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Abstract

Biomedical wastes (BMWs) include potentially infectious, sharps, pharmaceuticals and

radioactive wastes probably generated by hospitals, vaccination centers, biomedical laboratories,

etc. Handling and disposal of biomedical wastes potentially have multiple risk factors. Currently,

hospitals and laboratories use color-coded bins to classify and categorize different types of

wastes to ease the handling and the disposal process. Sometimes due to human errors these

wastes could be miscategorized or misplaced in different bins. In recycling terms this is known

as waste contamination. Contaminating the biomedical waste streams causes a huge potential

threat to the people who handle them.

Computer vision based biomedical waste classification is one of the best ways to prevent these

issues. But applying pure computer vision algorithms is much more suitable for small tasks such

as pattern recognition, edge detection etc. In order to classify different kinds of biomedical

wastes, then convolutional neural networks (CNN) would be a much more suitable choice. This

research proposes a deep learning model which accurately classifies several selected biomedical

wastes such as syringes, blades and sample collection tubes with a prediction accuracy around

96% on the test dataset. Further the implemented model approximately localizes the biomedical

wastes to serve robotics and smart-bin applications.
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