Developing Safety Performance Functions for Urban Intersections in Sri Lanka

i

Udaha Wadiya Ralle Sarala Lasanthi Gunathilaka (Reg. No.: MP20700010) MPhil in Civil Engineering

Department of Civil Engineering Sri Lanka Institute of Information Technology

February 2022

Declaration

I hereby declare that to the best of my knowledge, this submission is my own work and it neither contains direct material previously published nor written by another person or material, which to substantial extent, has been accepted for the award of any other academic qualification of a university or other institute of higher learning except where acknowledgement is made in the text.

Certified by

Signature	: Server
Date	:
Name of Supervisor	:Prof. Niranga Amarasingha
Signature	:
Date	:

Acknowledgements

I would like to convey my gratitude to Prof. Niranga Amarasingha for providing a continuous supervision and guidance from the beginning of this research project. I appreciate the guidance and support received from the co-supervisor Prof. Sunanda Dissanayake and mentors; Ms. Malika Lakmali and Prof. Chandana Perera throughout the project. The support given by Dr. Vasantha Wickramasinghe and Prof. Sarath Peiris is highly appreciated. I convey my gratitude to the Department of Civil Engineering and Faculty of Graduate Studies and Research, Sri Lanka Institute of Information Technology, for their immense support in conducting the research project.

This research was funded by the Accelerating Higher Education Expansion and Development (AHEAD) Operations through the World Bank. Also, the continuous supervision and motivation given by them is highly appreciated.

Staff of the Traffic Police Headquarters and Road Development Authority are acknowledged for providing necessary accident data and traffic volume data. The support received from Transportation Engineering Laboratory-Research Group; Sri Lanka Institute of Information Technology is highly admired.

Sarala Gunathilaka (MP20700010),

Department of Civil Engineering,

Sri Lanka Institute of Information Technology.

Developing Safety Performance Functions for Urban Intersections in Sri Lanka

Sarala Gunathilaka,

Department of Civil Engineering,

MPhil in Civil Engineering.

Abstract

Crash frequency modeling is a good approach in identifying factors that influence on crash frequency at road ways or intersections. This research study aimed at developing Safety Performance Functions (SPFs) for urban intersections in Sri Lanka based on crash frequency modeling. This is a novel approach in the local context. The study accommodated 369 urban intersections. For each intersection, crash data, geometric data and traffic related data were collected. Out of 369 urban intersections, 107 intersections were located in Colombo district. An intersection was the unit of analysis in crash frequency modeling. Data were obtained for the period from 2015 to 2019. Police reported crash data under all severity levels were considered for the study. Geometric variables included width of lanes, shoulder, median, side walk and existence of geometric features at an intersection. Vehicle Kilometers of Travel (VKT) data were considered in terms of traffic data. VKT data were collected through an island-wide paper-based travel survey. As timely VKT data are not available with the relevant authorities in the country, estimating VKT is one of key contributions to the existing literature. Count data modeling methods; Poisson and Negative Binomial regression models were adopted to develop crash frequency models. In the study, two different SPFs were developed for Colombo district and the entire country. Out of 36 independent variables that related to geometry and traffic characteristics of urban intersections, few variables were remained statistically significant in the developed crash frequency models. Existence of left turn lanes on major leg, bus halting places, traffic signal lights, illegal road side parking, roads connected to minor leg and average shoulder width of major road variables were remained statistically significant in the Colombo district crash frequency model. In the model that was developed for urban intersections in Sri Lanka, VKT, existence of left turn lanes in minor leg, right turn lanes in major leg, traffic signal lights, road hand rails, presence of approach lanes in the minor leg, existence of kerbs in the minor leg, existence of roads connected to the minor leg, road signs and width of median in the major road variables were found statistically significant. Those variables were recommended to appear in the SPFs. Identifying influencing traffic and geometric variables on crash frequency at urban intersections in Sri Lanka is another key contribution from this study.

SPFs illustrated crash frequency at urban intersections in terms of statistically significant variables with a link function. This is the ultimate output of the research study that allowed to propose and compare the most suitable countermeasures in improving safety at urban intersections. Also, limitations and recommendations of the study were discussed that can effectively be adopted in future research studies for a better approach in determining crash frequency at urban intersections in Sri Lanka.

Key words: Crash frequency models, Safety performance functions, Urban intersections, Count data modeling methods, Significant variables.

Table of Contents

1	Intro	oduction	1
	1.1	Research Background	1
	1.2	Introduction to Safety Performance Functions	4
	1.3	Research Problem	5
	1.4	Research Gap Identification	7
	1.5	Thesis Layout	8
2	Surv	ey of Prior Research	9
	2.1	Highway Safety Manual Procedure for Calibrating Safety Performance	
	Functio	ons	9
	2.2	Crash Frequency Modeling Methods for Developing Safety Performance	
	Functio	ons1	1
	2.2.2	1 Generalized Linear and Additive Models 1	1
	2.2.2	2 Multilevel Binomial Logistic Models1	۱5
	2.2.3	3 Artificial Neural Network Models 1	۱6
	2.2.4	4 Support Vector Machine Models 1	18
	2.3	Developing Safety Performance Functions for Intersections	۱9
	2.4	Developing Safety Performance Functions at Segment Level	22
	2.5	Key Issues in Crash Frequency Modeling2	26
3	Obje	ectives of the Study	28

4	Resea	rch Design	29
	4.1 S	ampling of Intersections for the Study	29
	4.2 D	Data Acquisition and Processing	
	4.2.1	Crash Data	
	4.2.2	Geometric Data	
	4.2.3	Traffic Data	
	4.3 C	Crash Frequency Modeling	40
	4.3.1	Poisson Regression Model	40
	4.3.2	Negative Binomial Regression Model	42
	4.3.3	Developing a Crash Frequency Model for Colombo District	44
	4.3.4	Crash Frequency Model for Sri Lanka	56
5	Result	S	63
	5.1 C	Colombo District Crash Frequency Model	63
	5.1.1	Poisson Regression Model	63
	5.1.2	Negative Binomial Regression Model	64
	5.1.3	Comparing Goodness-of-Fit of Models	65
	5.1.4	Safety Performance Function for Urban Intersections in Colom	1bo 66
	5.2 C	Crash Frequency Model for Sri Lanka	67
	5.2.1	Poisson Regression Model	67
	5.2.2	Negative Binomial Regression Model	68
	5.2.3	Comparing Goodness-of-Fit of Models	70

5.	2.4 Safety performance Function for Urban Intersections in Sri Lanka7	1
6 Ai	nalysis of Results and Discussions7	2
6.1	Interpretation of Crash Frequency Models for Colombo District	2
6.2	Interpretation of Crash Frequency Models for Sri Lanka7	8
6.3	Limitations of the Research8	2
6.4	Recommendations for Future Research8	5
7 Co	onclusions	6
Publications from the Study		
Appen	dix9	0
Refere	nces9	2

List of Tables

Table 1.1 Accident Statistics in Sri Lanka during Recent Years 2
Table 1.2 Number of People Killed in 2019 due to Traffic Accidents 2
Table 1.3 Vehicle Population in Sri Lanka in Past Years 2
Table 1.4 Intersection Related Crashes from 2009 to 2013 in Sri Lanka
Table 4.1 Urban Intersections Located in Different Districts
Table 4.2 Composition of Crash Data from 2015 to 2019 31
Table 4.3 Geometric Variables Collected at Urban Intersections 33
Table 4.4 Samples Collected from Each District for Travel Surveys
Table 4.5 Annual VKT in Each District in Sri Lanka 39
Table 4.6 Summary Statistics for Discrete and Continuous Variables 47
Table 4.7 Summary Statistics for Categorical-Nominal Variables 47
Table 4.8 Summary Statistics of Discrete and Continuous Variables in the Data Set of Sri
Lanka
Table 4.9 Summary Statistics of Categorical-Nominal Variables in the Data Set of Sri
Lanka 60
Table 5.1 Poisson Regression Model Output for Urban Intersections in Colombo 63
Table 5.2 VIFs for the Poisson Model Developed for Urban Intersections in Colombo 63
Table 5.3 NB Regression Model Output Developed for Urban Intersections in Colombo 64
Table 5.4 VIFs for the NB Model Developed for Urban Intersections in Colombo
Table 5.5 Goodness of Fit Measures 65
Table 5.6 Model Performance for Different Ranges of Accident Counts at Urban
Intersections in Colombo
Table 5.7 Poisson Model obtained for Urban Intersections in Sri Lanka

Table 5.8 VIFs for Poisson Model Developed for Urban Intersections in Sri Lanka	67
Table 5.9 Developed NB Model for Urban Intersections in Sri Lanka	68
Table 5.10 Calculated VIFs for the NB Model Developed for Urban Intersections in Sri	
Lanka	69
Table 5.11 Goodness-of-Fit Measures of Crash Frequency Models for Sri Lanka	70
Table 5.12 Model Performance for Different Ranges of Accident Counts at Urban	
Intersections in Sri Lanka	70

List of Figures

Figure 4.1 Breakdown of the Research Methodology	29
Figure 4.2 An Urban Intersection with Crashes	32
Figure 4.3 Defined Intersection Boundary for Collecting Intersection-Related Data	35
Figure 4.4 Urban Intersections in Colombo District	44
Figure 4.5 Boxplot of Accidents Occurred at Urban Intersections in Colombo	45
Figure 4.6 Histogram of Accidents Occurred in Colombo after Removing Outliers	46
Figure 4.7 Poisson Distribution of Accidents Occurred in Colombo	46
Figure 4.8 Boxplots of Continuous Variables in the Colombo District Data Set	50
Figure 4.9 Selected Urban Intersections in Sri Lanka	56
Figure 4.10 Boxplot of Accident Counts Occurred in Sri Lanka	58
Figure 4.11 Histogram of Accidents in Sri Lanka after Removing Outliers	58
Figure 4.12 Poisson Distribution of Accident Counts Occurred in Sri Lanka	59
Figure 4.13 Boxplots of Continuous Variables in the Data Set of Sri Lanka	62
Figure 5.1 Plot of Standardized Residuals vs Observation Order of the Poisson Model	
Developed for Urban Intersections in Colombo	64
Figure 5.2 Plot of Standardized Residuals of NB Model Developed for Urban	
Intersections in Colombo District	65
Figure 5.3 Plot of Standardized Residuals vs Observation Order of the Poisson Model fo	or
Sri Lanka	68
Figure 5.4 Plot of Standardized Residuals vs Observation Order of the NB Model for Sri	
Lanka	69

Abbreviations

WHO	: World Health Organization
NCRS	: National Council for Road Safety
DMT	: Department of Motor Traffic
DCS	: Department of Census and Statistics
FHWA	: Federal Highway Administration
TPHQ	: Traffic Police Headquarters
USA	: United States of America
SPMs	: Safety Performance Models
SPFs	: Safety Performance Functions
AADT	: Annual Average Daily Traffic
HSM	: Highway Safety Manual
NB	: Negative Binomial
GLMs	: Generalized Linear Models
GAMs	: Generalized Additive Models
AIC	: Akaike Information Criteria
VMT	: Vehicle Miles of Travel
MSNB	: Markov Switching Negative Binomial
MLE	: Maximum Likelihood Estimation
MCMC	: Markov Chain Monte Carlo
MVPLN	: Multi Variate Poisson Log-Normal
ANN	: Artificial Neural Network
SVMM	: Support Vector Machine Models
KNNR	: K-Nearest Neighbor Regression
IAZs	: Intersection Analysis Zones
MAZs	: Middle Analysis Zones
PDO	: Property Damage Only
VKT	: Vehicle Kilometers of Travel
AVGLWMJ	: Average Lane Width-Major
AVGLWMN	: Average Lane Width-Minor
AVGSWMJ	: Average Shoulder Width-Major
AVGSWMN	: Average Shoulder Width-Minor

SWWMJ	: Side Walk Width-Major
SWWMN	: Side Walk Width-Minor
MWMJ	: Median Width-Major
MWMN	: Median Width-Minor
OWL	: One-Way Legs
LLMJ	: Left turn Lanes-Major
LLMN	: Left turn Lanes-Minor
RLMJ	: Right turn Lanes-Major
RLMN	: Right turn Lanes-Minor
CCWMJ	: Conventional Cross Walks-Major
CCWMN	: Conventional Cross Walks-Minor
CCWRIMJ	: Conventional Cross Walks with Refuge Islands-Major
CCWRIMN	: Conventional Cross Walks with Refuge Islands-Minor
BH	: Bus Halts
TC	: Traffic Controlling
RR	: Road hand Rails
IRSP	: Illegal Road Side Parking
ALMJ	: Approach Lanes-Major
DLMJ	: Departure Lanes-Major
LBMJ	: Lane Balance-Major
ALMN	: Approach Lanes-Minor
DLMN	: Departure Lanes-Minor
LBMN	: Lane Balance-Minor
CI	: Central Islands
SI	: Splitter Islands
CHN	: Channelization
KBSMJ	: Kerbs-Major
KBSMN	: Kerbs-Minor
RS	: Road Signs
EXRMJ	: Existence of Roads connected to Major
EXRMN	: Existence of Roads connected to Minor
VIFs	: Variance Inflation Factors
MSE	: Mean Square Error
RMSE	: Root Mean Square Error

xiv