Maximum time between triggered updates 5s
TrigMIN Minimum time between triggered updates 1s
Timeout Amount of time after which a route is considered unreachable 100s
Hold_down Amount of time after which route is moved to M-table from the B-table 60s
Garbage-collection | Amount of time after which a route is removed from the routing table 10s
KAMTimer Amount of time between the two KAMs 30s
NbrTimeout Amount of time after which a neighbor record considered unreachable 90s
Svr-RtrTimer Amount of time a server advertises to its adjacent gateway 240s

——————————————————— Keep Alive M Header ——————————-——————————-SlRouting header
| 0 | 1 | 2 | 3 | © | 1 | 2 | 3 |

01234567012345670123456701234567

Command | Auth_Type | Auth_Data

Neighbor_ID

Gateway

NetMask

Figure 5: Hello/KAM packet structure

until the timeout event expires, the neighbor record will
then be marked as INVALID and be scheduled for re-
moval from the N-Table after Garbage-collection sec-
onds. Further, all route records which refer to that
neighbor as their gateway will also undergo a route in-
validation process (a detailed explanation can be found
in Section 3.2.5).

3.2 Route management

Route management is the combination of routing ta-
bles, route update structures, route update message pro-
cessing and route invalidation. Given the fact that SLR-
outing uses defusing computation with coordinated up-
dates, route management uses various protocol mes-
sages and several route states.

3.2.1 Routing tables

Every node configured with SLRouting is supposed
to maintain two routing tables: main table (M-Table)
and backup table (B-Tuable). Each table has at least one
entry for every destination that can possibly be reached
from that particular node. Each entry has the following
information: the destination metwork prefix and net-
work mask, gateway IP address, interface ID, sequence
number of the last update, metric (i.e., propagation
time), flag that indicates whether the route is changed,
state, and type of route. In addition, for stable route
update management, various timers are associated with
each route (see Table.1). On the basis of the connec-
tivity and responsiveness of neighbors, interfaces, and
destination networks, each route record is assigned to
one of the following states: VALID, INVALID, BRO-

©1234567012345670123456701234567

Command | RU_Command | REQ_Type | NoE

Auth_Type | NOTUSE | Auth_DAta

I |
I |
I I
~ RUM ~
I |

(a) SLRouting message header
RUM

| © | 1 | 2 | 3 |
©1234567012345670123456701234567

Route_tag | NOTUSE

Seq#

Network Address / Host Address

| I
| I
| Metric

[[
| I

NetMask

(b) Route update message (RUM)

Figure 6: Protocol header structures

KEN, DISCONNECTED, and LOCALHOS'T.

M-Table stores 1.) route records for all locally con-
nected networks by assigning the gateway as 7 0.0.0.0”,
and 2.) ep learned from nodes’ neighbors (henceforth
called the ”m-route”). Initially, the type and the state
of all routes in the M-Table are marked as PRIMARY
and VALID unless otherwise specified.

B-Table has two route records for each destination
prefix. One is the reference route to the m-route and is
marked a PRIMARY (henceforth called the ” p-route”).
The second is the route with the next best propaga-
tion delay (i.e., greater than that of the m-route). Such
records are marked as SECONDARY (henceforth called
the ” s-route”).

3.2.2 Protocol messages

SLRouting uses packet structures given in Fig.6 for its
protocol messages. For faster and reliable route update
management, SLRouting uses techniques such as se-
quence numbering, split horizon, and poison reverse [6].
Nevertheless, push and pull message techniques are also
used for the route messaging [18]. push messages can

be categorized as hello, KAM, RRS, whereas pull mes-
sages can be categorized as RR(@). Note that the B-Table
is not used to generate both RRS and RR(@ messages;
the B-Table is used only to store temporary and backup
route records.

Route Request (RRQ) messages are used to re-
quest either entire or partial routing table from a node.
Note that this implementation supports requests only
for the entire routing table. A RR(), which requests en-
tire routing table sets the SLRouting header, given in
Fig.6.a, as follows: command — RouteUpdate, RU_Com
mand = REQUEST, REQ_Type — EntireTable, NOE
— 255, and both Auth_Type and Auth_data — as nego-
tiated in neighbor discovery.

Route Response (RRS) messages are generated ei-
ther as a response to a request or as route advertisement
messages. SLRouting uses two types of route advertise-
ment messages: periodic and triggered. For example,
as displayed in Fig.4, when ¢ responds to ki, ¢ sets the
parameters of Fig.6.a as follows: command — Route-
Update, RU_Command — RESPONSE, REQ_Type —
0xff, NOE — as per the MTU, and both Auth_Type and
Auth_data — as negotiated in neighbor discovery. After
setting the SLRouting header parameters, i adds RUMs
for each VALID route record present in the M-Table.
NoF is determined according to the MTU value of a
particular interface. Depending on the MT'U value and
the number of route records in the M-Table, i may send
more than one RRS message to k1. Note that split hori-
zon is considered while generating the RRS messages.

Route_Tag of RUM header (See Fig.6.b) is consid-
ered to be the most vital field. In this implementation,
Route_Tag is segregated as follows. The most signifi-
cant byte is reserved for future implementations, and
the least significant byte is divided as given below.

e | K31 K2IK1I0I TrigUpdate | ValidRoute | Poi-
sonedRoute | 0 1

By setting K1, K2, and K3, SLRouting indicates the
parameters used for composite metric calculation. Trig-
gered updates are marked using the ” TrigUpdate” flag.
In addition, SLRouting uses ” ValidRoute” and ” Poi-
sonedRoute” flags to mark VALID routes and poisoned
routes (i.e., unreachable destinations) respectively.
Periodic update messages: Nodes generate peri-
odic update messages by using routes in the M-Table,
and employing both split horizon with poison reverse
techniques at each Periodic-Update interval. Nodes use
interfaces’ MTU values to calculate the number of RUMs
(i.e., set NOF in Fig.6.a) that can be added to an ad-
vertisement. Further, nodes forward periodic advertise-
ment messages to all neighbors present in the N-Table.
Triggered update messages: Triggered updates
are introduced to provide fast route propagation. Using
triggered update messages, the route convergence time
of the Bellman-Ford algorithm is reduced to O(|k|*|E|)*

| g | 1 | 2 | 3 |
©1234567012345670123456701234567

Mue

Lambda

| |
| |
| Server Address |
| |

NetMask

Figure 7: Server-router communication header

5s, where |k| is number of nodes, |E| is number of links,
and 5s is the maximum time between two triggered up-
dates. However, given the explanations in [4] and [6],
triggered updates may cause excessive loads on the net-
work links, particularly when a large number of routers
are connected using slow links.

To avoid excessive loads, SLRouting uses two provi-
sions: 1.) only changed routes are considered for trig-
gered updates; 2.) to limit the frequency of triggered
updates, SLRouting uses a waiting timer, TriggerHold-
Down, between two triggered update messages. The
TriggerHoldDown timer is an event that expires within
a random interval between TrigMAX and TrigMIN.

For complex networks, even with the triggered up-
dates, the route convergence time is quite high [20].
Therefore, to handle critical scenarios such as advertise-
ments about unresponsive neighbors or broken routes,
SLRouting uses fast triggered update messages. In such
scenarios, before TriggerHoldDown expires, nodes send
fast triggered update messages by setting TrigUpdate
and BrokenRoute flags in the Route_Tag of SLRouting
header. Such messages will propagate through the net-
work with a maximum link propagation delay.

3.2.3 Server-Router Communication Protocol

If the K3 controllable coefficient is considered for
route computation, SLRouting requires the servers to
advertise their usage information to the gateway router
(assuming that the gateway routers are configured with
SLRouting). The gateway router is the device that con-
nects end hosts to the ISP network. For example, the
gateway router can be a router provided by an ISP. All
servers that participate in SLRouting must have the IP
address of the gateway router configured.

Servers advertise their usage information at each Svr-
RitrTimer period by filling the server-router communi-
cation header (SRC) illustrated in Fig. 8. Servers peri-
odically advertise their details including the IP address,
network mask, and g and A.

When a gateway router receives an SRC message,
using (8), the router calculates the average packet pro-
cessing delay at server j (see Fig.2). The router then
updates the associated route record of the M-Table. As
a matter of fact, the route record is updated regardless

Remove packets from
excluded interfaces

Get RUM list from
ESLR packet

r For each RUM

For each Valid RUM Calculates composite

Ignore RUMs about local metric Mgp(l“
networks

No p-route found for p-route found for “j”,
destination “j” && gateway == “k”,
-add it to B-Table and set || - update p-route
settlingevent Otherwise
-add a s-route and set
expirationevent

both p-route and s-
route are found for “j”
- update relevant route

if the gateways are

different && M, is
less than s-route,
- replace the s-route

For next RUM
4

For RUMs about broken
destinations
- Invalidate route
- Cancel “triggeredevent”
- Send an immediate
triggered update

e

Figure 8: Processing steps of RUMs

the existing route metric value (i.e., greater or lesser).
dj =1/ =) (®)

3.2.4 Process route responses (RRS)

Nodes can receive response message for one of the fol-
lowing reasons: as a response to an RR(, as a periodic
update message, as a triggered update message, or as an
SRC. Regardless of the message type, initial processing
is same for RRS. At the initial processing, nodes vali-
date message packets for their authenticity. Packets are
then analyzed for IP and transport layer information
(i.e., socket tags). Finally, according to the command
of the SLRouting header, nodes forward messages for
process modules. Note that the processing of KAM,
RRQ, and SRC messages were explained in Section 3.1,
Section 3.2.2, and Section 3.2.3, respectively.

Owing the fact that the processing of RRSs may edit
the routing table, the messages should be validated care-
fully. First, all messages received via excluded inter-
faces are ignored. If the message is from a legitimate
interface, then the message is authenticated to deter-
mine whether the message is from a valid neighbor. Be-
cause SLRouting uses link local broadcast/multicast ad-
dresses to send route update messages, it is also worth
checking to see whether the update message is from one
of its interfaces. Such messages are also ignored.

After validating the update message, the node pro-
cesses RUM's individually. Figure 8 illustrates the pro-
cessing steps. If the RUM is about a poisoned route,
i.e., unresponsive network, the node then invalidates the
corresponding routes on both the M-Table and the B-
Table. After that, the node sends the triggered updates
about the unresponsive routes (see Fig.8). Otherwise,
as explained in Section 2.1, for the destination network
prefix (j), the node calculates the composite metric
(M};). The node uses the following parameters to cal-
culate lej average processing delay of processing node
(i), average link delay between 7 and the adjacent node
k, and the metric value listed in the RUM (dy;).

The node then checks whether an m-route and a p-
route are available for j. If no route is found, the node
adds the j to the B-Table as a p-route and sets a settling-
event. In the case where a node finds that a p-route is
available in the B-Table for j, the node processes the
RUM as follows.

If the gateway of the p-route is k, the node updates
the p-route and resumes its existing event. Otherwise,
the node creates an s-route to the destination j using
the values of RUM, and sets an expiration event. In
case both the p-route and the s-route are found for j,
the node selects the relevant route record and updates it
by comparing the sender address (k) with a gateway ad-
dress. However, if none of the routes have their gateway
as k, and the calculated MZ@- is smaller than the metric
of the s-route, the node replaces the existing s-route by
the values of new RUM.

p-routes in the B-Table will be moved to the M-Table
after expiring the settling event. This event might ei-
ther add a new route to the M-Table or update an exist-
ing m-route. In either case, SLRouting sets the changed
flag, sets status as VALID and, marks the route as PRI-
MARY. In addition, an ezpiration-event will be added
to the updated route. Note that, while updating p-
routes in M-Table, SLRouting make sure that B-Table
does not posses a stable s-route which has less metric
than that of the p-route.

SLRouting uses highly varying parameters, i.e., av-
erage packet waiting time at a router, to calculate the
composite metric. Therefore, an argument can be made
that highly varying parameters may cause route oscilla-
tions or frequent route update messages. Nevertheless,
it is possible that one or more events can occur before
completion of a particular event (e.g., a particular inter-
face goes down and comes back up frequently). SLRour-
ing uses several techniques to overcome such problems.

The first technique is that SLRouting uses hold-down
timers. When a hold-down timer starts for a particular
event, another event for the same route is not permit-
ted to be processed in the node until the first hold-
down timer expires (e.g., no route in the M-Table will
update until the route is settled in the B-Table). The
second technique is that SLRouting uses stable routes
(i.e., routes in the M-Table) to generate update mes-
sages and send them periodically rather than flooding
as link-state protocols do [13]. Thus, periodic updates
may not cause route oscillations. However, given the
fact that SLRouting uses triggered update messages,
nodes may create chatty mode updates [13].

3.2.5 Route invalidation

SLRouting uses route invalidation to handle route
records that move from VALID state to INVALID, BRO-
KEN, or DISCONNECTED states.

e The associated expiration event has expired (move
to INVALID).

C3SLR EmOSPF

B
Hil
I
I
I
I
I

L
I L0

—<Avg-SLR

——Avg-OSPF

450
400
350
300
250
200
150
100

\\\\\\\\\\\\

Protocol Overhead (Byte/s)
3
=

Si’\ N ‘D-é & 4\'3
PN, N S
i .g%‘\’ 4(§6Q‘-§)

Figure 9: Protocol overhead for nodes

e The attached interface is set as down, or a neigh-
bor record is invalidated and the neighbor module
invalidates all route records referring to the inval-
idated neighbor as their gateway (moved to DIS-
CONNECTED,).

e A broken destination prefix is received from a neigh-
bor (moved to BROKEN).

Depending on the state and the routing table, nodes
process the changed routes as follows:

e An m-route is invalided by changing its state to
INVALID, and the SLRouting checks for the asso-
ciated p-route and s-route that matches the desti-
nation of the m-route. If no s-route is found, then
the m-route is updated using the latest values of
the p-route. However, if an s-route is found and
the metric of the s-route is smaller than that of
the p-route, both the m-route and the p-route are
then replaced using the values of the s-route.

e An m-route is invalidated by changing its state to
DISCONNECTED, and an s-route is found. Both
the m-route and the p-route are then replaced us-
ing the values of the s-route. Otherwise, events
will be scheduled (using Garbage-collection time)
to remove both the m-route and the p-route.

e An m-route is invalidated by changing its state to
BROKEN. Without further ado, events are sched-
uled to remove both the m-route and the p-route
from the routing tables.

e If an s-route is invalidated, regardless of the route
state, an event is scheduled to remove the route.

Note that, owing to the protocol specification, p-routes
are not designed to be invalidated independently.

4. EVALUATION

The first prototype of the SLRouting protocol is im-
plemented using the ns-3 simulator. The ns-3 simulator
is used because it supports most of the general packet
structures, and its IP stack is similar to the Linux IP

045 1 OESLR BOSPF

o2
=

0
@\f_;»lv

Link Usage (100 Mbps)

measured in 100-s time buckets
o o 1) =3
> 2 - 2D 2o
AT N S

e E

Qf

% [EE=——

&
Figure 10: Link utilization

stack. The first version of SLRouting is publically avail-
able and can be found in reference [20].

For the basic functional evaluation, we used WIDE
network’s topology [16]. By assuming the WIDE net-
work as an ISP, for more realistic evaluation, we placed
both content servers and clients at random locations.
We made sure that packet arrivals for each source and
destination pair, including routers, followed a Poisson
process.

We executed five simulations; in each simulation, we
randomly disconnected links and routers to check the
message flow and the route recovery features of the pro-
tocol. We noticed that SLRouting was able to recover
a broken link within of 2.5 to 10 ms. Moreover, the
protocol displayed 99% packet delivery.

The SLRouting first evaluated for routing overhead
compared to OSPF. As plotted in Fig.9, on average,
both OSPF and SLRouting create similar overhead for
the routers. However, when considering routers such
as KDDI-Otemachi and NTT-Otemachi, the proposed
protocol results in reasonable protocol overhead. The
reasons are that SLRouting still does not support route
summarization [18], and this in turn increases the size of
the routing tables of those routers. Such circumstances
may cause chattiness in the protocol [18]. Subsequently,
those routers must process more route update messages.

We then compared the primary goal of TE: resource
utilization. Observing the results plotted in Fig.10, we
can notice that OSPF was unable to utilize the available
network links properly. SLRouting, however, utilized al-
most every link in the topology. Thus, none of the links
display any excessive load compared to OSPF. This is
because SLRouting performs packet routing based on
the propagation delay, and the propagation delay is thus
calculated mainly according to the states of the net-
work resources. Strategically, if a node identifies that a
network path (i.e., a route) is busy, and the propaga-
tion time is higher, the node then quickly switches to
the backup path. It is then proved that the proposed
hypothesis: determine minimal delay route paths ac-
cording to the states of network devices, can be used to

achieve routing optimization.

5. CONCLUSIONS

This paper introduced a novel routing protocol, SLRou-
tuing, which computes the route matrix by calculating
the cumulative packet propagation delay. The SLRout-
ing is introduced to contemplate both ISP and CP infor-
mation to facilitate TE according to the requirements of
both the ISP and the CP. SLRouting ensures loop-free
route management using diffusing computation concept
and the coordinated update approach. The first version
of SLRouting was implemented using the ns-3 simula-
tor [20]. Results suggest that routing optimization can
be achieved by contemplating both ISP and CP infor-
mation for packet routing.

This study is, however, an ongoing research. The next
version, Extended SLRouting (ESLR), will be compat-
ible with route summarization (i.e., VLSM), IPv6, and
interoperability. Nevertheless, for rigorous test and evo-
lution under real ISP conditions, the Rocket Fuel net-
works will be used with OSPF-TE configure on it.

6. ACKNOWLEDGMENTS

We express our sincere gratitude to Prof. Fumio Teraoka
for his invaluable discussions for this project. This work
was also partially supported by funds of SECOM Sci-
ence and Technology Foundation, MEXT/JSPS KAK-
ENHI Grant (B) Number 24360230 and 25280033, MEXT
Scholarship for Research Students, Keio University Doc-
torate Student Grant-in-Aid Program, and the Keio
University KLL Ph.D. Research Grant Program.

7. REFERENCES

[1] AKAMAL Facts and figures.
https://www.akamai.com/us/en/about /facts-
figures.jsp,

Accessed:2015/Aug.

[2] ANTIC, M., MaKsIc, N., KNEZEVIC, P., AND
SMILJANIC, A. Two phase load balanced routing
using ospf. Selected Areas in Communications,
IEEE Journal on 28, 1 (January 2010), 51-59.

[3] CHENG, C., RILEY, R., KUMAR, S. P. R., AND
GARCIA-LUNA-ACEVES, J. J. A loop-free
extended bellman-ford routing protocol without
bouncing effect. SIGCOMM Comput. Commun.
Rev. 19, 4 (Aug. 1989), 224-236.

[4] DaLLy, W., AND TOWLES, B. Principles and
Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003.

[5] GARCIA-LUNES-ACEVES, J. Loop-free routing
using diffusing computations. Networking,
IEEE/ACM Transactions on 1, 1 (1993), 130-141.

[6] HEAP, G. T., AND MAYNES, L. CCNA Practical
Studies. Cisco Press, 2002.

[7] JAFFE, J., AND Moss, F. A responsive
distributed routing algorithm for computer
networks. Communications, IEEE Transactions
on 30, 7 (July 1982), 1758-1762.

[8] JiaNG, W., ZHANG-SHEN, R., REXFORD, J.,
AND CHIANG, M. Cooperative content
distribution and traffic engineering in an isp
network. SIGMETRICS Perform. Eval. Rev. 37, 1
(jun 2009), 239-250.

[9] KHANNA, A., AND ZINKY, J. The revised arpanet
routing metric. SIGCOMM Comput. Commun.
Rev. 19, 4 (Aug. 1989), 45-56.

[10] KroTH, A. K. Advanced Router Architectures.
CRC Press, Inc., 2005.

[11] LaBovirz, C., IEKEL-JOHNSON, S.,
MCcPHERSON, D., OBERHEIDE, J., AND
JAHANIAN, F. Internet inter-domain traffic.
SIGCOMM Comput. Commun. Rev. 41, 4 (Aug.
2010).

[12] LiTTLE, J. D. C. Or forum—Ilittle’s law as
viewed on its 50th anniversary. Oper. Res. 59, 3
(May 2011), 536-549.

[13] MEDHI, D., AND RaMASAMY, K. 7 - {IP} traffic
engineering. In Network Routing, D. Medhi and
K. Ramasamy, Eds. Morgan Kaufmann, 2007,
pp- 194 — 236.

[14] MEDHI, D., AND RAMASAMY, K. 8 - {BGP}. In
Network Routing, D. Medhi and K. Ramasamy,
Eds. Morgan Kaufmann, San Francisco, 2007,
pp. 238 — 279.

[15] POESE, 1., FRANK, B., SMARAGDAKIS, G.,
UHLIG, S., FELDMANN, A., AND MAGGS, B.
Enabling content-aware traffic engineering.
SIGCOMM Comput. Commun. Rev. 42, 5 (Sept.
2012), 21-28.

[16] ProJECT, W. Wide internet.
http://two.wide.ad.jp/, Accessed:2015/Aug.

[17] SOBRINHO, J. Algebra and algorithms for qos
path computation and hop-by-hop routing in the
internet. In INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE
(2001), vol. 2, pp. 727-735.

[18] TwaAIN, M. 3 - routing protocol framework and
principles. In Network Routing, D. Medhi and
K. Ramasamy, Eds. Morgan Kaufmann, 2007,
pp. 194 — 236.

[19] WaNG, N., Ho, K., PavLou, G., AND
HowaRTH, M. An overview of routing
optimization for internet traffic engineering.
Communications Surveys Tutorials, IEEE 10, 1
(First 2008), 36-56.

[20] WIJEKOON, J. Server link router state routing
protocol for ns3.
https://github.com/janakawest /ESLR,
Accessed:2015/Aug.

