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Abstract: Collaborative learning spaces deployed in Massive Open Online Courses (MOOCs) 
provide productive social learning opportunities. However, sustaining collaboration in these 
spaces is challenging. This paper provides a classification of MOOCs participants based on 
their behavior in a structured collaborative learning space. This analysis leads to requirements 
for new technological interventions to orchestrate collaborative learning flows in MOOCs. The 
paper proposes the design of an intelligent agent to address these requirements and reports a 
study which shows that the intervention of the proposed orchestration agent in a MOOC 
facilitates to maintain continuous yet meaningful collaboration learning flows. 
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1 Introduction  

Massive Open Online Courses (MOOCs) have created learning opportunities towards 
a massive amount of students disregard their financial, educational and geographical 
boundaries. Within the concept of “education for all” MOOCs offer chances for 
millions of students to browse, pick and choose courses offered by well-recognized 
universities while students can follow their own agenda which was not feasible in 
earlier models of online education [Yang et al. 2013]. With the aim of offering 
opportunities for fruitful learning, at present many MOOCs provide social learning 
spaces and activities towards course participants [Manathunga et al. 2017]. However, 
sustaining learners’ engagement in these collaborative spaces is challenging as levels 
of participation vary across learners and new cohorts of learners start course activities 
from week to week [Yang et al. 2013]. The problem is that for social learning 
opportunities to be fruitful, there need to be sufficient levels of active participation 
that keep meaningful flows in the collaborative activities [Rosé and Ferschke 2016]. 

In the field of Computer Supported Collaborative Learning (CSCL), carefully 
designed scripts aim to structure social interactions via different strategies i.e., 
defining roles, sequences of activities, etc. that can have positive effects in learning 
[Dillenbourg and Tchounikine 2007]. Collaborative Learning Flow Patterns (CLFPs) 
formulate the essence of script structures that have been proven effective in multiple 
educational situations [Hernández-Leo et al. 2010]. For example, the Pyramid CLFP 
proposes an activity flow in which learners start solving a task individually. Then 
learners form small groups to share their solution and agree on a common solution, to 
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later form increasingly larger groups that further discuss and agree on common 
solutions. The Pyramid pattern facilitates opportunities for all learners to express and 
discuss their solutions and to learn and reflect on others’ solutions. In a MOOC 
context, the Pyramid pattern also offer a scalable collaborative method, in that it 
keeps to a reasonable amount the number of solutions to be read and discussed by 
each individual learner (those solutions within each group in the Pyramid) and by the 
educators (if educators choose to monitor only the agreed solutions by Pyramid) 
[Manathunga and Hernández-Leo 2017]. CLFPs structure the flow of potentially 
fruitful collaborative learning activities, but the uncertainty of participation in these 
activities in MOOC contexts can hinder a meaningful progression in the flow of 
activities (e.g., inactive participants in a Pyramid group waiting for an agreement in 
order to join increasingly larger groups). A suitable real-time management (or 
orchestration [Dillenbourg and Tchounikine 2007]) of the learning scenario is vital for 
a successful collaboration flow that is uninterrupted and keeps the pedagogical 
method structure. 

In this paper, we study the difficulties involved in maintaining continuous and 
meaningful flows of Pyramid activities and propose an experiment that incorporates 
intelligent agent technologies to address these difficulties. Data collected from an 
exploratory MOOC case, in which seven Pyramid activities are proposed, is used to 
identify the difficulties. A second MOOC case is designed and carried with twenty-
eight Pyramid activities and Wizard of Oz (WOZ) integrated intelligent agents to 
overcome these difficulties. The evaluation of this second case focuses on studying 
whether the proposed intelligent agent can maintain an uninterrupted yet meaningful 
collaborative learning flow via monitoring and intervening to the flow when 
necessary. 

This article is organized as follows. In section 2 we describe relevant literature 
considering social learning aspects in MOOCs, application of intelligent and adaptive 
techniques in educational systems and applicability of such techniques in MOOCs 
settings to foster collaboration. In section 3 a MOOC case study is presented in which 
we analyzed MOOC participants collaborative learning behavior in a Pyramid based 
collaborative learning scenario. Section 4 describes our empirical study which 
focused on design aspects of the intelligent agent to facilitate uninterrupted 
collaborative learning flows in MOOCs setting. The final section provides concluding 
remarks followed by future research directions. 

2 Literature 

2.1 Social Learning in MOOCs 

CSCL is an effective pedagogical approach in which learners collaborate with peers 
to achieve learning goals while constructing shared knowledge and understanding 
[Fischer et al. 2007]. However, research has shown that learners do not collaborate 
spontaneously [Fischer et al. 2007]. On the other hand, maintaining a continuous 
collaborative learning flow becomes significantly important during collaborative 
script enactment, since these scripts consist a number of phases that occur one after 
the other in a consecutive manner [Hernández-Leo et al. 2010]. Failure to maintain 
desired collaborative learning behavior within phases negatively affects the flow of 
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collaboration [Dillenbourg and Tchounikine 2007]. Achieving success in such 
collaborative settings heavily depends on the continuous and active participation of 
students. 

In a Face to Face (F2F) classroom setting, in appropriately sized classes, student’s 
collaborative learning behavior can be closely and continuously supervised by an 
educator [Pontes et al. 2010]. In such settings not only each individual student’s 
engagement but also the behavior of a bunch of students as a group can be monitored 
by an educator to confirm that individuals and groups are actively involved in the 
collaborative learning task. However, even with the close guidance of an educator in a 
F2F setting maintaining a continuous collaborative learning flow is not easy. The 
passive behavior of some students can hamper collaboration [Vizcaíno 2005].  

On the other hand, MOOCs have created opportunities to carry out course-related 
activities remotely from anywhere at any time and has gained social success. The 
history of MOOCs dated back to 2008 where George Siemens and Stephen Downes 
conducted the first MOOC titled ‘Connectivism and Connective Knowledge’ 
(CCK08) [Downes 2008]. Since then MOOCs evolved in different ways providing 
opportunities to plan, test and validate disruptive approaches to education [García-
Peñalvo et al. 2017]. According to the underpinning pedagogical methodology, 
design, scope and management of resources and activities MOOCs have been 
categorized into two main types: cMOOCs and xMOOCs [García-Peñalvo et al. 
2017]. Adapting from the connectivism learning theory cMOOCs (also known as the 
first-generation of MOOCs) are based on connectivist (that emphasizes social 
learning) while xMOOCs (also referred to as the second-generation of MOOCs) are 
based on instructionism and individualism [Fidalgo-Blanco et al. 2015]. Currently, 
many MOOC platforms adapt xMOOCs technologies e.g., Udacity, Coursera, edx 
[Fidalgo-Blanco et al. 2015] and have employed different social interaction spaces 
into the platform using different strategies. Although forum threads are the dominant 
channel [Brinton et al. 2014] through which teachers and students interact meet-ups at 
learning hubs introduced by Coursera and content-wide and course-wide cohorts on 
the edX platform [Manathunga et al. 2017] can be pointed out as some other instance 
for initiatives offering social and collaborative learning opportunities within MOOCs. 

However, as it was pointed out earlier, deploying collaborative learning activities 
even in a synchronous F2F setting under the close guidance of an educator, poses 
difficulties i.e., maintaining a continuous flow of activities, student motivation, etc. 
Hence, deploying collaborative learning activities in MOOC settings can result in 
added complexity due to many reasons. Variability of learner’s schedules, diverse 
individual characteristics and expectations, lack of educator influence, higher learner 
dropout rates and asynchronous nature of collaboration are to name a few. 
Coordination and management of group processes in such settings are a serious and a 
challenging task since learners are distributed both in time and space [Fidalgo-Blanco 
et al. 2015]. The continuous flow of collaboration can be easily interrupted in such 
settings due to aforementioned reasons, resulting unsavory learning experiences for 
motivated students [Tomar et al. 2016]. In light of this fact, it was observed that 
designing and implementing appropriate scaffolding strategies to maintain continuous 
collaborative learning flows become a need in MOOC settings. Exploration and 
deployment of new technological interventions that contribute to sustain collaborative 
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learning activities can help to harness benefits of social learning in MOOC context 
[Rosé et al. 2014]. 

2.2 Adaptive and Intelligent Techniques in MOOCs 

Recently a growing research interest towards incorporating adaptive and intelligent 
techniques into MOOCs have been observed. Existing literature has highlighted the 
need and the importance of incorporating adaptive techniques into MOOCs platforms 
in order to improve pedagogical effectiveness [Sonwalkar 2013] as well as to 
personalize and better adapt the learning process to the characteristics of students 
[Fidalgo-Blanco et al. 2015]. Different technological frameworks and innovative 
ways of supporting adaptivity in MOOCs have been proposed. For instance, 
[Sonwalkar 2013] have described the cloud computing architecture of an adaptive 
MOOC (aMOOC) platform that renders content adapting to five distinct learning 
strategies. [Leris et al. 2017] have identified and proposed six adaptive indicators 
(based on self-regulation and cooperation aspects of learning) that help to implement 
adaptivity within MOOCs context. 

On the other hand, when considering intelligent techniques that are incorporated 
into MOOCs context intelligent agents play an important role. Different types of 
agents i.e., pedagogical agents, conversational agents have been deployed into 
MOOCs to keep learners motivated towards collaboration. As described in [Bendou et 
al. 2017] integration of animated pedagogical agents into online learning 
environments (LMS or MOOC) has helped to create natural human-machine 
interactions. Although pedagogical agents are not necessarily artificially intelligent 
these lifelike characters that appear on computer screens have helped to increase 
learner’s motivation while decreasing dropouts [Bassi et al. 2014]. Ferschke et al. 
[2015] and Wen [2015] have described the integration of conversational agents into 
collaborative chat environments deployed in MOOCs. Agents facilitated to engage 
students in intensive discussions during collaboration. 

However, it is worth mentioning that existing studies which incorporate 
intelligent assistance towards collaboration in MOOCs have mostly considered 
specific aspects of collaborations e.g., chat participation during a collaborative 
learning task. Most of these studies have taken for granted in one way or the other that 
continuous collaborations among participants occur automatically although less 
engagement of learner’s participation in MOOCs is well-known. In a recent study 
carried out by [Fauvel and Yu 2016] has pointed out that intelligent agent techniques 
have not yet been applied to provide peer support in MOOCs context, although 
providing peer support in such settings is vital. Although Artificial Intelligent (AI) 
techniques can be integrated into almost every aspect of the MOOC ecosystem, only a 
few tools have been tested and deployed into the actual MOOCs context regardless of 
the fact that effective integration of these type of intelligent techniques could result in 
benefits [Bassi et al. 2014, Rosé and Ferschke 2016]. 

In a broader perspective, although technologies such as intelligent agents have 
proven to be effective in online education paradigms these technologies have not yet 
been fully leveraged within the MOOC context [Fauvel and Yu 2016]. Apart from 
being an animated character or a conversational partner, agents can be used to analyze 
data produced by the MOOC platform, in order to provide intelligent or mechanical 
assistance to improve design, delivery and assessment [Bassi et al. 2014]. 
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3 An exploratory study of Pyramid collaborative learning 
activities in a MOOC 

Research shows that identification of participants’ profile differences in MOOCs 
facilitates to determine effective engagement mechanisms [Alario-Hoyos et al. 2014]. 
However, lack of attention towards analyzing participants’ engagement differences in 
collaborative learning spaces deployed in MOOCs was observed. Inspired by the 
work already done in the field [Milligan et al. 2013, Alario-Hoyos et al. 2014] during 
this study we analyzed the behavior of learner’s participation in a collaborative 
learning activity deployed in a MOOC course. The major objective of this case study 
was to determine how individual participation differences affect collaborative 
learning flows deployed in MOOC contexts. The exploratory MOOC case study was 
deployed in spring 2016, in the FutureLearn MOOC platform. A tool called 
‘PyramidApp’ was used structure the collaborative enactment. 
 

 

Figure 1: A screenshot of the PyramidApp showing rating space (left) and the 
negotiation space (right) 

3.1 PyramidApp 

PyramidApp [Manathunga and Hernández-Leo 2017] is a web-based application that 
implements flow orchestration of collaborative learning activities inspired by the 
Pyramid pattern [Hernández-Leo 2005]. A Pyramid flow is initiated with individual 
students solving a global task. Then, in a second level of the Pyramid, such individual 
solutions are discussed in small groups and agreed upon a common proposal. These 
small groups then form larger-groups iteratively and large group discussions will 
continue till a consensus is reached at the global level. PyramidApp implements an 
activity design tool for educators to author such collaborative activities with easy 
configurations such as the number of participants per Pyramid, number of rating 
submission stages, group size and timing configurations. Once a Pyramid flow 
activity is designed by the educator and published, it becomes accessible via a public 
URL. MOOC participants can then access the activity by logging to the PyramidApp 
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tool using the given URL. Within a single Pyramid activity, each participant engages 
in the collaborative learning activity at two major levels including individual option 
submission stage and rating submission stages. Inbuilt discussion board of the tool 
provided a negotiation space for participants at group levels. Fig. 1 shows a sample 
screenshot of the PyramidApp as it is used in a MOOC setting. The social interactions 
facilitated by the PyramidApp in a MOOC context differentiates from other 
collaboration spaces with its structured accumulative collaborations that grow from 
individual level to small group discussions to large groups, promoting positive 
interdependence and negotiation skills that rather lacks in global forum discussions 
[Manathunga and Hernández-Leo 2017]. 

 
Week Pyramid flow 

abbrev. 
No. of Pyramids Pyramid abbrev. 

Week 1 Flow 1 1 W1F1P1 
Week 1 Flow 2 1 W1F2P1 
Week 1 Flow 3 2 W1F3P1 & W1F3P2 
Week 2 Flow 1 2 W2F1P1 & W2F1P2 
Week 3 Flow 1 1 W3F1P1 

Table 1: Pyramid activities deployed in exploratory case study 

3.2 Experimental Design 

Within 3 consecutive weeks of the FutureLearn MOOC, we deployed 5 Pyramid 
flows (meaning 5 different tasks following a Pyramid flow), including 3 flows during 
the first week, 1 flow during the second week and 1 flow during the third week. Based 
on design configurations of the PyramidApp i.e., minimum number of learners 
allocated per Pyramid during a Pyramid flow, a number of Pyramids were instantiated 
allocating MOOC participants to Pyramids who logged into the system in different 
times. see [Tab. 1]. Initial design parameters of each Pyramid are given in Tab. 2. The 
first column in Tab. 2 indicates the abbreviation to identify each Pyramid. The second 
column indicates the minimum number of students required to create a Pyramid. The 
third column indicates the number of rating submission stages in each Pyramid. For 
instance, a number of Pyramid rating submission stages equal to 2 indicates that there 
are two rating submission stages, i.e., the first and the second rating submission 
stages. The fourth column indicates the number of students collaborated during the 
first rating submission stage. Since each Pyramid has only two rating stages this 
parameter refers to the size of each small group created during the first rating 
submission stage. In the second rating submission stage all participants were grouped 
together resulting four participants in each large group. Finally, the fifth and sixth 
columns indicate the time limits for initial option submission stage and subsequent 
rating stages (in hours). As this was a preliminary experiment using PyramidApp in a 
MOOC context, long timing durations were allocated for Pyramid phases to learn the 
participant behavior and structured collaborative learning feasibility in MOOC 
settings. 
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3.3 Subjects 

Students enrolled in 3D graphics for Web Developers MOOC course participated in 
the Pyramid activity deployed in the MOOC. The total number of students enrolled 
for the course was around 4300. Participants were informed that the activity was 
voluntary and that activity participation was part of a research experience and 
responses collected will be treated anonymously. Students were asked to use 
PyramidApp to share experiences and challenges faced when using novel 3D 
applications. Participants were assigned to Pyramid groups randomly. Based on 
PyramidApp log data, during the first week of the MOOC 76 participants accessed the 
Pyramid activity, while in the third week this number dropped to 15 and in the fifth 
week it dropped further until 8. In total 99 students have accessed the collaborative 
learning activity. The following section describes participants’ collaborative activity 
enactment behaviour. 
 

Pyramid 
abbrev. 

Min. students 
per Pyramid 

No. of 
rating 
levels 

Group 
size 

Option sub. 
time limit 

Rating 
sub. time 
limit 

W1F1P1 8 2 2 18 h 18 h 
W1F2P1 8 2 2 18 h 18 h 
W1F3P1 8 2 2 18 h 18 h 
W1F3P2 8 2 2 18 h 18 h 
W2F1P1 4 2 2 18 h 18 h 
W2F1P2 4 2 2 18 h 18 h 
W3F1P1 4 2 2 18 h 18 h 

Table 2: Pyramid activity configurations 

3.4 Results and analyses 

PyramidApp log data was analyzed to determine collaborative learning behavior of 
MOOC participants. An overall activity participation analysis and an individual 
student level analysis was carried out. 

Results of the overall activity participation analysis have shown that engagement 
in collaborative learning activity varied within weeks of the MOOC course, see [Fig. 
2]. As it was described in section 3.3, not only the number of participants has become 
fewer in size, but also their overall engagement with the activity has decreased over-
time. This observation also complies with the common attrition behavior of MOOC 
participants, in which they are highly active and engaged with the course in the first 
few weeks but degraded over the course progression [Sinha et al. 2014]. 

We then conducted an individual student level analysis in order to analyze how 
individual participation varied across different Pyramid stages. Results of the analysis 
revealed that some MOOC participants have participated in both initial and rating 
stages of the Pyramid activity, while some participants have escaped either initial 
option submission stage or subsequent rating stages. Further, some participants have 
only logged into the system but had not participated in the activity. Based on these 
behavioral differences we have categorized individual students into 5 major 
categories namely Lurkers, Initiators, Contributors, Runners and Raters which also 
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complies with the participant categorizations proposed in previous work [Milligan et 
al. 2013, Alario-Hoyos et al. 2014]. 
 
 

 

Figure 2: MOOC Pyramid activity participation 

Lurkers are the MOOC participants who only logged into the PyramidApp but did 
not participate actively in any level of the collaborative learning activity. In other 
words, these participants do not add any contribution to the collaborative learning 
task. The opposite category of Lurkers was named as Contributors who have 
participated in all levels of the collaborative learning activity, contributing to reaching 
a group consensus. Other three categories namely Initiators, Runners and Raters have 
contributed to the collaborative learning activity in different levels. Initiators have 
participated only during the initial option submission stage. They have contributed to 
the collaborative learning activity providing their opinion about the question at hand. 
Raters are the participants who have not participated in the initial option submission 
stage but have participated only in rating levels. MOOC participants who have 
participated in initial level and at least one rating level i.e., first or second rating level 
were named as Runners since they contribute to maintain continuous collaborative 
learning flows. Fig. 3 summarizes the learner participation distribution according to 
aforementioned categorization across different Pyramid activities. Participants of the 
Pyramid W3F1P1 were excluded from this study since during that Pyramid 
participants only participated in the initial option submission level. 

Apart from participation across different stages of Pyramids, we have also 
analyzed how each individual participated in the integrated chat of the PyramidApp. 
This chat environment facilitates small groups to collaboratively select the best option 
to rate via discussing their opinions. We have coded manually how many students 
have used the chat to discuss individual options submitted prior rating, via posting 
their opinion either as a question or a comment and how other students have 
collaborated via posting a response. Results of the analysis revealed that students have 
used chat to express their opinions only during the Pyramid activities occurred in the 
first week of the MOOC. Students have not used the chat during later weeks of the 
MOOC course. 
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Figure 3: Individual student participation in different Pyramid activities 

3.5 Difficulties identified 

Based on the results of the analysis, it was seen that participants’ overall engagement 
with the collaborative learning activity is fairly low. A majority of learners falls into 
the category of Lurkers. It was also noticed that a significant portion of the learners 
participated in the initial option submission level and some participated only during 
rating stages. When compared to initiators and raters, runners who have participated 
in both initial and rating submission stages were relatively low. Finally, the most 
important category the contributors, who participated in both initial submission level 
and rating levels, are very low which leads to unsuccessful Pyramid activity flows. 
Further, it was also observed that some students tried to collaborate with others 
seeking help to solve their doubts using chat. However, many questions left open 
without responses due to lack of activity engagement of the participants. 

On the other hand, individual differences might have an influence on Pyramid 
activity participation. We have not conducted an analysis considering those aspects 
due to limitations in obtaining participants demographics details. However, based on 
the results of the analysis conducted it was determined that the choice of collaborative 
script design parameters can also have an impact towards different collaborative 
learning behaviours. As it was described earlier, design parameters such as the 
number of rating levels, time limits etc. has to be carefully selected. For instance, it 
was noticed that in some Pyramids, although individuals finished rating, the 
application wait until the predefined timer expires i.e., 18 hours, without progressing 
to the next levels. Lack of support towards dynamic script parameter changes in such 
situations resulting in increased waiting times can hinder learner’s motivation towards 
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the collaborative learning activity as activity progression is not visible even after a 
longer duration. 

Apart from log data, we have also analyzed qualitative feedback obtained from 
activity participants. An online survey was used to obtain participants overall opinion 
about the activity. Some participants have commented that lack of participation of 
their group members have made them feel isolated. For instance “..no one replied to 
my questions at all..” and “..seeing one question per day felt inefficient..”. Some 
participants have also commented that “..Time constraints rather tight for a 
FutureLearn course which can be done out of real-time..”. Based on results of both 
quantitative and qualitative analysis it was seen that collaborative learning activities 
deployed in MOOCs context requires careful orchestration of script design 
parameters, and also continuous interaction and feedback generation towards 
questions that arise from collaborative learning environments, to maintain student’s 
engagement and motivation towards a continuous collaborative learning flow. 

4 Empirical study for the design of an Orchestration Agent for 
Pyramid activities in MOOCs 

Based on our exploratory case study it was observed that sustaining continuous 
collaborative learning flows in MOOCs is challenging. Learner’s continuous 
engagement with the activity is often hindered due to many reasons, damaging 
continuous flows of collaboration. Different participant behaviors and rigid script 
design parameters can have a major impact towards collaboration, see [Section 3.5]. 
These type of interruptions especially affect contributors who truly seek to enjoy 
benefits of collaborative participation. Hence it is important to look into technological 
interventions that would facilitate to maintain continuous flows of collaboration. 

4.1 Orchestration Agent intervention in PyramidApp 

With the motivation of creating collaborative learning opportunities towards 
motivated learners and by considering the work already done in the field, it was seen 
that incorporating intelligent agents into MOOCs could result in added advantages. 
Intelligent agents can assist to maintain continuous collaborative learning flows while 
monitoring interactions among learners eliciting the requirement of manual 
intervention of educators. However, due to the high cost associated with this type of 
agent implementations research suggests to adapt Wizard of Oz (WOZ) studies, to 
clarify design requirements [Maulsby et al. 1993]. Hence, to better identify design 
considerations of an intelligent agent, which will orchestrate collaborative learning 
activities while maintaining a continuous flow of collaboration, we conducted a WOZ 
experiment. The agent will be referred as Orchestration Agent hereafter. The 
experiment was carried out during a MOOC course named Innovative collaborative 
learning with ICT in February 2017 which was deployed in the Canvas Network 
Platform. The total number of students enrolled for the course was 1031. We 
determined different stages of the Pyramid activity in which agent intervention 
becomes important to maintain a continuous flow of collaboration as follows. 
 a. Pyramid Instantiating Phase: As it was mentioned earlier, in order to 
create a Pyramid a minimum number of students required to be logged into the 

1043Amarasinghe I., Hernandez-Leo D., Manathunga K., Jonsson A.: Sustaining ...



system. Unlike in a classroom setting in which students log into the system as soon as 
they are given the URL, in a MOOC participants access the activity URL at different 
times. Due to this variability in login times students who accessed the system earlier 
requires to wait without being allocated to a Pyramid until the minimum number of 
students are logged into the system. Increased waiting times result in decreased 
motivation of learners towards the activity. Hence we decided that waiting time could 
be minimized if the orchestration agent logs into the system simulating student 
behavior after a predefined period of time e.g., 20 minutes after the first student 
accessed the URL. 
 b. Initial Option Submission Phase: Next, if the agent observes that none of 
the students have submitted an initial option during the initial option submission stage 
(before a predefined period, e.g., 2 minutes prior finishing initial option submission 
stage) we require the agent to post a model answer as an option. This intervention 
limits the progression of Pyramids which does not have options to rate in the 
subsequent rating stages. 
 c. Rating Submission Phases: During the rating submission stages, if the 
agent observes that a particular rating stage is frozen due to no ratings (before a 
predefined period, e.g., 2 minutes prior finishing each rating stage) we require the 
agent to provide a 3-star neutral rating to all options submitted by course participants. 
This action facilitated the groups to proceed to the next levels. Further, if the agent 
noticed that the options to rate include options submitted by the agent itself (due to 
the reason mentioned in (b)) those options should be given only a 1-star rating in 
order to degrade its own submissions while facilitating options submitted by students 
to be promoted to the next level. Fig. 4 summarizes agent actions. 
 

 

Figure 4: Orchestration Agent interventions in PyramidApp 

4.2 Experimental Design 

During the first and second week of the MOOC, we introduced collaborative learning 
activities using the PyramidApp in parallel to the course content. Initial design 
parameters of each Pyramid activity are given in Tab. 3. The first column in Tab. 3 
indicates the activity type. We created four different types of Pyramid activities via 
differentiating the time allocated for each activity, namely Very Rapid, Rapid, Long 
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and Very Long. The second column refers to the minimum number of students 
allocated for each Pyramid. We varied this attribute in the range of 4 to 6 during 
experiments in order to evaluate how different minimum sizes affect activity. 
However, we did not increase this attribute value more than 6 as we observed less 
number of participants during our previous collaborative learning activity. The third 
column refers to the number of Pyramid rating levels. We limited the value of this 
attribute to 2 in order to be consistent with the previous study. The fourth column 
refers to the number of students collaborated during the first rating submission stage. 
The fifth and sixth columns reflect the time allocated for initial option submission 
stage and subsequent rating stages based on the activity types described in the first 
column. Since we have categorized collaborative learning activities into four different 
categories based on time allocated for each activity the WOZ study also reflected how 
agent intervention requires being adapted according to different learning designs. 
However, it should be noted that due to limited time availability in MOOC it was not 
possible to carry out a balanced number of activities for each category. In summary 
we were able to carry out a total of 28 Pyramids, including 11 of very rapid type, 5 of 
rapid type, 10 of long type and 2 of very long type. 
 

Activity 
type 

Min. 
students per 
Pyramid 

Rating 
levels 

Group 
size 

Option sub. 
time limit 

Rating 
sub. time 
limit 

Very Rapid 4 or 6 2 2 12 mints 12 mints 
Rapid 4 or 6 2 2 47 mints. 47 mints. 
Long 4 or 6 2 2 2 h 2 h 
Very Long 4 or 6 2 2 6 h 6 h 

Table 3: Configurations of Pyramid activities 

4.3 Subjects 

Students who were enrolled in Innovative collaborative learning with ICT MOOC 
course participated in the Pyramid collaborative learning activity deployed during the 
first and second week of the MOOC. Participants were informed that the activity 
participation was voluntary and that activity participation was part of a research 
experience and responses collected will be treated anonymously. Students were asked 
to use PyramidApp to discuss benefits and problems of CSCL until they reach a 
common group consensus to identify the most valuable benefit or the most popular 
problem. Participants were assigned to Pyramid groups randomly. During this 
empirical study, the role of the Orchestration Agent was enacted by the experimenter, 
the ‘Wizard’. Based on PyramidApp log data, 28 participants accessed the very rapid 
type Pyramid activities while 22 participants accessed the rapid type, 37 participants 
accessed the long type and only 5 participants accessed the very long type Pyramid 
activities. The following section describes results and analysis of the WOZ 
experiment.  
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4.4 Results and analyses 

PyramidApp log data was analyzed to determine collaborative learning behavior of 
MOOC participants and agent interventions. Chord diagrams were used to visualize 
learner’s engagement in different levels of the Pyramid since these diagrams provide 
a compact way of representing information [Wei et al. 2016]. Log data was pre-
processed to obtain input adjacency matrices for chord diagrams, in which the value 
in ith row and jth column represents the relation from object in the ith row and the 
object in the jth column while the absolute value measures the strength of the relation. 
R circlize package 1 was used to plot diagrams.  

As can be seen in Fig. 5 (a), (b), (c), (d) each chord diagram consists of two 
sectors, namely the Pyramid Sector and Submission Stage sector. The Pyramid sector 
represents Pyramids that were created during each experimental activity. Pyramids 
were labeled starting from P1. The Submission stage sector represents different 
submission stages, i.e., initial option submission stage, first rating submission stage, 
second rating submission stage, which are colored in red, green and blue. Fig. 5(a) 
shows the chord diagram visualization for a total of 28 learners engagement in very 
rapid type Pyramid activities. Fig. 5(b) shows the visualization for a total of 22 
learners engagement in rapid type Pyramid activities. Fig. 5(c) shows the 
visualization for a total of 37 learners engagement with long type Pyramid activities 
and finally Fig. 5(d) shows the visualization of 5 learners engagement with very long 
type Pyramid activities. 

The width of each submission stage track represents the total number of 
submissions made for each submission stage by all participants allocated to different 
Pyramids. The width of each Pyramid sector denotes the total number of submissions 
made for all submission stages by participants in a particular Pyramid. Links between 
two sectors represent each submission stage engagement of participants who were 
allocated to different Pyramids. The thickness of each link is proportional to the 
number of submissions made by participants who were allocated to different 
Pyramids. Further, we have highlighted the links in order to emphasize the 
importance of orchestration agent participation in each Pyramid. For instance, a link 
with thick border denotes that the mandatory agent intervention was required for the 
Pyramid to proceed to the next levels, while a link with dashed border denotes that the 
agent participation was optional for the Pyramid to proceed to the next levels, but 
agent participation was required to create a meaningful collaborative learning 
scenario. This behavior of the agent became important during the first rating 
submission stage of each Pyramid activity, since only some small groups submitted 
ratings. Although lack of small group participation does not stop Pyramid from 
proceeding to the second rating submission stage, it is important that every small 
group participate in rating, as it affects the options which will be populated to the 
second (in this case the final) rating submission stage. We have emphasized this 
participation difference among small groups in first rating submission stage via thick 
and dashed border links. The following section describes the orchestration agent 
interventions in different Pyramid activities during the empirical study in detail. 
 
 

                                                           
1 https://cran.r-project.org/web/packages/circlize/index.html 
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    (a) Very Rapid                          (b) Rapid 
 

       
                   (c) Long         (d) Very Long 

Figure 5: Patterns of engagement in different types of Pyramid activities 

As it was mentioned earlier we have carried out 11 very rapid type Pyramid 
activities. It was observed that 7 out of 11 of these activities required orchestration 
agent to simulate student behavior to fulfil minimum student count requirement to 
generate a Pyramid within the allocated time frame. Also 10 out of 11 required agent 
intervention at least in one submission stage fully or partially due to lack of 
contributors. Not only lack of contributors but also lack of initiators, runners and 
raters have affected different submission stages. As it is denoted in Fig. 5(a), P4 and 
P8 Pyramids required mandatory agent intervention during initial option submission 
stage since there were no initiators or runners. Further, P5, P8 and P9 Pyramids 
required the mandatory intervention of the agent during first rating stage. However, in 
P6, P7 and P11 Pyramids agent participation were marked as optional because only 
one small group has participated in first rating submission stage. Hence, agent 
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intervention was optionally required to create meaningful collaboration among small 
groups. Due to lack of raters and runners, P2, P3, P6, P9, P10 and P11 Pyramids also 
required agent mandatory intervention during second rating submission stage. 

In rapid type activities only 1 Pyramid required orchestration agent to simulate 
student behavior to fulfil minimum student count requirement to generate a Pyramid. 
As denoted in Fig. 5(b), none of the Pyramids required mandatory agent intervention 
during the initial option submission stage, which indicated a strong presence of 
initiators. However, the same participation was not observed during the first rating 
submission stage. P1, P2 and P3 Pyramids required the optional participation of the 
agent while P4 and P5 Pyramids required mandatory participation of the agent to 
proceed to the next level. A higher student participation was also observed in the 
second rating submission stage. Mandatory agent intervention was only required 
during a single Pyramid P3. 

In long type Pyramid activities 6 out of 10 Pyramids required orchestration agent 
to simulate student behavior to fulfil the minimum student count requirement to 
generate a Pyramid. As shown in Fig. 5(c) it can be seen that mandatory agent 
intervention during initial option submission stage was not required in any Pyramid. 
However, Pyramids P3, P5, P7 and P10 required mandatory agent intervention during 
the first rating submission stage to proceed to the next level while Pyramids P1, P2, 
P4 and P8 required optional agent intervention to create meaningful collaborations 
among small groups. Further, Pyramids P1, P7 and P8 required mandatory agent 
intervention during second rating submission stage. It should be noted that Pyramids 
P6 and P9 had a satisfactory participation of students in all Pyramid levels hence 
agent intervention was not required in any of the 3 submission stages. Finally, in very 
long type activities it was observed that both Pyramids required orchestration agent to 
simulate student behavior to fulfil the minimum student count requirement to generate 
a Pyramid. Further, as it is denoted in Fig. 5(d) agent mandatory intervention was 
required during both first and second rating submission stages of P2, while optional 
intervention during first rating submission stage was required in Pyramid P1. 

4.5 Discussion 

Results of the analysis revealed orchestration agent intervention to fulfil the minimum 
student count requirement to generate a Pyramid became important in 63.63% of very 
rapid activities, 20% of rapid activities, 60% of long activities and 100% of very long 
activities. 

When considering different submission stages of the Pyramid it was observed that 
only very rapid activities required agent intervention in the initial submission stage 
(18.18%). In other 3 types of activities i.e., rapid, long and very long agent 
intervention was not required in the initial submission stage which indicated that 
learners have a higher engagement in the initial submission stage. However, it was 
observed that learner engagement with first rating submission stage and second rating 
submission stage varied. Mandatory agent intervention during first rating submission 
stage was required across all activity types including 27.27% in very rapid type 
activities, 40% in rapid type activities, 40% in long type activities and 50% in very 
long type activities. Optional agent intervention was also required across all activity 
types to create meaningful collaborations including 27.27% in very rapid type 
activities, 60% in rapid type activities, 40% in long activities and 50% in very long 
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activities. Further, during the second rating submission stage it was observed that very 
rapid and very long activities required a higher intervention of the agent which was 
54.55% and 50%. However, in rapid and long activities the requirement for agent 
intervention during the same stage was relatively low i.e. 20% and 30%. 

In summary, based on the results of the analysis it became clearer that the 
orchestration agent participation in Pyramid activity becomes important in different 
stages in order to maintain an uninterrupted yet meaningful collaborative learning 
flows. Further, it was observed that orchestration agent intervention during Pyramid 
instantiating phase become also important in all activity types with the exception of 
rapid type activities. 

5 Conclusions and Future Work 

CSCL is a dynamic and an interdisciplinary field of research which mainly focuses on 
technological interventions towards education which could provide explicit or implicit 
support to facilitate the sharing and creation of knowledge through peer interactions 
and group learning processes. Working in groups create practical opportunities for 
students to resolve their doubts and to refine their knowledge on different learning 
aspects through discussions and rehearsals with peers. In the field of CSCL, CLFPs 
e.g., Pyramid essentially pre-structure the collaboration supporting practitioners to 
design learning tasks which will result in establishing productive interactions among 
learners. Deployment of such collaboration spaces scripted based on CLFPs creates 
productive yet meaningful collaboration opportunities towards MOOCs participants. 

However, sustaining continuous yet meaningful collaborative learning flows in 
MOOCs are tedious due to many reasons. An exploratory MOOC case study carried 
out has shown that different participation behaviors and rigid script design parameters 
can have a major impact towards continuous collaboration. Findings of the 
exploratory MOOCs case study highlighted the requirement towards further 
investigations on technological interventions that facilitate to maintain continuous 
flows of collaboration, which will create collaborative learning opportunities towards 
motivated learners. Incorporation of intelligent agents was seen as a promising 
direction, as such techniques can be used to monitor interactions among learners 
eliciting the requirement of manual intervention of educators while facilitating the 
orchestration of collaboration. A WOZ study conducted in a MOOC has shown that 
intelligent agent intervention during collaboration enactment facilitates to sustain 
continuous yet meaningful collaboration learning flows, driving collaboration towards 
a productive state. Further, during the WOZ study, it became evident that only 
learning design parameter changes i.e., time allocation cannot drive collaboration 
towards a success, but it requires additional scaffolds. In the next steps of the 
research, it is of importance to investigate AI techniques which facilitates 
implementation of these agents, providing opportunities for its application and 
adaption in large-scale online learning settings. 
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