

Department of Electrical and Computer Engineering

“AccessBIM” - A Model of Environmental Characteristics for

Vision Impaired Indoor Navigation and Way Finding

Jayakody Arachchilage Don Chaminda Anuradha Jayakody

This thesis is presented for the Degree of

Doctor of Philosophy
of

Curtin University

June 2018

Declaration

To the best of my knowledge and belief, this thesis contains no material previously published

by any other person except where due acknowledgment has been made.

This thesis contains no material, which has been accepted for the award of any other degree

or diploma in any university.

-- --

J. A. D. C. A. Jayakody Date

Parts of this thesis has been previously published as listed below.

Conference papers:

 J. A. D. C. A. Jayakody, I. Murray, J. Herrmann, S. Lokuliyana, V. R. Dunuwila (in

press) “Enhanced Algorithmic Implementation to Assist Real-time Indoor Map

Generation for Vision Impaired Individuals,” in the 13th International Conference on

Computer Science & Education (ICCSE), Colombo 2018.

 J. A. D. C. A. Jayakody, I. Murray, J. Herrmann, S. Lokuliyana, V. R. Dunuwila (in

press) “Tempcache: A Database Optimization Algorithm for Real-time Data handling in

Indoor Spatial Environments,” in the 13th International Conference on Computer Science

& Education (ICCSE), Colombo 2018.

 J. A. D. C. A. Jayakody, S. Lokuliyana, I. Murray, J. Hermann, N. Gamage, "Optimized

AccessBIM Model to Assist Vision Impaired Individuals with Real-time Indoor Map,”

in First One Curtin International Postgraduate Conference, Malaysia, 2017.

 J. A. D. C. A. Jayakody, I. Murray, J. Herrmann, D. S. A Kandawela, S. E. C.

Nanayakkara, S. Lokuliyana, “A Database Optimization Model with Quantitative

ii

Benchmark,” 2016 International Conference on Computational Techniques in

Information and Communication Technologies (ICCTICT), India, 2016.

 J. A. D. C. A. Jayakody, S. Lokuliyana, K.D.D.Chathurangi, D.R.Vithana, "Indoor

Positioning: Novel approach for Bluetooth Networks using RSSI Smoothing,"

International Journal of Computer Applications, vol. 137, (13), 2016.

 J. A. D. C. A. Jayakody, I. Murray, J. Herrmann, “An Algorithm for Labeling Topological

Maps to Represent Point of Interest for Vision Impaired Navigation,” in International

Conference on Indoor Positioning and Indoor Navigation (IPIN), Canada, 2015.

 J. A. D. C. A. Jayakody, I. Murray, J. Herrmann, “Database modeling for vision impaired

indoor navigation systems: Extended Abstract,” in International Conference on Advances

in ICT for Emerging Regions (ICTER), Colombo, 2015.

 J. A. D. C. A. Jayakody, I. Murray, “The Construction of an Indoor Floor Plan Using a

Smartphone for Future Usage of Blind Indoor Navigation,” in International Conference

on Contemporary Computing and Informatics, Bangalore, 2014.

 J. A. D. C. A. Jayakody, I. Murray, “Proposed Novel Schema Design for Map Generation

to Assist Vision Impaired in an Indoor Navigation Environment,” in International

Conference on Contemporary Computing and Informatics, Bangalore, 2014.

 J. A. D. C. A. Jayakody, I . Murray, “Proposed Methodology for Labeling Topological

Maps to Represent Rich Semantic Information for Vision Navigation,” in International

Conference on Indoor Positioning and Indoor Navigation, France, 2013.

 J. A. D. C. A. Jayakody, L. Rupasinghe, K. A. M. S. Perera, H. H. P. M. Herath, T. M.

A. Thennakoon, S. U.Premanath, "The development of the CityGML GeoBIM extension

for Real-Time assessable model (Integration of BIM and GIS)," in the Second National

Conference on Technology and Management, Sri Lanka, 2013.

 J. A. D. C. A. Jayakody, E.D.S. Nishani, U.M.R.Senaratne, "Spatial model for indoor

iii

unknown infrastructure with built information," in SAITM Research Symposium on

Engineering Advancements, Sri Lanka, 2013.

 J. A. D. C. A. Jayakody, I. Murray, “An AccessBIM model for environmental

characteristics for vision impaired indoor navigation and way finding,” in International

Conference on Indoor Positioning and Indoor Navigation, Kensington, 2012.

iv

Dedication

To my family, who have supported me throughout this work and thereby made it possible.

Especially my two daughters (Sayuri and Sasanya) and my wife who has had the patience to

accept my seemingly never-ending late nights in front of the computer, and to my mother who

shouldered many burdens so that I could be free to carry on this work.

Also to my supervisors, whose constant questions and feedback have shaped this thesis into

something far better than what it would have been without their input.

v

Abstract

The navigation of indoor and outdoor environments play a pivotal role in the daily routine of

humans. Navigation systems that provide path planning and exploration services for outdoor

environments are readily available while navigation within a building is still a challenge due

to limited information availability and the poor quality of GPS signals, which makes it

difficult to capture characteristics within the indoor environment. Consequently, the use of

GPS tracking devices for real-time map generation is not feasible. Indoor navigation is

particularly difficult for people with vision impairment. According to the factsheet of the

World Health Organization (WHO) as of October 2017, over 253 million people are estimated

to be vision impaired: 36 million to be blind, and 217 to have poor vision. Currently, most

blind and vision-impaired individuals use the white cane as an assistive tool and are often

accompanied by care takers or voluntary helpers.

Most modern indoor environments consist of complex architectural structures with varying

arrangement of physical objects. Since retrieving indoor location information has been

challenging for the vision impaired, it would be helpful if spatial information of doors, walls

and staircases were made available.

To address the above-mentioned problem, this thesis presents an improved schema design, an

Accessible Building Information Model (AccessBIM) which could be used for generating an

indoor map that could instruct vision impaired individuals in navigation, by the classification

of real world objects and their locations. AccessBIM is a real-time relational database, which

acts as the main component of the central system implemented to manipulate crowdsourced

data such as the floor plan and architectural data along with semantic information within the

built environment. The AccessBIM database stores information on the indoor arrangement of

objects within buildings to facilitate the exchange and interoperability of real-time

information. The database is equipped with an optimization algorithm that reduces the query

execution time with the support of indexing, query re-writing, schema redesigning and a

memory optimization technique introduced as “BIMcache”.

vi

In order to create a real-time map, the AccessBIM manipulates crowdsourced data from

“smart devices” or AccessBIM users. The collection and storage of crowdsourced data,

database optimization, API functions and the map construction algorithms were tested using

a simulated test engine.

The AccessBIM framework has the potential to play an integral role in assistive technologies

related to localization and mapping, thus significantly improving the independence and quality

of life for people with vision impairment whilst also decreasing the cost to the community

related to support workers.

vii

Acknowledgements

First and Foremost, I would like to express my sincere gratitude to my supervisor, Associate

Prof. Iain Murray for the continuous support provided for my Ph.D. study and research, and

for his patience, motivation, enthusiasm, immense knowledge and his guidance which helped

me at all times of the research and in writing thesis. I could not have imagined having a better

advisor and mentor for my Ph.D. study.

Next gratitude goes to my co-supervisor; Dr. Hannes Herrmann who provided constrictive

feedback on the direction of the thesis and papers co-authored.

Besides my superiors, I would like to thank the rest of my thesis committee chair person Dr.

Cesar Ortega-Sanchez and his committee members for the encouragement, insightful

comments, and hard questions.

My sincere thanks go to Prof. Lalith Gamage for giving me this treasured opportunity to

continue my doctoral study in a prestigious university such as Curtin, Australia. Further, I

would be grateful to mention the mentors working under Information Systems Engineering

Department at Sri Lanka Institute of Information Technology, Prof. Samantha Thelijjagoda,

Prof. Koliya Pulasinghe, Dr. Malitha Wijesundara, and Dr. Pradeep Abegunawardena who

mentored and advised me towards this endeavor.

I thank my fellow peers Dr. Nimsiri Abayasinghe, Mr. Lakmal Rupasinghe, Ms.Nimali

Rajakaruna, Ms. Nimalika Fernando and Mr. Dhammika De Silva of the Indoor Navigation

research group, for the stimulating discussions, sleepless nights we worked together before

deadlines, and for all the fun we have had in the last six years. Also, I thank my friends at Sri

Lanka Institute of Information Technology those who supported me throughout my research

work: Ms. Shashika Lokuliyana, Ms. Sachini Kandawala and my research assistants Ms.

Narmada Gamage and Ms. Vandhana Dunuwila.

Finally, I would like to acknowledge my family, specially my parents Mr. S. Jayakody and

Mrs. P. Jayakody, for giving birth to me at the first place and supporting me spiritually

throughout my life.

viii

Last but not the least, I would like to thank my wife Madushani Jayakody who stood by my

side at tough times in my life and my two daughters, Sayuri Jayakody and Sasanya Jayakody

for their unconditional love.

ix

Table of Contents

Declaration ... i

Dedication .. iv

Abstract ... v

Acknowledgements ... vii

Table of Contents ... ix

List of Figures .. xiv

List of Tables ... xx

List of Equations ... xxii

 Chapter 1 – Introduction ... 1

1.1 Problem Overview... 1

1.2 Motivation for indoor map generation .. 2

1.3 Motivation for database optimization ... 3

1.4 Research Gap ... 3

1.5 Problem Statement .. 4

1.6 Contribution and Significance ... 5

1.7 Assumptions .. 7

1.8 Thesis Outline ... 8

 Chapter 2 – Background and Literature Review ... 9

2.1 Chapter Overview ... 9

x

2.2 Vision Impaired Mobility .. 9

2.2.1 Social Aspect of Vision Impaired Mobility .. 9

2.2.2 Technical Aspect of Vision Impaired Mobility .. 13

2.3 Indoor Navigation and Map Generation .. 18

2.3.1 Algorithms and Frameworks .. 18

2.3.2 Device Based Solutions .. 19

2.3.3 Mobile Application Based Solutions .. 20

2.4 Real-time Databases and Optimization ... 21

2.4.1 General Concept ... 21

2.4.2 Real-time Databases ... 22

2.5 Object-Relational Implementation .. 22

2.6 Database Optimization and Performance Tuning ... 24

2.7 Contribution to the Research Project .. 25

2.8 Chapter Conclusion ... 28

 Chapter 3 – Framework, Database and Test Environment Design and Implementation 30

3.1 Chapter Overview ... 30

3.3 Implementation Phases of the Research Work .. 31

3.2 Experimental Design Objective .. 30

3.3.1 Methodology of Framework Implementation ... 31

3.3.2 Database Designing Approach ... 38

xi

3.3.3 Test Environment Implementation Approach .. 57

3.4 Real-Time Map Creation ... 65

3.5 Chapter Conclusion ... 67

 Chapter 4 – Map Construction Algorithms ... 69

4.1 Chapter Overview ... 69

4.2 The Four Algorithms ... 69

4.3 Algorithm for Indoor Real-time Map Generation ... 70

4.4 Algorithm for Database Optimization ... 74

4.5 Algorithm for BIMcache Optimization ... 75

4.6 Algorithm for Crowdsourced Data Collection .. 78

4.7 Chapter Conclusion ... 79

 Chapter 5 – The Simulation Environment and Test cases .. 80

5.1 Chapter Overview ... 80

5.2 The Simulation Environment .. 80

5.3 Test Scenarios ... 80

5.4 Chapter conclusion .. 98

 Chapter 6 – Evaluation and Discussion .. 100

6.1 Chapter Overview ... 100

6.2 Evaluation of the AccessBIM framework ... 100

6.3 Database optimization ... 102

xii

6.3.1 Performance Enhancement with Stored Procedures and Indexing For Real-Time Indoor

Map Generation ... 103

6.3.2 Performance Enhancement with the use of BIMcache for Real-Time Indoor Map

Generation ... 121

6.3.3 Performance Enhancement with the use of Query Rewriting for Real-Time Indoor Map

Generation ... 125

6.4 Comparison of Results and Discussion ... 126

6.4.1 Discussion on stored procedures and indexing ... 127

6.4.2 Discussion on the use of BIMcache ... 129

6.4.3 Discussion on query rewriting .. 130

6.4.4 Comparison of the total time in real-time map generation ... 131

6.4.5 Quantitative benchmark for performance enhancement ... 136

6.5 Evaluation of the AccessBIM framework against existing work 143

6.5.1 Comparison between query execution time and size of data retrieved 143

6.5.2 Comparison between the frequency of executing the query and the number of users 148

6.6 Chapter conclusion .. 151

 Chapter 7 – Conclusion and Future Research ... 153

7.1 Chapter Overview ... 153

7.2 Research outcomes and significance ... 153

7.3 Recommended framework .. 157

7.3.1 Recommended database optimization model ... 158

xiii

7.3.2 Recommended real-time map generation model .. 159

7.4 Limitations of the research .. 160

7.5 Future Research Work ... 160

References. .. 162

Appendices .. 174

Appendix A: System Specification ... 174

Appendix B: C# DLL to interact C# application and web service .. 175

Appendix C: 7th floor of Sri Lanka Institute of Information Technology 184

Appendix D: Results of query execution .. 188

Appendix E: Summary of the Interview conducted with the Visual Impaired of Employee

Federation of Ceylon ... 197

Appendix F: List of Available Stored Procedures .. 199

xiv

List of Figures

Figure 1.1: Research component diagram for AccessBIM model ... 7

Figure 2.1: Laser Cane [30]. .. 144

Figure 2.2: Sonic path finder [32] .. 144

Figure 2.3: Handheld mobility device [33] .. 155

Figure 2.4: Sample GPS tracker [34] ... 155

Figure 2.5: Four-quadrant view of the database world [53] .. 23

Figure 3.1: Main phases of AccessBIM model Implementation ... 331

Figure 3.2: AccessBIM Framework .. 33

Figure 3.3: Collecting data through GAIT Analysis ... 35

Figure 3.4: User Interface Layer .. 36

Figure 3.5: Process of functional layer .. 37

Figure 3.6: ER Diagram with Table relation ... 39

Figure 3.7: Schema Design with relations ... 40

Figure 3.8: Method of calculating angle .. 46

Figure 3.9: Overview of BIMcache [64] ... 52

Figure 3.10: Output results of BIMcache .. 53

Figure 3.11: Output of query execution without SQL JOIN ... 55

Figure 3.12: Output of query execution with SQL JOIN .. 55

Figure 3.13: Created simulator (Virtual environment) .. 60

xv

Figure 3.14: User starts navigation. ... 60

Figure 3.15: User navigation and data collection .. 61

Figure 3.16: User finish navigation and data collection .. 61

Figure 3.17: Overview of simulated test Engine ... 62

Figure 3.18: Identify user’s angle .. 63

Figure 3.19: Obstacle detection ... 64

Figure 3.20: Identify non-movable obstacle .. 65

Figure 3.21: Overview of map generation ... 66

Figure 3.22: Generated real-time map according to multiple user navigations 67

Figure 4.1: Dynamic Indoor Real-Time Map Generation ... 71

Figure 4.2: Flow of AccessBIM database optimization model ... 73

Figure 4.3: AccessBIM Database Optimizer Algorithm ... 74

Figure 4.4: Flow of BIMcache time reduction model ... 76

Figure 4.5: AccessBIM BIMcache Optimizer Algorithm ... 77

Figure 4.6: Crowdsourced Data Gathering .. 78

Figure 5.1: Floor plan of simulated environment (7th floor of Sri Lanka Institute of Information

Technology) ... 881

Figure 5.2: Desired navigation plan for scenario 1 .. 83

Figure 5.3: Wall_info table .. 84

Figure 5.4: Door_info table ... 84

xvi

Figure 5.5: Object_info table ... 85

Figure 5.6: Simulator with object positioning ... 85

 Figure 5.7: Update movement_info table ... 86

Figure 5.8: Generated real-time map according to navigation .. 87

Figure 5.9: Desired navigation plan for scenario 2 .. 88

 Figure 5.10: Movement_info Table after test case 1 .. 89

Figure 5.11: Simulator after changing object’s location ... 89

Figure 5.12: Updated real-time map with new object location ... 90

Figure 5.13: Desired navigation plan for scenario 3 .. 91

Figure 5.14: Updated real-time map with new environmental characteristics 92

Figure 5.15: Desired navigation plan for scenario 4 .. 93

Figure 5.16: Multiple user navigations at once ... 94

Figure 5.17: Updated map with multiple user navigations. ... 95

Figure 5.18: Desired navigation plan for test case 5 ... 96

Figure 5.19: Door closed in simulator ... 97

Figure 5.20: Updated map with current door status and routes ... 98

Figure 6.1: Flow of BIMcache () stored procedure ... 105

Figure 6.2: Cost comparison for stored procedure with indexing 106

Figure 6.3: Flow of select_starting_and_ending () stored procedure 107

Figure 6.4: Cost comparison of select_starting_and_ending () stored procedure 108

xvii

Figure 6.5: Flow of select_values_from_wall_info () stored procedure 109

Figure 6.6: Cost comparison for select_values_from_wall_info stored procedure 110

Figure 6.7: Flow of select_values_from_door_info () stored procedure 111

Figure 6.8: Cost comparison for select_values_from_door_info stored procedure 112

Figure 6.9: Flow of update_door_info () stored procedure ... 113

Figure 6.10: Cost comparison for update_door_info stored procedure 114

Figure 6.11: Flow of select_object_info () stored procedure .. 115

Figure 6.12: Cost comparison for select_object_info stored procedure 116

Figure 6.13: Flow of update_object_info () stored procedure ... 117

Figure 6.14: Cost comparison for update_object_info stored procedure 119

Figure 6.15: Flow of get_routing_details_for_a_specific_day () stored procedure 120

Figure 6.16: Cost comparison for get_routing_details_for_a_specific_day stored procedure

 ... 121

Figure 6.17: Floor arrangement for first-time navigation .. 122

Figure 6.18: Floor arrangement for second-time navigation. .. 122

Figure 6.19: Check route availability in BIMcache data ... 123

Figure 6.20: User navigate to the desired destination within simulator 123

Figure 6.21: Generated real-time map ... 124

Figure 6.22: Loaded movement information for scenario 1 .. 124

Figure 6.23: Output of query execution without SQL JOIN ... 125

xviii

Figure 6.24: Output of query execution with SQL JOIN .. 126

Figure 6.25: Summary of time reduction comparisons ... 127

Figure 6.26: Execution time of all 8 stored procedures with and without indexing 128

Figure 6.27: Query execution time with and without the use of BIMcache 130

Figure 6.28: Total real-time map generation time comparison 13434

Figure 6.29: Linear association between number of users and execution times (without

optimization) .. 13939

Figure 6.30: Linear association between number of users and execution time (with

optimization) .. 14141

Figure 6.31: Query execution with respect to time and size .. 14343

Figure 6.32: Query execution with respect to time and size .. 145

Figure 6.33: Sample query ... 145

Figure 6.34: Comparison between the solution described in the referenced paper and

AccessBIM framework .. 147

Figure 6.35: Proposed algorithm of the referenced paper [78] .. 148

Figure 6.36: Query used in the reference paper [79] ……………………………………….149

Figure 6.37: Query used by the AccessBIM framework …………………………………...149

Figure 6.38: Comparison between the frequency of execution……………………………..151

Figure 7.1: Comparison between query execution time and total map generation time with and

without database optimization……………………………………………………………...156

Figure 7.2: Recommended database optimization model…………………………………..158

xix

Figure 7.3: Recommended real-time map generation time…………………………………159

xx

List of Tables

Table 2.1: Common Eye Conditions, Corresponding Impact on Vision, And Related

Educational/reading Considerations [27]. ... 100

Table 2.2: Difference between totally blind and partially sighted navigators 122

Table 3.1: Data table of registration .. 41

Table 3.2: Data table of Building_info .. 42

Table 3.3: Data table of Floor_info ... 42

Table 3.4: Data table of Xml_info ... 43

Table 3.5: Data table of Path_history_info .. 44

Table 3.6: Data table of Object_info ... 45

Table 3.7: Data table of Movement_info ... 47

Table 3.8: Data table of Direction_info ... 48

Table 3.9: Data table of Label_info ... 49

Table 3.10: Data table of Wall_info .. 50

Table 3.11: Data table of Door_info .. 51

Table 6.1: Query execution time with and without the use of BIMcache………………….129

Table 6.2: Analysis based on the total real-time map generation time…………………….133

Table 6.3: Summary of research results…………………………………………………….135

Table 6.4: Comparison between the number of occurrences and execution time without

optimization……………………………………………………………………………….138

xxi

Table 6.5: Comparison between the number of occurrences and execution time with

optimization……………………………………………………………………………….140

Table 6.6: Technical comparison of the two models……………………………………….144

Table 6.7: Comparison between the solution described in the referenced paper and the

AccessBIM framework ……………………………………………………………………146

Table 6.8: Frequency of execution with changing number of users ……………………….150

Table 7.1: Summary of research results…………………………………………………...155

xxii

List of Equations

Equation 1: Total execution time of stored procedures without indexing…………. 128

Equation 2: Total execution time of stored procedures with indexing ……………. 128

Equation 3: Index efficiency factor………. .. 129

Equation 4: Query execution time………… ... 131

Equation 5: Optimization factor…….. .. 131

Equation 6: Total time taken for map generation………….………………………………132

Equation 7: Linear association between the number of users and execution time without

optimization…………………………. .. 139

Equation 8: Linear association between the number of users and execution time with

optimization ... 141

Equation 9: Frequency of execution .. 149

1

 Chapter 1 – Introduction

1.1 Problem Overview

The updated factsheet (October 2017) of the World Health Organization stated that 253

million of the world’s population are estimated to be vision impaired; out of which 36 million

are blind and 217 million have poor vision [1]. In addition, it has been stated that

approximately 90% of the vision impaired individuals live in developing countries [2] where

they require to invest money for portable navigation appliances and devices, despite poverty.

Besides, a research done on the cognitive development and behavior of vision impaired

individuals [3] indicated that they often face problems in socializing as although they have a

desire to move along they may have fears about how to go about it. Hence, the author aims to

introduce a mechanism that enhances the life-style of vision impaired individuals to facilitate

their interaction with the world without difficulty.

Indoor Navigation is a dynamic and evolving research area that can contribute significantly

towards providing a variety of services towards individuals with and without vision

impairment, thus enabling the vision impaired to have seamless experiences related to indoor

navigation.

Thus, this research aims to develop a framework for capturing indoor environmental

characteristics by the use of an improved schema design that uses database optimization

techniques such as stored procedures, indexing, query rewriting and BIMcache. The author

believes that the proposed framework would improve the quality of life for people with vision

impairment through the generation of a real-time indoor map that would guide them in their

navigation. Most modern indoor environments consist of complex architectural structures

with varying arrangement of physical objects. Since retrieving indoor location information

has been challenging for the vision impaired, it would be helpful if spatial information of

doors, walls and staircases were made available.

To address the above-mentioned problem, this thesis presents an improved schema design, an

Accessible Building Information Model (AccessBIM) which could be used for generating an

indoor map that could instruct vision impaired individuals in navigation, by the classification

2

of real world objects and their locations. AccessBIM is a real-time relational database, which

acts as the main component of the central system implemented to manipulate crowdsourced

data such as the floor plan and architectural data along with semantic information within the

built environment. The AccessBIM database stores information on the indoor arrangement of

objects within buildings to facilitate the exchange and interoperability of real-time

information. The database is equipped with an optimization algorithm that reduces the query

execution time with the support of indexing, query re-writing, schema redesigning and a

memory optimization technique introduced as “BIMcache”.

1.2 Motivation for indoor map generation

The indoor environment plays a major role in one’s daily life as a large proportion of their

time is spent within buildings in fulfilling day-to-day tasks. Expansions in the fields of

architecture and interior designing have led to the introduction of more attractive, work

friendly and complex indoor environments, making navigation difficult even for individuals

with fair vision. Therefore, special assistance should be provided for individuals with vision

impairment, so they could navigate easily through indoor environments.

In the recent past, navigation within buildings were facilitated by the use of 2-D maps created

through Computer-Aided Design (CAD) applications. However, the information presented in

these maps are insufficient for the vision impaired as they do not contain detailed information

on the physical arrangement of objects [4]. Therefore, additional details such as the location

of doors and staircases should be provided to ease their navigation.

GPS, the most common positioning technology offering outdoor localization information

exhibits poor indoor performance due to its weak signal strength as GPS signals are not

designed to penetrate through most concrete materials. Similarly, despite the fact that several

other indoor positioning techniques have been developed, most of them are either costly or

utilize fixed references to determine the location of tagged devices [5]. Hence, this created a

need for an effective indoor navigation system capable of tracking environmental changes in

real-time. Thus, this research examines how the capturing and storage of indoor environmental

3

characteristics would result in generating a real-time map equivalent to the actual

environment.

1.3 Motivation for database optimization

Real-time map generation is based on characteristic changes that occur in an indoor

environment. In order to generate a map of an indoor environment, real-time changes of the

indoor structures (structure of the rooms, partitions, obstacles and open areas) should be stored

in a database. Performance is a major issue when it comes to inserting and retrieving data from

relational database management systems [6]. Real-time systems utilize complex queries and

require rapid access to data than usual applications, thus creating a need for an efficient query

execution process. This difference in how real-time database systems handle transactions is

generally referred as the overload management problem. Furthermore, there are typical

performance limitations of databases such as poor use of indexes and poor database

configurations. Poor indexing may be caused due to the excessive and inappropriate use of

indexes which may lead to higher consumption of hardware resources such as processors and

disks [7].

Although certain limitations can be mitigated through the use of query optimization and

indexing, some performance problems have more complicated causes. Hence, there is a

necessity to investigate the source of the problem, which lies in how the database is structured

and how it is being used by its client application for what purpose. Further, data access patterns

and transactional boundaries should be analyzed in order to identify how they affect data

models, and the inherent scalability of the solution to get to the root of the problem. This

project aims to provide a comprehensive database optimization model to minimize problems

related to handling data in real-time.

1.4 Research Gap

Scientists and engineers have developed laser canes, sonic mobility devices, handheld

mobility devices and GPS devices to assist vision-impaired mobility [8], which has been

discussed in detail in section 2.2.2. These devices assist the vision impaired by identifying

obstacles that are nearby although they are incapable of generating a map to aid navigation.

4

Due to the rapid growth of mobile phone users across the world, statistics [9, 10, 11] indicate

that vision impaired individuals are able to handle mobile devices equally as well as other

individuals. Certain mobile devices utilize sensors to capture different parameters such as

acceleration, velocity, temperature, pressure and humidity, which could be used to generate a

real-time map that would facilitate vision impaired indoor navigation.

The most common way of tracking objects in an environment is the use of a Global Positioning

System (GPS) [12]. Devices that use GPS signals, provide accurate directions when

navigating in an outdoor environment. However, poor signal quality makes it difficult to

capture characteristics within indoor environments. Therefore, the use of GPS tracking

devices for indoor navigation is not feasible.

Inertial Measurement Unit (IMU) [13] based data collection is a successful method of

capturing environmental characteristics when GPS, Wi-Fi or Bluetooth signals are

unavailable. The accelerometer and compass of a smartphone enable the capturing of linear

acceleration, duration and the direction of a user’s movement [14]. However, a major

drawback of having only IMU data for map generation is its inability to identify the user and

information of the building around the navigator.

The limitations of GPS and IMU creates a need for an effective mechanism capable of

capturing indoor characteristics in real-time. However, acquiring information alone is not

sufficient, it needs to be managed as well. Hence, the author decided to research on a model

that is capable of capturing indoor characteristics and is updated in real-time. The author

believes that the framework would facilitate indoor navigation for the vision impaired.

1.5 Problem Statement

In the recent past, navigation within buildings were facilitated by the use of 2-D maps.

However, the information presented in these maps are insufficient for the vision impaired as

they do not contain detailed information on the physical arrangement of objects. Therefore,

additional details such as the location of doors and staircases should be provided to ease

navigation.

5

Furthermore, indoor environments are changing constantly as they undergo frequent object

movements and partitioning. Therefore, collecting data in real time is essential in maintaining

the accuracy of indoor maps. According to past literature and other research contributions [15,

16], it is important to gather real-time data to a centralized location.

Crowdsourcing is the practice of engaging a crowd to obtain required services, ideas, or

content online [17]. The availability of many mobile devices with a variety of sensors in a

given environment enable an individual to converge the data and filter them according to the

nature and requirement of the scenario. Further, as an added advantage for the proposed

research contribution, the crowdsourced data can be used to create a framework to produce a

real-time indoor map.

The information obtained from crowdsourcing can be used to provide guidance on navigation

within a building. Digital storage could play a major role in rendering and storing digital

information in an optimized manner. Due to the complex structure of indoor spatial

environments, navigation has become difficult even for sighted individuals. Therefore,

identifying and tracking the changes of a location and storing them in a database has become

an integral part of map generation.

The crowdsourced data needs to be stored, retrieved, updated and removed. In order to obtain

the maximum use of the crowdsourced data, it needs to be managed efficiently. Therefore,

Database optimization and fine-tuning methods are used to ensure the accuracy and efficiency

of the data operation process.

1.6 Contribution and Significance

The findings of this research contribute to the welfare of the vision impaired. Articles, web

site contents and journals based on surveys [9, 10, 11] indicate that most individuals of the

modern society utilize mobile devices to make their lives easier. Statistically, 4.43 billion of

the world’s population are mobile phone users [18] which include both sighted and vision

impaired users. Most of the mobile devices include inbuilt cameras that have the ability to

capture and process images which could be used to extract important characteristics within an

indoor environment.

6

The volume and variety of indoor data is increasing at a significant rate. The raw data collected

from the environment can be stored as meaningful relational data inside the database schema,

which can be implemented and tested accurately. The schema itself has the capability of

generating a real-time map after filtering the required data.

The significant characteristics of the research project are listed as follows:

 Collect, store and filter crowdsourced data while arranging them in a relational

schema, in order to feed them to the centralized system.

 Develop “Accessible Building Information Model (AccessBIM)” which is a

relational database that acts as the main component of the central system for real-

time map generation. AccessBIM database is used to store indoor building features

to facilitate real-time indoor navigation for the vision impaired.

 Optimized databases have been used to generate real-time maps whilst the

capability of the schema design and its applicability for real-time indoor navigation

was evaluated using a simulation. This thesis presents a database optimization

algorithm for AccessBIM that reduces the query execution time with the support of

indexing, query re-writing, schema redesigning and “BIMcache”. Reduced query

execution time is vital for exchanging information in real-time so that a map of

unfamiliar structural environments could be generated to facilitate indoor

navigation for the vision impaired. Database optimization leads to faster processing

of the query, lesser stress on the database, less consumption of memory and

efficient use of the database engine.

Figure 1.1 illustrates the component diagram of the research project. The diagram

identifies suppliers, inputs, processes and outputs as well as the customers of the

project in order to clearly signify the research contribution. Sighted individuals, as

well as vision impaired individuals who intend to support the real-time map

generation process, are identified as suppliers. Suppliers collect and provide inputs

such as video streams, IMU data and localization information to the centralized

system. AccessBIM model stores the data and processes them in an optimized

manner while providing efficient data retrieval. The output of the process is a real-

7

time map that contains the most recent environmental characteristics of a specific

indoor environment. Vision impaired individuals are the customers who gain the

benefit from the generated map.

Figure 1.1: Research component diagram for AccessBIM model

1.7 Assumptions

The AccessBIM framework developed for the purpose of indoor navigation is based on image

processing and IMU data [13] collected via navigators’ mobile devices while they walk within

the buildings. The use of IMU data with the support of GAIT analysis [19] and image

processing [20] for map generation were conducted by other researchers of the same research

group. This research assumes that the parameters obtained via GAIT analysis and image

processing can be used to generate the AccessBIM database for which the data should be

connected to the AccessBIM database via an API through the internet.

Here the data from IMU and video streams are collected and processed prior to being received

by the AccessBIM. Therefore, the simulator used for the map generation process is built

8

according to the proposed outcomes of GAIT analysis and IMU based research work carried

out by other members of the group.

The author assumes that whenever the AccessBIM database collects and stores spatial data of

the indoor environment it is capable of generating an indoor map in real-time that is equivalent

to the actual environment with the aid of database optimization.

1.8 Thesis Outline

This thesis is organized as follows; Chapter one describes the importance and motivation

behind implementing an indoor navigation system for vision impaired individuals while

chapter two describes the background of problems related with existing solutions and their

drawbacks. Test framework and the stages of implementation are described in chapter three.

Algorithmic implementation to obtain intended results are described in chapter four while the

results of the test cases implemented in the simulation environment are discussed in chapter

five. The evaluation of the AccessBIM framework together with a discussion on results is

presented in chapter six. The last chapter is dedicated to the findings of the research and future

work.

9

 Chapter 2 – Background and Literature Review

2.1 Chapter Overview

This chapter discusses and compares existing solutions and methods to overcome difficulties

in indoor navigation. Section 2.2 discusses the social and technical aspects of vision impaired

mobility. Section 2.3 recognises and explores existing solutions for indoor navigation and map

generation. As mentioned previously, the database plays an important role in the map

generation process, hence section 2.4 describes the existing real-time databases and

optimization mechanisms. Section 2.5 discusses the object relational implementation while

section 2.6 summarizes the advantages and disadvantages of real-time map generation, and

database optimization models. Section 2.7 describes the author’s contribution towards the

research project while section 2.8 concludes the chapter.

2.2 Vision Impaired Mobility

2.2.1 Social Aspect of Vision Impaired Mobility

Most of the vision impaired individuals find it difficult to navigate through unfamiliar indoor

and outdoor environments [21]. The results of the survey done by Reginald G. Golledge et.al.

[22] indicated that knowing the current location, identifying nearby features, and obtaining

guidance on turns and stops are the most difficult information to obtain as a vision impaired

individual. Difficulties in navigation may cause stress and anxiety [23], which may lead the

vision impaired individuals to avoid leaving home or visiting complex spatial environments

such as shopping malls, without assistance [24].

In the recent past, navigation within buildings were facilitated by the use of 2-D maps created

through Computer-Aided Design (CAD) applications. However, the information presented in

these maps are insufficient for the vision impaired as they do not contain detailed information

on the physical arrangement of objects [4]. Therefore, details such as the location of doors,

staircases and slopes, etc should be provided to ease their navigation.

It is a generally accepted fact that human beings including the vision impaired individuals

desire to travel from one place to another. While some may wish to travel independently,

10

certain vision impaired individuals may wish to be brought everywhere. Accordingly, the

vision impaired would experience moving in an environment, which has various objects and

obstructions [25]. According to the Society for Accessible Travel and Hospitality, a vision

impaired individual needs exceptional facilities such as special air, rail, bus and hotel

transportation as they find it difficult to navigate without a cane or a guide dog [26].

Some individuals might suffer from total blindness while others might be affected later in life

due to a health condition such as diabetes or an accident. Either way, all parties require

different kinds of support to navigate as they have different views of the surrounding

environment. There are numerous ways available to support the mobility of a vision impaired

individual and the simplest device known is the long white cane that had helped millions of

vision impaired personnel to find their way.

However, the manual white cane has major drawbacks such as its inability to identify the

distance between an obstacle and the navigator which was later mitigated by the introduction

of the smart cane [28]. Since the white cane is one of the first successful physical devices

implemented to aid vision impaired individuals in their day to day navigational process, it has

also become the starting point of the intervention of electronic based ICT technologies to

achieve the same purpose. Thus, the white cane inspired the assistive technology research

community to invent electronic devices that would aid vision impaired individuals in an

efficient manner.

Since it is important to individually identify a vision impaired navigator, based on the

categories of vision impairment, table 2.1 describes the common eye diseases and their effect

on vision and education [27].

Table 2.1: Common Eye Conditions, Corresponding Impact on Vision, And Related Educational/reading
Considerations [27].

Eye condition Effect on vision Educational/reading

consideration

Achromatopsia Limited or no colour vision Support for eccentric viewing

11

 Colours may be seen as
shades of grey

 Loss of detail

 Use high contrast materials

 Reduced or diffused lighting

Albinism Decreased acuity

 Photophobia

 Increased sensitivity to
glare

 High refractive error

 Magnification (e.g., hand-held
magnifier, electronic
magnifier, screen enlargement
software, telescope, etc.)

 Close viewing

 High contrast materials

 Lighting from behind

Cataracts
 Reduced visual acuity

 Blurred vision

 Reduced colour
discrimination

 Photophobia

 Support of any prescribed
lenses

 Magnification (e.g., hand-held
magnifier, electronic
magnifier, screen enlargement
software, telescope, etc.)

 Enlarged printed materials

 Close viewing

Diabetic

Retinopathy
 Increased sensitivity to

glare

 Lack of accommodation

 Floating obstructions in the
vitreous

 Adequate high-quality lighting
(e.g., lamps with rheostats and
adjustable arms)

 High contrast materials

 Magnification (e.g., hand-held
magnifier, electronic
magnifier, screen enlargement
software, telescope, etc.)

 Training in the use of auditory
materials due to loss of vision
and tactile sensitivity

12

 Training in the use of speech
recognition input software

Glaucoma Fluctuating visual
functioning

 Field loss

 Poor night vision

 Photophobia

 Difficulty in reading

 Difficulty in seeing large
objects presented at a close
range

 Support use of sunglasses,
visors, or hats in bright
sunlight and bright lighting
indoors

 Allow time for adjustment to
lighting changes

 Reduced glare

 Adequate lighting (e.g., lamps
with rheostats and adjustable
arms)

 High contrast materials

Table 2.2 gives an overview of some common issues faced by students who suffer from total

blindness and partial blindness, based on an interview conducted with the Ceylon Employees

Federation for which the questions are stated in appendix E. The aim is to understand the

perspectives of vision impaired individuals with different impairment conditions as to how

they face difficulties in indoor navigation.

Table 2.2: Difference between totally blind and partially sighted navigators

Totally Blind Partially Sighted

Unlikely to use a printed map without

some adoption

Can manage navigation with the support

of a printed map to a certain extent

Likely to have particular mobility

difficulties

Able to use low-vision aids in unknown

environments

Unable to identify obstacles without the

support of a cane or guide dogs

Can identify objects and avoid or accept

them (able to see objects with bright

colours or as shadows. Sometimes able to

13

2.2.2 Technical Aspect of Vision Impaired Mobility

There are numerous ways available to support the mobility of a vision impaired individual.

The simplest device is the long white cane that helped millions of vision impaired personnel

to find their way. However, the manual white cane has major drawbacks such as its inability

to identify the distance between an obstacle and the navigator later mitigated by the

introduction of the smart cane [28]. Thus, the white cane inspired the assistive technology

research community to invent electronic devices that would aid vision impaired individuals in

an efficient manner. The main objective of modern assistive devices is to enhance the

navigation assistance provided to vision impaired individuals [29].

One of the most popular electronic assistive equipment for the vision impaired is the laser

cane [8]. It uses invisible laser beams to detect obstacles, drop-offs or other similar risks in

the surroundings and produces a specific audio signal as an output to inform the user about

the distance to the obstacle or the height of the drop-off. The laser cane has three different

audio signals to indicate specific distance within a range of 12 feet. Furthermore, it provides

safe navigation facilities to deaf-blind navigators by generating a vibration in a part of the

cane’s handle when there is an obstacle in front of the user. However, the laser cane is known

to have its own drawbacks. It is relatively expensive compared to other indoor navigation

facilitators whilst its use in social gatherings and public transportation is difficult.

read the name board/road signs with some

effort)

Depend on listening to instructions

rather than observation

Do not depend on listening to instructions

but is able to get a slight view of the

environment to get an idea on how things

work.

14

Figure 2.1: Laser Cane (Taken from: https://www.photonics.com/a16107/Lasers_Assist_the_Blind [30])

Similar to the laser cane, the smart cane is also a portable device equipped with a sensor

system that consists of a vibrator, water detector and a buzzer to guide vision impaired

individuals in their navigation [31]. The smart cane provides audio guidance to the speaker

based on the information obtained from the environment. This device is also beneficial for

individuals with aural impairment as it consists of a special vibrator glove that provides a

specific vibration for each finger with each one having a different meaning. The smart cane is

portable and can be bent easily which makes it convenient for use. Furthermore, it is low in

cost compared to a laser cane. However, the smart cane does detect water unless it is 0.5 cm

or deep which stands out as a major drawback of the smart cane [31].

Figure 2.2: Sonic pathfinder (Taken from: https://abledata.acl.gov/product/sonic-pathfinder [32])

15

Sonic path finder shown in figure 2.2 is another well-known electrical device which will be

mounted on the head of a user [8]. It uses an ultrasonic sensor to identify obstacles that are located

in front of the user’s path. The device uses eight musical tones to indicate the significant distance

to different objects. The user can hear tones via the device’s headpiece. The sonic mobility device

is appropriate for outdoor use. However, it may not be used in places with extremely loud noise as

the user may not be able to hear the changes in musical tones. Thus, this device is recommended

to be used with a cane or a guide dog [8].

Figure 2.3: Handheld mobility device (Taken from: http://www.gdp-research.com.au/minig_1.htm [33])

Similarly, the handheld mobility device discussed in [8] is a small device that supports the

navigator to determine obstacles around him with the aid of variations in vibration. Figure 2.3

illustrates a sample handheld mobility device. It produces the level of vibration depending on

the distance of the object. For instance, it produces a weaker vibration for a relatively distant

object and stronger vibration to a closer one. However, the handheld mobility device is

recommended for use with the help of a white cane or a guide dog.

Figure 2.4: Sample GPS tracker (Taken from: http://www.assistiveit.co.uk/VI-Products/Portable-

Devices/Trekker-Breeze-GPS [34])

16

Global positioning system (GPS) is the common way of identifying one’s location. GPS

devices as shown in figure 2.4 supports vision impaired individuals with their mobility. They

use portable GPS devices to decide and verify the correct route while walking or riding a

vehicle. The device includes a screen reader to hear the navigation information or braille

display to read the navigation information.

All the above-mentioned devices support vision impaired individuals to travel independently,

which directly supports their morale and self-improvement. Laser canes, sonic mobility

devices and handheld mobility devices are recommended for the purpose of detecting

obstacles while the GPS tracker is used to obtain the user’s approximate locations. However,

these devices are incapable of generating an indoor map due to poor localization. In addition

to the above-mentioned devices, there has been research conducted by scholars to facilitate

vision impaired mobility. Some of the well-known methods include Visible Light

Communication (VLC), wireless technologies such as Wi-Fi positioning systems, Bluetooth

low energy-based “iBeacon”, Radio Frequency Identification (RFID) and image processing

[35, 36, 37].

Vision impaired mobility skills may be augmented by developing an appropriate real-time

database, optimizing and fine tuning the database and by generating a detailed map to guide

the vision impaired individuals in an indoor environment.

Orly Lahav [38], has examined the past 15 years of research and development (R&D) on the

role of virtual environments (VEs) as an Orientation and Mobility (O&M) aid [38] to enhance

skills and train people who are vision impaired. The paper highlights weaknesses and strengths

of using VE systems as O&M aids for people who are vision impaired. Among the identified

strengths are, its design, and the availability of a flexible and adaptive learning or

rehabilitation program for each client depending on their needs, hence allowing vision

impaired individuals to participate in O&M activities without fear. However, certain

rehabilitation centres and schools are unable to afford virtual reality mobility aids due to their

expensive nature. Moreover, the difficulty in managing these virtual reality aids due to their

immense size makes it impossible to be used outside a lab. However, the results of this study

have the potential to influence future R&D in this field.

17

Since majority of the virtual environments are difficult to implement and use outside a lab,

Yong Wang et al. has introduced a mobile robot to overcome the problem. Yong Wang

Weidong and Chen Jingchuan Wang’s paper on “Map-based localization for mobile robots in

high-occluded and dynamic environments" [40] proposes a localizability-based particle

infiltering localization algorithm for mobile robots to maintain its accuracy in the high-

occluded and dynamic environments with moving objects. They have implemented the

proposed algorithm in a campus cafeteria and a metro station using an intelligent wheelchair

to evaluate the capability of the application in real-time.

The proposed algorithm is to be tested in a social welfare home in future to aid elderly and

the differently abled in their daily lives. The experimental results indicate that it is necessary

to consider the influence of dynamic obstacles and the previous map information during

localization. The paper also concludes that the algorithm is a real-time algorithm that can

maintain an accurate and robust position in the high-occluded and dynamic environment. Even

though the designed wheelchair supports vision impaired or differently abled individuals to

navigate without other’s aid; it is a high-cost device which many disabled individuals find it

challenging to afford.

Having a separate device to assist mobility is not feasible for majority of the vision impaired

individuals as it incurs an additional cost to their daily expenses. Therefore, Jesus Victor et al.

presented a paper on “Indoor navigation with smart phone IMU for the vision impaired in

university buildings” [14]. It discusses an indoor navigation solution for the vision impaired

in situations where GPS, Bluetooth or Wi-Fi signals are unavailable. The solution uses IMU,

compass and barometer of the smartphone to facilitate navigation.

The paper further demonstrated how IMU sensors are used along with employing a spoken

language to ease mobility (e.g. next corridor to the left; at the end of the stairs turn right, turn

left, etc.) As a result, it was possible to guide the visual impaired, few hundred of meters by

only using sensors of a smartphone under conditions such as the vision impaired individual

strictly adhering to the guidelines provided. The major disadvantage of this research is its

inability to track changes in real-time which causes the system to generate inaccurate results.

18

2.3 Indoor Navigation and Map Generation

2.3.1 Algorithms and Frameworks

Research conducted on converting a printed or drawn map into machine-readable format

provides immense support to identify what elements should be used for real-time map

generation. Ashley Beamer [41], attempts to understand issues pertaining to the classification

of maps in archives and libraries. An investigation on metadata formats, such as Machine

Readable Cataloguing (MARC21), Encoded Archival Description (EAD) and Dublin Core

with Resource Description Framework (RDF), demonstrates how the specific map data can

be stored. The practical repercussions of this work indicates the requirement for map-retrieval

systems that have the capability to store metadata formats essential for retrieval. Future map

catalogers should secure appropriate systems for retrieval while specifically including

geographical location information such as numerical co-ordinates.

Tanaka et al. paper on “Enhanced view based navigation by mobile robots using front and rear

vision sensors” [42], also provides insight into current issues in file formats used for storing

map data. It also investigates the existing map-friendly systems used by libraries and archives

since storage of real-time map data in metadata format optimizes search capacities. The high

cost involved in using mobile robots for data collection makes it inappropriate to be used in

the current study.

Chua Ching et al. [43], in their paper on “Mobile Indoor Positioning Using Wi-Fi Localization

and Image Processing”, broadly discussed a two-phase framework that utilized two algorithms

parallel to compensate for the other’s weakness. The algorithms used in this study used Wi-

Fi Localization and image processing techniques where Localization was obtained via Wi-Fi

using routers to determine the precise location of the user. Furthermore, image processing was

applied to improve the accuracy of the anticipated location. Techniques such as image

masking and low-resolution imagery were also integrated to improve speed without

jeopardising accuracy. The tests have shown that the framework had better speed and accuracy

in comparison to using these algorithms individually, and it surpassed the accuracy of a

number of current indoor positioning systems. Further analysis also allowed determining the

limitations of the framework, and suggestions were raised for additional refinement.

19

Limitations of the research include being able to collect only a few points in an area difficult

to reach which may lead to poor localization.

2.3.2 Device Based Solutions

P. Benavidez, M. Muppidi et al.’s [44] paper on “Cloud-Based Real-time Robotic Visual

SLAM”, presents a system and algorithm to reduce computational time and storage

requirements for feature identification and matching components of Visual Simultaneous

Localization and Mapping (VSLAM) by outsourcing the processing to a cloud that consists

of a cluster of compute nodes. The presented solution utilizes a camera-mounted robot to take

pictures of the immediate surroundings periodically in order to extract key features for map

generation. By comparing features of prior images taken of the same environment by the

robot, the location can be determined. The novel approach was compared to the prior one

where only the local resources of the robot were used. The author identified that the increase

in throughput was made possible with the new processing architecture. The major strengths

of the system are, its ability to utilize computationally expensive algorithms without directly

affecting robots onboard and the capability to compute functionalities and use captured images

to generate an accurate map. Higher accuracy can be achieved by placing a larger number of

robots inside the building. However, deploying a larger number of robots for data collection

is infeasible as it incurs a high cost.

The paper by J. Tang et al. on “Fast Fingerprint Database Maintenance for Indoor Positioning

Based on UGV SLAM” [16] presented a solution that uses an Unmanned Ground Vehicle

(UGV) platform called NAVIS which is capable of rapidly updating the fingerprint database

using indoor fingerprint information collected by employing several Signals of Opportunity

(SOP) sensors. Furthermore, the magnetic field intensity was measured using a digital

compass and a light sensor was used for measuring the intensity of light. A smart phone was

used to collect the access point number and the Received Signal Strength Indexes (RSSI) of

the pre-installed Wi-Fi network. An indoor map was generated using the NAVIS platform

where the SOP fingerprint database was interpolated and updated in real-time. The efficiency

and effectiveness of the proposed solution was evaluated using field tests for which the results

indicated that the fingerprint database could be rapidly created and updated with a higher

20

sampling frequency (5Hz) and denser reference points. Despite J. Tang and his team were

able to build an accurate map based on self-developed UGVs, the approach would be costly

to implement in this research as the author aims to develop a solution that is affordable to

everyone.

Chenglu Wen, et al.’s [15] paper on “An Indoor Backpack System for 2-D and 3-D Mapping

of Building Interiors”, illustrates an indoor backpack mobile mapping system that is mainly

designed for non-Global Navigation Satellite System (GNSS)/GPS. The system provides 2-D

and 3-D maps for indoor environments by introducing 6-Degree of Freedom (DOF)

localization. In the experiments, they discovered that the proposed Extended Kalman Filter

(EKF) based method fusing 2-D laser scanning and IMU data, reduces error when the system

is moving. Using IMU results of the building, for 3-D point clouds provide a more accurate

3-D map. Since this is a backpack, the navigator has to wear it while navigating, which the

vision impaired individuals may find it difficult to handle without others’ interaction. Another

major limitation of this research would be its inability to crowdsource the collected 2D and

3D data.

In the paper “Enhanced View-based Navigation for Human navigation by Mobile Robots

Using Front and Rear Vision Sensors” [42] M. Tanaka et.al, proposes an enhanced view-based

navigation which is robust against featureless scenes using front and rear vision sensors. The

solution utilizes two vision sensors in front and the rear of a mobile robot to have the

advantage of navigating back and forth with a single recording. The solution enables human

navigation in an actual environment and identify path heading for lateral wall structures.

The major concern for vision impaired individuals is that assistive technology solutions for

them should be simple and easy to use as they may find it difficult to handle mobile robots or

bulky backpacks.

2.3.3 Mobile Application Based Solutions

The article of J. Dhruv et al. [45] on “Design and User Testing of an Affordable Cell-Phone

based Indoor Navigation System for Vision impaired” presented a cell-phone based indoor

navigation system that is inexpensive and easy to use. The system includes a waist-worn user

21

module in addition to wall-mounted infra-red sensors and a mobile app to connect with the

users. The accelerometer and infra-red sensors facilitate navigation for vision impaired

individuals by locating their position in the sensor-network. As the user navigates, his current

position will be updated and the navigation information would be converted from text-to-

speech through the mobile application.

In order to check the accuracy, the system was implemented on several floors of a campus

building and user-trials were conducted in a simulated scenario where majority of the users

agreed that they were able to reach the desired destination successfully. However major

drawbacks of the system include the time taken to generate navigation information through

the app and the data collected via infra-red sensors not being reliable as the performance of

the infra-red frequencies degrade with the increase in distance [46].

2.4 Real-time Databases and Optimization

2.4.1 General Concept

Database management systems facilitate the storage of data in a consistent and secure manner

thus facilitating persistent data management, secondary storage and concurrency control and

crash recovery [47]. These features ensure that transactions follow the ACID model. ACID

stands for Atomicity, Consistency, Isolation and Durability. Atomicity refers to the “all or

nothing rule” where either all or none of the information is committed while consistency refers

to having valid data within the database, which if violated will return all data to its original

state. Isolation occurs when multiple transactions running concurrently remain isolated from

other transactions while durability specifies that the committed data will not be lost, regardless

of system failure [48].

The ACID model facilitates consistent transaction processing while allowing concurrent

control. As a security measure, every action performed on the database is written on a log

before the action is made permanent in the database. Similarly, database systems also offer

different indexing mechanisms which improves the performance of the system by reducing

the amount of data that has to be read each time the database is accessed [48]. (Interested

22

readers are referred to [49] for general indexing techniques and [50] for index mechanisms

regarding spatial and temporal data).

2.4.2 Real-time Databases

A real-time database uses real-time processing to handle workload whose state is constantly

changing [50] to find out an appropriate real-time database for AccessBIM implementation.

PostgreSQL is an advanced, open-source object-relational database management system

which is standards-compliant and extensible [52]. It is among the top 10 relational database

management systems according to the DB-Engine rankings published at the end of the year

2016 [51]. The official PostgreSQL website states that there are numerous advantages [52] of

using PostgreSQL over other real-time database systems.

PostgreSQL databases are immune to over-development as there is no licensing cost

associated with the software while it also reduces the staffing cost due to lower maintenance

and tuning requirements. Furthermore, PostgreSQL databases demonstrate extreme

responsiveness in high volume environments and are equipped with high quality graphical

user interface tools.

2.5 Object-Relational Implementation

The figure 2.5 illustrates the four-quadrant view of databases [53]. The lower-left quadrant

represents applications that process simple data which do not require querying. They could

survive with the underlying operating system to acquire crucial DBMS functionality of

persistence. Standard word processing applications such as word perfect and frame maker

could be considered as examples. Applications in the lower-right quadrant are required to

process complex data but do not have the necessity of querying the data. Computer aided

design packages are an example for Object-Oriented Databases (OODBMS) in this quadrant.

The top-left quadrant is for Relational Databases (RDBMS) that process simple data but

requires complex querying. Business applications belong to the RDBMS quadrant. The last

quadrant is for applications that process complete data and have complex querying

23

requirements. Advanced database applications are recommended to use Object Relational

Database systems due to their requirements belonging to the top-right quadrant.

Figure 2.5: Four-quadrant view of the database world (Taken from: http://ecomputernotes.com/database-system/adv-

database/object-relational-database-systems [53])

According to the four-quadrant view of the database world, traditional SQL-based DBMS are

difficult to manage when dealing with complex data in application areas. [54]. The ORDB is

a hybrid concept of the RDBMS and OODBMs. It allows inclusion of data types and methods

when developing a database to enhance the ability to sort and locate a file within the database

as well as facilitating efficient data filtering.

AccessBIM model for real-time map generation was implemented as an Object Relational

Database (ORDB) due to several reasons. The need, to handle an enormous amount of IMU

data together with the use of many stored procedures and indexes are the main reasons behind

selecting an Object Relational Database despite the fact that it is complex and costly. Although

databases such as NoSQL is capable of handling large volumes of data, they lack the ability

to perform ACID transactions. The ACID model facilitates consistent transaction processing

through atomicity, consistency, isolation and durability thus making an ORDB the most

feasible database model for the AccessBIM framework.

24

2.6 Database Optimization and Performance Tuning

Fan Yuanyuan et al. paper on “Distributed Database System Query Optimization Algorithm

Research” [50], describes a newly introduced query optimization algorithm that is based on

commonly utilized optimization algorithms used in a distributed query. The designed

algorithm is capable of diminishing the amount of intermediate results by a considerable

amount, which results in reducing the network communication cost, leading to optimal

efficiency. However, this algorithm is not applicable for the author’s approach as the

AccessBIM framework does not consist of distributed queries.

P. Karthik, G. Thippa Reddy and E. Kaari Vanna's paper on “Tuning the SQL Query in order

to Reduce Time Consumption” [55], presented a novel query optimization technique that is

capable of improving the overall performance of the system by introducing lesser stress on

the database in data transmission, thus utilizing the database engine efficiently with reduced

memory requirements. However, the research does not focus on indexing strategies to further

enhance time reduction. Similarly, Lin Hong, Zhuhai, Mingda Lu and Weiting Hong on “A

Business Computing System Optimization Research on the Efficiency of Database Queries",

also discussed the performance evaluation, measurement, and business computing system

optimization based on an experimental research on the efficiency of database queries [56]

without considering the use of indexing.

Ivo Jimenez, Jeff Le Fevre et al. paper on “Benchmarking Online Index-Tuning Algorithms”

[57], outlined a performance benchmark for the problem of online index tuning without the

use of query optimization.

Steven W. Schlosser and Sami Iren’s paper [58] on “Database storage management with

object-based storage devices” discussed how object-based storage interfaces could be used to

communicate storage requirements to the storage subsystem thus making information

available to low-level optimizations. Here, the entire table is stored as a single object where

the relational schema is conveyed through attributes assigned to a specific object.

Zhan Li, Olga Papaemmanouil et al. paper [59] on “OptMark: A Toolkit for Benchmarking

Query Optimizers” introduces OptMark, a toolkit for evaluating the quality of database

25

optimizers by assessing its efficiency and effectiveness. The evaluation of optimizer

performance is distinguished from existing DBMS benchmarks based on the performance of

its underlying DBMSs execution engine.

Nicholas Roussopoulos’s paper [60] on “View Indexing in Relational Databases” describes

that the design and maintenance of a helpful database framework requires a productive way

for enhancing the logical access paths through repetitive usage patterns. According to [60],

the secondary index selection and query optimization techniques are insufficient for

optimizing a wide collection of logical access paths. However, optimal query processing

cannot be achieved through individually optimizing the queries.

Based on above-mentioned papers, the author concludes to implement a conceptual

framework using query optimization, indexing and few more approaches as listed in section

3.3.2. The use of query optimization results in faster information retrieval thus enabling the

generation of the indoor map in real-time.

The need for an efficient query execution process is generated as the AccessBIM requires to

update and retrieve data in real-time.

2.7 Contribution to the Research Project

Jayakody and Murray’s paper on “The Construction of an Indoor Floor Plan Using a

Smartphone for Future Usage of Blind Indoor Navigation” [61] presents an approach of

creating an indoor map that can be used to facilitate vision impaired indoor navigation using

smartphones. The proposed model demonstrates the ways of capturing data to generate maps

and further enhancement of the algorithm towards error correction. The key aspect is to build

an open, participatory and collaborative system through which users can contribute

environmental information using their mobile devices to address the issues involved in the

application of collaborative indoor mapping.

At present, most of the indoor positioning techniques are based on wireless LAN signals

(WiFi) which is the most common infrastructure available in any type of indoor environment.

However, this paper discusses the application of the “AccessBIM” framework in way finding

26

and data synchronization, via the generation of a real-time topological map to assist vision

impaired individuals. Furthermore, the paper also discussed the four stages of collaborative

indoor mapping. In the first stage, data is obtained via gait analysis and image processing

using accelerometers and electronic compass sensors integrated with smartphones. Then, the

footpath algorithm is utilized for navigation and pedestrian dead reckoning (PDR). PDR is the

process of calculating one's current position by using a previously determined position and

advancing that position based upon estimated speeds over elapsed time [61]. By tracking a

user's path, PDR is capable of estimating the location of a user when the starting position,

number of strides and stride length is known.

The second stage executes several sub processes such as smoothing, vertex constriction and

sphere contraction. Afterwards, the relaxation algorithm is modified for error correction. The

use of a relaxation algorithm facilitates the calculation of the estimated position and its

proposed variation by putting every vertex to its expected position. In the third stage a spatial

database was made available to store data. This database consisted of a classic navigation

graph and additional vector data of probable indoor movement traces that would facilitate the

generation of navigation directions. The objects in the database were classified into two main

categories as “immovable obstruction” and “movable obstruction”. A movable obstruction-

object could be moved here and there within the indoor environment while the immovable

obstructions were static objects. Thus, the authors proposed simultaneous localization and

mapping (SLAM) techniques to generate maps. Smart SLAM facilitates the automatic

creation and updating of indoor maps using Wi-Fi fingerprints, Wi-Fi access points installed

within buildings, as landmarks. It tracks a user's path by using an accelerometer sensor to

detect the steps and an electronic compass sensor to detect directions.

Afterwards, a bounding box file is created for each map. A bounding box file is a configuration

file that contains all the important parameters required to create a map. It should contain

general information about the floors, coordinates of the boundaries and the storage location

of the available map. In the newly proposed architecture, sensor data through image

processing and gait analysis will be collected from the external environment for map

generation [61]. The collected sensor data will then be directed to a specially designed API

27

for processing. After the accomplishment of the error correction process, the decision-making

process is initiated. The final stage facilitates the convergence of objects within the

AccessBIM using Java OpenStreetMap Editor to assist real time processing with multiple

indoor users.

Similarly, the paper also proposed a navigation algorithm that consisted of a data acquisition

and smoothing algorithm as well as a map generation and error correction algorithm. In here,

the data obtained via image processing and gait analysis is directed to a specially designed

API which invokes a special function called dataSegment(). Based on a set of predefined rules

dataSegment() function will attempt to segment the incoming sensor data into two categories

namely, temporal data and landmark based data semantics. This process is repeated until all

the sensor data is segmented and stored in the corresponding tables within the database.

Afterwards, the correctly segmented data will be retrieved from the appropriate tables for the

decision making. After the completion of the decision-making process SLAM will be used to

localize and the indoor map will be generated using “IndoorOpenStreetMaps” (IndoorOSM).

Jayakody and Murray’s paper “Proposed Novel Schema Design for Map Generation to Assist

Vision Impaired in an Indoor Navigation Environment” [62], introduces an improved schema

design that could be used to generate an indoor map based on the classification of real world

objects and their locations. Furthermore, the paper discussed the synthesis of input sensor data

communication with the K-SOAP protocol to facilitate real-time map generation with a

special cache memory incorporated in the cloud database. This paper described five major

tables and their respective relationships to address the issues involved in the application of

collaborative indoor mapping.

The five relations were: Object_info table, Label_info table, Movement_info table,

Direction_info table and Localization_info table. The Object_info table stores the object_id

projected to generate automatically, object_description, received_timestamp and the category

of the object whether it is movable or immovable [62]. The field timestamp defines the time

at which the data was received to the table as it would be an important parameter in

determining the novelty of the data in generating a real-time map. In the meantime, the

28

label_info table contains label information of different places that the user visits. It consists

of fields such as the label_name, label_image, description of the place and the time stamp.

The movement_info table contains data received via mobile phone’s sensors. It consists of the

user_id, R_value which is the user’s speed towards the object and the theta_value which is the

angle of the object respective to the user. The direction_info table contains the path

information to a particular object relative to a given user. It consists of the image_id, i_value

which is the angle of the object relative to the user and the distance. The localization_info

table contains data received through the mobile sensors in terms of X, Y and Z coordinates.

Thus, its fields include the location_id, X coordinate, Y coordinate and Z coordinate.

The K-SOAP protocol was used to upload sensor data and download the map data information

from the cloud. Similarly, a caching technology was used to keep up the communication

between the front end mobile device and backend database as well as to identify paths that are

already existing within the database, thus reducing the time of retrieving data [62].

Thus, as an extension of the above-mentioned research work the author uses an improved

version of the novel schema design together with four algorithms to facilitate the generation

of a real-time indoor map with the application of open and participatory crowdsourced data.

2.8 Chapter Conclusion

This chapter discussed the existing solutions for vision impaired mobility, indoor navigation

and map generation, real-time databases and database optimization.

The social and technical aspects of vision impaired mobility help to identify the need for a

real-time indoor map that facilitates navigation for the vision impaired. Although devices such

as laser canes, sonic mobility devices and handheld mobility devices are available, they are

only capable of identifying obstacles and the distance to the obstacles. Hence, there is a need

for a complete solution that could direct the vision impaired individuals to their desired

destination. The model introduced in this thesis is able to generate an accurate map based on

real-time environmental characteristic changes.

29

Key benefits achieved by the use of AccessBIM framework to generate an indoor map in real-

time include:

 Time saving: Data collection via crowdsourcing and IOT reduces the time in

collecting data compared to collecting data from robots.

 Less confusion: As the map is being updated regularly on the changes of the

indoor environment, it would be simple and easy to use.

 Increase productivity: The real-time map will be generated much faster due to

the use of database optimization techniques.

The AccessBIM database is capable of achieving the above-mentioned benefits due to faster

query processing, lesser cost per query and efficient use of the database engine with less

memory consumption. Indexing makes it convenient to search the required data from large

data sets while query optimization facilitates the identification of the best query for retrieving

data using minimal resources thus enabling high performance of the system via faster

processing and lesser database cost thereby increasing the performance of the real-time map

generation layer. This leads to efficient usage of the database engine with less memory

consumption as the database id generated without data duplication, while indexing and query

optimization enables faster data insertion, updation, deletion and retrieval.

Generation of real-time map depends on the data stored in the AccessBIM database. Hence,

it is necessary to employ appropriate data optimization mechanisms to retrieve data within

few seconds. Existing research and studies on database optimization are focused on query

optimization as well as indexing. However, most of them focus on either query optimization

or indexing. The improved database schema introduced in this research is able to generate a

highly optimized database with the support of both query optimization and indexing. Apart

from query optimization and indexing, the research also focuses on query rewriting and

schema alterations to further enhance database optimization.

30

 Chapter 3 – Framework, Database and Test Environment
Design and Implementation

3.1 Chapter Overview

This chapter discusses the framework that leads to the database design, its implementation

and finally, testing the environmental design that was used to develop the solution. Section

3.2 discusses the experimental design objectives and the research questions while section 3.3

describes the implementation phases, methodology, database design, optimization techniques

and the AccessBIM framework in detail. Section 3.4 describes the real-time map generation

process while section 3.5 summarizes and concludes the chapter by discussing the

methodology that gives effective, procedural guidance to generate an indoor map by making

use of the data stored within the AccessBIM.

3.2 Experimental Design Objective

The research questions stated below are related to establishing an efficient, optimized data-

structuring framework with the support of a navigation simulator by exploring what type of

tools and stored procedures are required to generate a real-time map for vision impaired

individuals. The key aspect of the chapter is established as follows:

 How are the indoor structural characteristics stored, optimized and used to generate

a real-time map of an indoor environment?

The focus of this research is to adopt crowdsourced data related characteristics in an indoor

environment, to generate a real-time map that assists vision impaired individuals in their

navigation.

31

3.3 Implementation Phases of the Research Work

This research work presents an experimental technique for developing a solution that gives

effective, procedural guidance to construct a data structuring framework that facilitates the

generation of an indoor map by making use of the data stored inside the AccessBIM database.

Major phases of the research procedure are illustrated in figure 3.1.

Figure 3.1: Main phases of AccessBIM model Implementation

3.3.1 Methodology of Framework Implementation

This thesis introduces the AccessBIM framework of environmental characteristics, proposed

by the author to store indoor building features that facilitates real-time indoor navigation for

the vision impaired. AccessBIM stands for Accessible Building Information Model that eases

accessibility of the vision impaired as it aids the management of indoor spatial data in a digital

format to assist vision impaired individuals to independently access unfamiliar indoor

environments. The AccessBIM framework comprises of a layered architecture where each

layer performs a specific role within the application. The use of layered architecture enables

responsibility to be shared among the layers in addition to generalizing the work that needs to

be done to satisfy a specific user request. Besides, frameworks that use layered architecture

are easy to develop, test, govern, and maintain [63].

32

Figure.3.2 illustrates the AccessBIM framework with its five layers namely; Data Collection

Layer (DCL), User Interface Layer (UIL), Function Layer (FL), Database Optimization Layer

(DOL) and the Backend Layer (BL). The data collection layer collects crowdsourced data via

IMU, sensors and IoT enabled devices. Next, the collected data will be sent to the Database

through the API in the User Interface layer. The functional layer consists of four sub processes

namely: initiating the database connection, calling for function, returning the function call and

terminating the connection with the database. The queries are optimized and indexed in the

Database optimization layer while the backend layer contains the schema design and stored

procedures that filters only the required data to generate the map.

33

Figure 3.2: AccessBIM Framework

34

3.3.1.1 Data Collection Layer (DCL)

Nowadays, smartphones and mobile devices are equipped with different tools such as

cameras, compasses, light sensors etc. The aim of the data collection module (DCL) is to

collect crowdsourced data that are inputs to the system.

Environmental details could be collected using mobile sensor data. Accelerometers provide

details on acceleration force in ms-2 including the force of gravity. Gyroscopes provide the

rate of rotation in radians per second for each of the three physical axes. Additionally, modern

buildings equipped with sensors, wireless devices and IOT enabled equipment could be used

as sources of data collection.

In addition to acquiring data through sensors, wireless devices and IoT enabled equipment,

the author assumes that any form of crowdsourced data collected through PGM and GAIT

analysis could also be added to the AccessBIM database, as PGM and GAIT analysis were

utilized to acquire environmental data by other researchers of the same research group.

Image processing data defines objects and their details using a video subsystem. N.

Rajakaruna et al. [20] discussed the possibility of using an image-based object detection

algorithm on an object’s edges and corners rather than its distinctive characteristics such as

color and texture. A Probabilistic Graphical Model (PGM) was used for extracting features

and a generic geometric model was built to detect objects by coalescing edges and corners.

Additionally, supplementary geometric information was also utilized to differentiate objects

with similar size and shape (e.g., bookshelf, cabinet, etc.).

The collection of indoor environmental data also includes data collected through gait analysis

[19]. The gait analysis system consists of a sensor unit placed on smartphones, which provides

the direction and distance to an object in relation to the source of data collection, as “R-Value”

and “ Value” which is then stored in the AccessBIM database. N. Abhayasinghe et al. [19]

have discussed the possibility of using the data of, a thigh mounted internal measurement unit

(IMU) to detect the movement of the thigh, and the number of steps accurately.

35

Figure 3.3: Collecting data through GAIT Analysis

Figure 3.3 illustrates how GAIT Analysis measures the “R-value” and the “ Value” as a user

navigates within an indoor environment from starting point A to destination B. The collected

data could be used to measure the walking distance, and direction with angle of movement of

the vision impaired individuals which is later added to the movement_info table to be used in

map generation.

The use of crowdsourcing facilitates data collection through the use of existing devices.

However, the use of crowdsourcing in data collection has its own limitations such as there can

be no guarantee that the results of crowdsourcing will be of sufficient quality for map

generation as there could be variations in output due to limited signal strength and device

diversity. Furthermore, the data collected via crowdsourcing needs to cleared out to obtain the

most relevant and recent data to build the real-time indoor map as per the user’s requirement.

Besides, crowdsourcing being the practice of engaging a crowd to obtain content online [17]

it would lead to the capturing of confidential environmental information that require to be

treated securely.

36

3.3.1.2 User Interface Layer (UIL)

Figure 3.4: User Interface Layer

The AccessBIM database is implemented in a cloud environment. Hence, the suppliers of

crowdsourced data could send data to the database via the cloud as well as retrieve the

generated real-time indoor map through the Application Program Interface (API). API is the

key element, which is responsible for handling and controlling the overall functionality of the

system including the connectivity with the database. The API primarily consists of two

components, namely DB connector and the API functions.

API includes a database connector (Open Database Connectivity (ODBC), Java Database

Connectivity (JDBC)) and the API functions (insert, update and delete) to send and receive

required information, to assist vision impaired individuals in an unknown environment via their

mobile devices. Since the AccessBIM model is implemented within a cloud environment, it

ensures better performance and availability together with greater flexibility and scalability to

provide an accurate and continuous service in map generation for vision impaired individuals.

3.3.1.3 Functional Layer (FL)

The functional layer is the main connectivity module which takes the responsibility of

connecting the user with the database optimization layer inorder to utilize the AccessBIM

database as the back end.

AccessBIM

37

Figure 3.5: Process of functional layer

As shown in figure 3.5, the API in the mobile phone initiates the connection with the database

through a function call which is received by the functional layer and the AccessBIM database

respectively. The database responds through a function return thereby terminating the

database connection.

3.3.1.4 Database Optimization Layer (DOL)

The insertion, updating, deletion and retrieval of data could be delayed due to the high volume

of data entries exchanged between the users and the system, thus slowing down the process

of map generation. Hence, the Database Optimization layer in the AccessBIM model utilizes

query optimization techniques, to reduce the time of query execution. The main role of this

layer is to fine tune the database through indexing, caching and profiling, to improve

performance in terms of reduced, database selection time, query optimization time and faster

retrieval of stored information.

3.3.1.5 Backend Layer (BL)

The backend layer is the core of this research project. The backend layer is divided into two

sub-layers namely the storage sub-layer and the real-time map generation sub-layer.

Response
Response

38

a) Storage Sublayer

The storage sub-layer has the ability to store, processed and optimized data as a dataset that

contains inter-related tables after normalization, anomalies and redundancies.

b) Real-time Map Generation Sublayer

The real-time map generation layer facilitates generating a map related to most recent

characteristics in an indoor environment. The data collected through the API is stored inside

the AccessBIM model after being successfully optimized. Optimized queries contribute in

obtaining accurate data from the AccessBIM model to generate a real-time map when

requested by a vision impaired individual.

3.3.2 Database Designing Approach

3.3.2.1 Database Design

The ER diagram (Figure 3.6) illustrates how the database schema organizes tables to store

indoor data. At the beginning of the real-time indoor map generation research, the database

design was based on object, label, direction, movement and location information of the user.

39

Figure 3.6: ER Diagram with Table relation

However, the discussion with the vision impaired employees of ‘The Employers’ Federation

of Ceylon’ implied that there should be a way of storing floor details, building details and

paths available with their starting points and end points in order to generate an accurate map.

Hence, the entities and attributes to build the ER diagram were identified from an interview

conducted with vision impaired individuals at “The Employers' Federation of Ceylon”. The

questions used in the interview are available on Appendix E. Figure 3.7 illustrates the

complete relational schema for building the AccessBIM database based on user requirements

identified in the set of interviews conducted with the vision impaired individuals of EFC.

40

Figure 3.7: Schema Design with relations

41

The relational schema in figure 3.7 represents entity relationships with the primary and foreign

keys of the tables in the AccessBIM database, as mentioned below.

a) Registration table

Table 3.1 describes the columns and rows of the registration table. It has ‘User_id’ as an

integer type master key, which is projected to generate automatically by the schema. It is

followed by user details such as First name, Last name, Email and Password. ‘User_id’ acts

as a foreign key to the path_history table’ to identify each user separately when navigating.

Table 3.1: Data table of registration

User_id First_name Last_name Email Password

Column description:

User_id: Primary key. A unique entry to identify each user

First_name: String type tag to store the user’s first name

Last_name: String type tag to store the user’s last name

Email: String type tag to store the user’s email address

Password: String type tag to store the user’s password

b) Building_Info table

The ‘Building_Info table’ (Table 3.2) contains information about the building. It consist of

two columns to store the ‘Building_id’, which is the primary key and the ‘Building_name’.

The ‘Building_id’ also acts as a foreign key to ‘Floor_info table’ to facilitate the identification

of floors uniquely. The ‘Building_name’ will be filtered accordingly, after the video streaming

data of the building is processed. (i.e.: When the user goes through the door of the building,

it will be recorded in the mobile device. If the entrance door contains the name of the building,

it could be filtered out and added to the ‘Building_name’ column)

42

Table 3.2: Data table of Building_info

Column description:

Building_id: Primary key. A unique entry to identify each building

Building_name: String type tag to store the name of the building.

c) Floor_info table

Table 3.3 contains floor information about each floor within a building. It contains three

columns to store ‘Floor_id’, which is the primary key, the ‘Building_id’ and the ‘Floor_name’.

‘Building_id’ is a foreign key from ‘Building_info table’ so that buildings could be identified

uniquely. ‘Floor_name’ will be filtered out after processing the video streaming data of the

floor information, not immediately but accordingly. (i.e.: When the user enters a particular

floor, it will be recorded in the mobile device of the navigator. If the entrance door contains a

label of the floor name it could be filtered and added to the ‘Floor_name’ column). ‘Floor_id’

is a foreign key to the ‘Xml_info table’. ‘Floor_id’ together with the ‘Building_id’ acts as a

foreign key to ‘Path_history_info’, ‘Object_info’, ‘Label_info’ and ‘Wall_info’ tables to

recognize building and floors.

Table 3.3: Data table of Floor_info

Floor_id Building_id_fk Floor_name

Column description:

Floor_id: Primary key. A unique entry to identify each floor

Building_id_fk: Foreign key, which refer to Building_info table

Building_name: String type tag to store the name of the floor.

Building_id Building_name

43

d) Xml_info table

The ‘Xml_info table’ (Table 3.4) stores information such as the name and value of each floor

in terms of XML (Extended Markup Language). Auto incremental ‘Xml_id’ is the primary

key of the table. ‘Object_name’ stores the floor name while the ‘Object_value’ column stores

the floor details, as XML values. After collecting and organizing floor data via IMU and video

stream data, the data can be converted into XML format and stored inside the ‘Xml_info

table’. Storing data in XML format reduces the time of retrieving floor information from the

database.

Table 3.4: Data table of Xml_info

Xml_id Object_name Object_value

Column description:

Xml_id: Primary key. A unique entry to identify each floor

Object_name: Floor name in XML format

Object_value: Floor details in XML format.

e) Path_history_info table

Table 3.5 named as the ‘path_history_info’ is used to store details about the source and dest

ination. It contains columns such as ‘Path_history_id’, ‘Floor_id_fk’, ‘Building_id_fk’,

‘User_id’, ‘Starting_point’ and ‘Ending_point’. ‘Path_history_id’ is the primary key that

indicates each distinct path within the given source and destination. In addition, it acts as a

foreign key to the ‘Movement_info table’ to track user’s navigation in a specific path.

‘Floor_id_fk’ and ‘Building_id_fk’ are foreign keys from ‘Floor_info table’ while the

‘Building_info’ table figures out the location of the path. ‘User_id’ is a foreign key from the

Registration table to identify the specific path of each user in navigation. ‘Starting_point’

stores details of the source while the ‘Ending_point’ stores details of the destination. Details

on the Starting point is captured via localization information as vision impaired individuals

44

start their journey while the ending point column is auto-filled through the processing of real

time video stream data as the navigator ends his journey. The ‘Achieve’ column tracks

whether the user successfully reaches the destination or not by using Boolean value.

Table 3.5: Data table of Path_history_info

Path_history_id Floor_id_fk Building_id_fk User_id Starting_point Ending_point Achieve

Column description:

Path_history_id: Primary key. A unique entry to identify each path

Floor_id_fk: Foreign key, which refers to Floor_info table

Building_id_fk: Foreign key, which refers to Building_info table

User_id: Foreign key, which refers to Registration table

Starting_point: Localize information when vision impaired individual starts the

journey after processing video stream data.

Ending_point: Localize information when vision impaired individual ends the

journey after processing video stream data.

Achieve: Uses Boolean value to capture whether the user has reached the

destination successfully.

f) Object_info table

The ‘Object_info table’ (Table 3.6) is used to record details about objects that are identified

on a certain floor. It contains columns such as ‘Object_id’, ‘Floor_id_fk’, ‘Building_id_fk’,

‘image_description’, ‘Category’, ‘X_coordinate’, and ‘Y_coordinate’. ‘Object_id’ is a unique

key, which is generated automatically when a user finds a new object/obstacle on the floor

while navigating. Objects could be identified after processing the video stream data provided

by a vision impaired individual. ‘Object_id’ acts as a foreign key to the ‘Movement_info table’

to represent objects that a user meets while navigating through the floor. ‘Floor_id_fk’ and

‘Building_id_fk’ are foreign keys from ‘Floor_info’ table and ‘Building_info’ table to locate

where the object is placed. ‘Image_description’ column contains image-processed data about

45

identified objects such as their appearance and color. ‘Category’ column stores the type of

object whether it is a chair, a table and etc. Both ‘Image_description’ and ‘category’ columns

are filled after processing the video stream data. ‘X_coordinate’ and ‘Y_coordinate’ columns

track the coordinates of the object’s current location. These two coordinates are collected via

the localization information obtained via the mobile phone. If the object changes its location,

X and Y coordinates will be changed.

Table 3.6: Data table of Object_info

Object_id Floor_id_fk Building_id_fk image_desc

ription

Category X_coordinate Y_coordinate

Column description:

Object_id: Primary key. A unique entry to identify each object

Floor_id_fk: Foreign key which refer to Floor_info table

Building_id_fk: Foreign key which refer to Building_info table

Image_description: String value to describe characteristics of identified object

Category: Category of object as string value

X_coordinate: X coordinate of the object location- real data type

Y_coordinate: Y coordinate of the object location- real data type

g) Movement_info table

Table 3.7 is used to collect movement information when a user navigates through a floor.

‘M_id’,‘Object_id_fk’,‘Path_history_id_fk’, ‘Walking_distance’, ‘Angle’, ‘Direction’,

‘Time_Stamp’, ‘X_coordinate’, ‘Y_coordinate’ are the columns available in the

‘Movement_info table’. ‘M_id’ is the unique entry to identify each user movement while

‘Object_id_fk’ is a foreign key from the ‘Object_info’ table to keep track of the objects passed

by the navigator while travelling. ‘Path_history_id_fk’ is a foreign key from the

‘path_history_info’ table to identify the path used for navigation. ‘Walking_distance’ column

keeps track of the distance travelled by the vision impaired individual. The angle column is

46

filled with the support of IMU data of the turns taken by the vision impaired individual while

travelling. Angle calculation is based on the method described in figure 3.8.

 Let us imagine the user moved from position 1 to position 2 as illustrated in the picture

below. The ϴ value/angle can be calculated as follows.

Calculation:

Tan ϴ = (10 - 7) / (8 - 4)

 = tan-1 [0.75]

 = 36.8690 = 370

Figure 3.8: Method of calculating angle

‘Direction’ column stores the direction according to the sensor data collected via the vision

impaired individual’s mobile device. ‘Timestamp’ column keeps track of the time related to

every movement of the vision impaired individual, measured via the system date of the mobile

device. ‘X_coordinate’ and ‘Y_coordinate’ columns track the current location of the vision

impaired individual.

47

Table 3.7: Data table of Movement_info

M_id Object_id_fk

Path_history

_id_fk
Walking_

distance
ϴ R Time_Stamp X_coordinate Y_coordinate

Column description:

M_id: Primary key. A unique entry to identify each object

Object_id_fk: Foreign key which refer to Object_info table

Path_history_id_fk: Foreign key which refer to Path_history_info table

Walking_distance: Measure the distance travelled by the navigator

Angle (ϴ): Calculate the angle of navigation in taking turns

Direction(R): The direction of navigation

Time_Stamp: The exact time that the cloud DB is going to receive and finish the

location signal

X_coordinate: X coordinate of the object location- real data type

Y_coordinate: Y coordinate of the object location- real data type

h) Direction_info table

Direction_info table’ (Table 3.8) is used to collect and store path information of a particular

object relative to a given user. It consists of columns such as ‘Direction_id’, ‘Object_id’,

‘ϴ_value’ and ‘Distance’. The ‘Direction_id’ acts as a primary key, which uniquely identifies

the object details. ‘Object_id_fk’ is a foreign key from ‘Object_info’ table that keeps track of

the objects that are passed by the navigator while travelling. ‘ϴ value’ is the angle of the

object’s surface point relative to the user, and ‘Distance’ is the distance to the object’s surface

point relative to the user. Both ϴ value and distance (D) can be obtained after processing the

video stream data.

48

Table 3.8: Data table of Direction_info

Column description:

Direction_id: Acts as the primary key, which uniquely identifies the direction of

object details receive

Object_id_fk: Foreign key, which refer to Object_info table

ϴ Value: The angle of the object’s surface point relative to the user

Distance (D): Distance to the object’s surface point relative to the user

i) Label_info table

Table 3.9 stores ‘Label_info’. It contains the label information of specific objects and places

visited by the vision impaired individual. The Label_info’ table consists of columns such as

‘Label_id’, ‘Floor_id_fk’, ‘Building_id_fk’, ‘object_id_fk’, ‘Label_name’,

‘Place_description’, ‘StartingX’, ‘StartingY’, ‘EndingX’ and ‘EndingY’. ‘Label_id’ acts as a

primary key to identify each label uniquely. ‘Floor_id_f'k’ and ‘Building_id_fk’ are foreign

keys from ‘Floor_info’ table and ‘Building_info’ table that figures out the location of a

specific place/object. (i.e. Lab, Room, and Corridor). ‘Object_id_fk’ is a foreign key from

‘Object_info’ table to find out object details. ‘Label_name’ contains the name of specific place

or object, which can be used for labeling purposes in map generation. ‘Place_description’

describes the place that this specific label belongs to. ‘StartingX’ and ‘StartingY’ are the

coordinates for the starting location of the specific place or object while ‘EndingX’ and

‘EndingY’ are the coordinates for the ending location of the specific place or object. These

four coordinates are collected as localized information via mobile phone sensors.

Direction_id Object_id_fk ϴValue Distance (D)

49

Table 3.9: Data table of Label_info

Label

_id

Floor

_id_fk

Building

_id_fk

Object

_id_fk

Label

_name

Place_

description

StartingX StartingY Ending X EndingY

Column description:

Label_id: Acts as the primary key that identifies the label details

Floor_id_fk: Foreign key that refer to Floor_info table

Building_id_fk: Foreign key that refer to Building_info table

Object_id_fk: Foreign key that refer to Object_info table

Label_name: Name of the specific place (Point of Interest)

Place_description: Describes the place that this specific label belongs to

StartingX: Starting X coordinate of the place/object location- real data type

Starting Y: Starting Y coordinate of the place/ object location- real data type

EndingX: Ending X coordinate of the place/object location- real data type

EndingY: Ending Y coordinate of the place/ object location- real data type

j) Wall_info table

Table 3.10 stores information of the walls within a building. It consists of columns such as

‘Wall_id’, ‘Floor_id_fk’, ‘Building_id_fk’, ‘StartingX’, ‘StartingY’, ‘EndingX’ and

‘EndingY’. ‘Wall_id’ is the primary key of the table, which identifies each wall uniquely.

‘Floor_id_fk’ and ‘Building_id_fk’ are foreign keys from ‘Floor_info’ table and

‘Building_info’ table that figures out the specific location of the wall. ‘StartingX' and

‘StartingY’ are the coordinates that mark the starting location of the wall whereas ‘EndingX’

and ‘EndingY’ track the coordinates of wall’s ending location. These four coordinates are

collected as localized information via the mobile phone with the help of an accelerometer and

gyroscope sensors.

50

 Table 3.10: Data table of Wall_info

Column description:

Wall_id: Acts as the primary key, which identifies each wall uniquely

Floor_id_fk: Foreign key, which refer to Floor_info table

Building_id_fk: Foreign key, which refer to Building_info table

StartingX: Starting X coordinate of wall - real data type

StartingY: Starting Y coordinate of wall- real data type

EndingX: Ending X coordinate of wall- real data type

EndingY: Ending Y coordinate of wall -real data type

k) Door_info table

‘Door_info table’ (Table 3.11) is used to store information on doors within the building. The

Door_info table consists of columns such as the ‘Door_id’, ‘Floor_id_fk’, ‘Building_id_fk’,

‘Wall_id_fk’, ‘StartingX,’‘StartingY’, ‘EndingX’, ‘EndingY’, ‘Is_open’. ‘Door_id’ is the

primary key of the table, which identifies each door uniquely. ‘Floor_id_fk’, ‘Building_id_fk’

and ‘wall_id_fk’ are foreign keys from ‘Floor_info table’, ‘Building_info table’ and

‘wall_info_table’ that figure out the specific location of the door. ‘StartingX’ and ‘StartingY’

are the coordinates of the door’s starting location while ‘EndingX’ and ‘EndingY’ are the

coordinates for the door’s ending location. These four coordinates are collected as localized

information through the mobile phone with the help of its sensors. The side from which the

door is open can be obtained through image processing. However, it would take some time

before it is added to the database. ‘Is_open’ column stores the status of the doors whether they

are open or closed in Boolean value.

Wall_id Floor_id_fk Building_id_fk StartingX StartingY EndingX EndingY

51

Table 3.11: Data table of Door_info

Door_Id Floor_id_fk Building_

id_fk

Door_

id

StartingX StartingY EndingX EndingY Is_open

Column description:

Door_id: Acts as the primary key which identifies each door uniquely

Floor_id_fk: Foreign key which refer to Floor_info table

Building_id_fk: Foreign key which refer to Building_info table

Wall_id_fk: Foreign key which refer to Wall_info table

StartingX: Starting X coordinate of door - real data type

StartingY: Starting Y coordinate of door- real data type

EndingX: Ending X coordinate of door - real data type

EndingY: Ending Y coordinate of door -real data type

Is_open: Boolean value to store door status – Door open or close

All the above-mentioned tables are requisites to generate a detailed real-time map. Data for

the tables can be stored with the help of optimization mechanisms described in section 3.3.2.2.

3.3.2.2 Database Optimization Techniques Used in Performance Enhancement

Research on optimizing database systems have been an ongoing process within the past few

years [55]. With the growth and enhancement of applications, data queries are becoming

increasingly complex, thus creating a need for efficient data retrieval mechanisms.

The performance of a database is determined by both internal and external factors. Database

settings and structure, indexing and implementation are the most common factors that

determine the performance of the database internally. If the internal factors are not configured

52

appropriately, it would degrade the performance of the database in retrieving data. Such

situations can be mitigated by the use of five common techniques mentioned below [64].

a) Use an external cache.

PostgreSQL memories are independent as they do not offer single synchronize-level memory

management [65]. Therefore, preloading or caching the table with PostgreSQL is

incompatible. Caching is possible with external tools such as BIMcache. Pgmemcache is a set

of PostgreSQL user-defined functions (API's) that provide an interface to BIMcache. As a

pre-requisite, Pgmemcache recommends the implementation of libmemcache. Installation of

BIMcache could be used to enhance the performance of the database. Hence, the simulation

environment implemented in this research adopts BIMcache to optimize performance.

Figure 3.9 illustrates the overview of BIMcache. A user can generate a real-time map based

on the X,Y coordinates of previous user movements without constantly accessing the

database. Loading the real-time map using BIMcache, increases the efficiency of the

AccessBIM model as it reduces the time taken to generate the map.

Figure 3.10 illustrates the output of BIMcache. Most recent navigations could be loaded into

the movement_info table which facilitates real time map generation without collecting data

from the simulator

Figure 3.9: Overview of BIMcache (Taken from: http://raghavt.blogspot.com/2011/07/pgmemcache-setup-and-

usage.html [65])

53

Figure 3.10: Output results of BIMcache

b) Indexing strategy.

A database index allows a query to efficiently retrieve data from a database. Indexes are

related to specific tables and can have more than one index built from it [66]. However, it is

only beneficial if the number of rows to be retrieved from a table is comparatively small [67].

 Partial index

A partial index is a subset of a table’s data which uses the WHERE clause to increase the

efficiency of the index by reducing its size whilst, making it easier to maintain and faster to

scan as it takes less storage [67].

 Expression index

Expression indexes are indexes on a function or scalar expression computed from one or more

columns of the table. PostgreSQL allows indexing the results function and it leads to obtaining

Selected route and destination

Output table of X, Y coordinates for user movements.

54

fast access to tables based on results of the location computations through rapid random

lookups. Indexes on expression can be used to enforce constraints that are not definable,

unique and simple [68]. This index is useful when the retrieval speed is more important than

the speed of insertion and updating. For instance, finding a given date by date cast value.

 B -Tree index

B-Tree index entries are sorted in ascending order by default, which supplies a different sort

order for an index in some cases. Since designed table data is querying the table in sorted

order by limiting the result, it is possible to reap benefits by creating an index in the same

order. B-tree indexes are used with single column indexes when required “nulls to sort last”

behavior [67]. The AccessBIM model utilizes fine tuning and database optimization features

of B-Tree index.

c) Query rewriting

Base tables of AccessBIM model contains a large amount of data regarding building

characteristics and user movements. Real-time map generation only needs data related to the

most recent movements in given routes. Hence processing a large number of non-relevant data

for map generation is expensive and time-consuming. This research work rewrites the basic

SQL queries to filter out the most relevant details for map generation from a large data set.

SQL JOIN clause is able to optimize the queries by combining rows from two or more tables,

based on the common field between them.

55

i.e.: Obtaining a real-time map would require data from both movement_info and

path_history_info tables. Figure 3.11 demonstrates a situation where a real-time map is

generated without query rewriting.

Figure 3.11: Output of query execution without SQL JOIN

Figure 3.12 is an example for a situation which uses query rewriting by the use of a SQL

JOIN. Highlighted sections of the figure prove that the SQL JOIN condition is able to filter

and retrieve the most relevant details for map generation within a shorter time.

Figure 3.12: Output of query execution with SQL JOIN

56

d) Use of stored procedures

A stored procedure is a prepared SQL code that can be reused many times without repeatedly

writing the query. This research project adopts stored procedures to implement centralized

logic in the database instead of implementing it on the application aspect to gain following

benefits [52].

 Compiles stored procedure once and then reutilizes the execution plan to provide efficient

performance boots.

 Reduces traffic between AccessBIM model and the test simulator by reducing SQL

queries into single line to transmit over the wire. This would become a major concern

when the project is mapped in real as the actual environment would be used to collect

data using mobile devices.

 Allows to have multiple input and output parameters to generate real-time map while

UDF allows only one input parameter at once.

 Permits to use DML statements like insert, update and delete while UDF permits to use

only the selected statements.

 Transaction can be done through the stored procedure where UDF is unsupported.

 Minimizes round trips between the database and application to save execution time by

enfolding all SQL statements inside a function stored in PostgreSQL database server.

e) Changes to the schema

The interview done with “The Employers' Federation of Ceylon” identified the tables which

should be included in the AccessBIM framework. Based on the discussion with them, the

following steps were examined with the main normal forms to ensure data consistency.

1. All the tables are designed with a unique primary key and all the columns are designed

to contain only one value to make sure that the database is in the first normal form.

57

2. Data tables are designed with a single column primary key according to the

requirement of data inside the table, therefore the table designed is also in the second

normal form.

3. Converting all the tables in to the third normal form by removing all the transitive

dependencies where attributes depend on the non-primary key.

4. The database design does not contain any super key or candidate key, hence no BCNF

checking is needed.

3.3.3 Test Environment Implementation Approach

According to a research on map generation [19, 20], complex and interacting parameters

influence the real-time map generation process whilst, a number of sensor data are required

to be collected at the same time in order to develop an accurate output. The research work

presented in this thesis has mapped an actual indoor environment into a virtual environment

for testing purposes. The reasons for using a virtual environment (computer simulation) is to

reduce, the building cost of a controlled environment, time associated in creating a new system

and to reduce the complexity in data collection. Computer simulation together with statistical

analysis techniques has the ability to support decision-making by generating a similar

environment to the actual scenario. Speedy analysis in data retrieval and the detection of

problems, bugs and difficulties in map generation are the major benefits of implementing a

computer simulation before the actual implementation.

3.3.3.1 Test Simulator Design

R. McHaney stated that computer simulation is used as a model to draw conclusions,

providing awareness on the characteristics of real world elements being studied, with the use

of computer programming [69].

The author used a test simulation engine as it has the ability to collect and submit

environmental data while a vision impaired individual moves within the simulated floor. This

simulator includes capabilities such as the ability to:

58

 Provide localization information – Localization data represent X,Y coordinates

of the reference point of the location. It provides meaningful information to

create the map.

 Provide environmental characteristics - The simulation is based on output data

obtained from the spatial environment that contains distance (R) and angle (ϴ)

relative to the users’ current location when they walk within a building and image

processing data that provides details on obstacles and surrounding details [20].

 Collect and transfer data – Simulator is designed to collect spatial information and

image processing data of the desired location while the user walks within the

simulated environment.

This test simulator module and the simulation environment are used to indicate that

AccessBIM framework is capable of storing and generating a real time map with

crowdsourced data.

3.3.3.2 Requirements of Test Simulator Design

The literature survey on indoor navigation, database optimization and real-time map

generation [14, 15, 41, 70] identifies the functional requirements implemented in a test

simulator.

Functional requirements implemented in the test simulator:

 Capability of the AccessBIM framework in real-time map generation.

 Facilitates navigation without others interaction.

 Collects crowdsourced data in a controlled environment to reduce noise in data

collection.

 Builds a fixed communication channel with the data collector and the database server

where AccessBIM framework is located.

 Reduces time spent on data collection.

One of the major reasons behind utilizing a simulator to collect data is the fact that the work

presented in this thesis is dependent on the inputs of the other researchers of the same research

59

group. Hence, the use of simulator allowed the author to complete his part of the project

without relying on the input of other researchers.

Given below are the quality attributes implemented in the test simulator:

 Availability- The test simulator should be up and running to any user at any given

time.

 Performance- Multiple users would be able to use it simultaneously at any given time.

 Reliability- Ability to provide the expected data accurately and precisely under any

condition.

 Security - Prevent unauthorized modifications to already saved maps.

Once the primary requirements are recognized and categorized into functional and quality

attribute aspects, a detailed description is obtained for each of the functionalities. These

requirements acted as the base of the research project.

3.3.3.3 Implementation of Test Simulator Environment

The design phase describes how the system works with hardware, software, networks,

databases etc. Therefore, this research created a simulation that is an accurate representation

of the building. The simulator acts as a virtual environment and provides facilities to collect

indoor environment details while users navigate within the simulator.

60

Figure 3.13: Created simulator (Virtual environment)

Figure 3.13 is a diagram of the test simulator. As an example of a navigation, after

configuration, users can navigate to the desired destination and the data collected and

submitted to the ‘Movement_info’, ‘Object_info’, ‘Door_info’ and ‘Wall_info’ tables are

used to generate a real-time map. Figure 3.14, 3.15, and 3.16 illustrate the behavior of

simulator when a user navigates.

Figure 3.14: User starts navigation.

Floor selection
Open/Close doors

Select user for navigation

Select source

Select destination

Use starts navigation

61

Figure 3.15: User navigation and data collection

Figure 3.16: User finish navigation and data collection

Data gathering, storing and retrieving happens through c# API, which is illustrated using

figure 3.17.

User navigate inside the simulator

Collect and submit environmental

characteristics

User ends navigation

Finish data collection

62

Figure 3.17: Overview of simulated test Engine

The test engine consists of three major components. Simulation, database connectivity and the

database. Stored procedures, caching mechanisms, change of the database design, indexing,

query rewriting and functions and triggers are used to collect environmental changes through

the test engine to store data within the database in an optimized manner.

As shown in figure 3.17, C# application (simulator) and PostgreSQL database are connected

with the web service that is based on REST (REpresentational State Transfer) architecture,

which is used to transfer data between the C# application and the PostgreSQL database. REST

is usually faster and leads to lower bandwidth.

API was derived using C# dll, while the web service was written using PHP and PostgreSQL

database management system. The created dll consists of the database connector and the API

functions (insert, update, and delete data within the table) to send and receive required

information. The data should be received by the database in real-time without any delay.

Hence, a JavaScript Object Notation (JSON) object is used to speed up the process. Main

queries are executed inside the PostgreSQL database management system by using stored

procedures so that a number of programs can share it.

63

a) Collect data from test simulator

The simulator allows selecting a number of users, their starting point and destinations

respectively. Once the users’ starts navigating, the movement information of every user will

be collected. Following variables will be captured during the navigation process.

i. Location coordination

The floor plan of the simulator holds the following scale with the real world.

 Map ratio : 8 pixel = 0.8 m

Therefore, every time a marker passes eight pixels, it will be counted as 1 step. Step count

will be captured according to that scenario.

ii. User’s angle. (ϴ value)

Figure 3.18: Identify user’s angle

Let’s say the user moved position 1 to position 2 as mentioned in figure 3.18. Then the ϴ

value will be calculated as follows.

64

Calculation:

Tan ϴ = (10 - 7) / (8 - 4)

 = tan-1 [0.75]

 = 36.8690

 = 370

iii. Obstacle detection1

Once a user navigates within an area after selecting the required source and destination, the

simulator is able to collect details regarding the surroundings including walls, doors and

objects. If there is an object within the vision impaired individual’s area of interest, it will be

identified as an obstacle and the distance and the angle will be calculated based on the user’s

current position. At the same time, that information will be sent to the database as well. If the

vision impaired individual is able to go across objects occasionally it could be named as a

movable obstacle (i.e. - door). There can be multiple movable obstacles within the vision

impaired individual’s area of interest. Yet, it identifies each individual object and updates its

status in the database (i.e. whether the door is open or not)

Figure 3.19: Obstacle detection

1 Obstacle detection is a component of other member of same research group based on image processing [20].

65

Although obstacle detection is beyond the scope of this thesis, obstacles could be detected by

identifying the x,y coordinates of the navigator and then searching for obstacles that are within

a radius of 5m relative to the user’s position as illustrated in figure 3.20.

Figure 3.20: Identify non-movable obstacle

b) Data communication between simulator and the server

The communication between the server and the navigation simulator is done using JSON;

because of its ability to multicast the same message to multiple devices simultaneously.

3.4 Real-Time Map Creation

An accurate indoor map plays a vital role in a navigation system; hence the data that is

represented in the indoor map must be accurate and up-to-date. In order to generate an indoor

map that facilitates vision impaired navigation, an experimental map was derived using C#.

Successful navigation inside the simulator engine enabled to collect simulated crowdsourced

data obtained via smart phones, IoT devices, image processing and GAIT analysis into a

database to generate a real-time map to aid navigation. The overview of the map generation

process is presented in figure 3.21.

66

Figure 3.21: Overview of map generation

The above diagram (Figure.3.21) illustrates how the data is retrieved from the database to

build the real-time map. Door information, wall information, object information and label

information could be gathered while the user navigates within the indoor environment in real

world scenario. However, in the simulation, the database contains “wall_info”, “door_info”,

“object_info” tables with manually entered data. As a result, the user who navigates using the

simulator is able to recognize his current location and environmental characteristics related to

his location. Moreover, it can send them to ‘Movement information’ table as well as update

the door status and location of the objects in ‘Object information table’. The Simulator is able

to extract the table data through JSON object and build three classes called ‘wall class’, ‘door

class’, and ‘object class’. Created classes can be used to generate an automatic real-time map

based on the collected crowdsourced data. Real-time map generation is based on the following

data extracted from the above-mentioned classes. Wall information is related to the current

x,y coordinates of the user.

• Door information related to current x, y coordinate of the user

• Status of movable obstacles (whether the door is open or closed. If the door is closed

it is represented in red and if the door is closed it would be represented in green)

• Locations of the objects according to the user’s current x, y coordinates.

The real-time map generation process needs to communicate with the AccessBIM database

from time to time to track environmental characteristics. The data server and the simulation

67

application are built based on client-server architecture. The map and the navigation pointer

are displayed on the client’s smart device. All data in the actual environment will be collected

through the sensors in smart devices, which then generates the routing data from the virtual

environment in to a desktop application. The desktop application and mobile devices

exchange data through a communication protocol. The sensor information is partially

processed by the application and sent to the database server to build the map. Figure 3.20

illustrates a partially generated map after collecting data from the test simulator. (Routes of

the most recent navigations are drawn in dashed lines in figure 3.22.)

Figure 3.22: Generated real-time map according to multiple user navigations

3.5 Chapter Conclusion

This chapter addressed the experimental objectives of the research and the design and

implementation of the AccessBIM framework in detail. The AccessBIM framework consists

of five layers. The data collection layer collects crowdsourced data which is then sent to the

Database through the API in the User Interface layer. In the functional layer, the database

connection is initiated, called for function and returned, before the connection is terminated.

Efficient information processing occurs in the Database optimization layer due to query

optimization and indexing, while the backend layer filters only the required data to generate

the map.

68

The AccessBIM database consists of 11 relations and several database optimization

techniques such as indexing, query rewriting and stored procedures have been applied to

enhance performance. A test simulation engine was used as it reduces the cost of building a

controlled environment apart from reducing the time associated in creating a new system. The

test scenarios described in section 5.2 demonstrates the accuracy of the simulator as an

accurate real-time map is generated a within few milliseconds.

69

 Chapter 4 – Map Construction Algorithms

4.1 Chapter Overview

This chapter discusses the four fundamental algorithms involved in the research. Section 4.2

provides an overview of the four algorithms while section 4.3 describes the algorithm for

indoor real-time map generation. Section 4.4 describes the database optimization algorithm

and section 4.5 discusses the algorithm for BIMcache optimization. The algorithm for

crowdsourced data collection is described in section 4.6 while section 4.7 concludes the

chapter.

4.2 The Four Algorithms

The algorithmic component stands out as the core of the research as it differentiates the

AccessBIM framework from other indoor navigation systems. The AccessBIM database is

equipped with four algorithms namely: ‘The Database Optimizer Algorithm’, ‘The BIMcache

Optimizer Algorithm’, ‘The Crowdsourced Data Collection Algorithm’ and ‘The Real-Time

Map Generation Algorithm’. Most research on indoor navigation do not focus on database

optimization [14, 15, 37] while the ones that do, do not publish the algorithms openly [55,

57]. Hence, the researcher developed several algorithms that would optimize the performance

of not only indoor navigation related databases, but any database that stores spatial

information.

The Crowdsourced Data Collection Algorithm identifies the location of each user and obstacle

on a periodic basis, in the form of x and y coordinates while the Database Optimizer algorithm

applies stored procedures and query rewriting to the relations in the database. The BIMcache

Optimizer Algorithm acts similar to a caching mechanism by searching the database for

already existing paths thus saving time and the cost of searching data. The synthesis of these

three algorithms facilitate the Real-Time Map Generation Algorithm to generate a meaningful

indoor map with minimum consumption of resources.

70

4.3 Algorithm for Indoor Real-time Map Generation

The map generation is an integral part of the algorithmic component in the entire process. The

user set U= {U1, U2, U3…, Ui… Un-1, Un} who are using the system will be requesting

navigation assistance to reach their desired destination ‘D’. Each time a request is made, the

system should provide an optimal path ‘P’ for the user to reach his preferred destination. The

real-time map generation algorithm given in figure 4.1 is the main algorithm which a number

of sub algorithms are embedded to aid to generate the optimal path.

At the beginning of the path generation process data sets and buffers are restored to the last

map generated through the device. The initializing process starts soon as a user ‘U’ requests

for navigation assistance. In order to process the user information, the x, y coordinates and

special environmental information ‘S’ along with the destination ‘D’ (already saved

destinations in the system) are retrieved and stored for further referencing. Before compiling

the optimal path from scratch, the BIMcache is searched to find any existing, recently created

paths for the same destination via the user coordinates x, y of user Ui. If a match is found, that

path information will be loaded to the user application for processing.

If a match is not found in the BIMcache, the path generation request is sent to the database for

further processing. Here, the path would be generated based on the real-time information

obtained from the environment. The crowdsourced data gathering algorithm which is further

explained in section 4.6, gathers user data periodically, in order to generate the optimal path.

At this point, the path is generated in a way that it will include any obstacles within the user’s

block space by filtering the objects within the defined block size ‘r’ of the user ‘Ui’ and

periodically updating any user generated information into the database. An optimal map

showing the shortest and the most convenient path is filtered out from the database’s map

information which constitutes the user Ui’s block size ‘r’. Based on the filtered information,

the optimal path is loaded to the user application for use.

When there is a change in path information due to the placement of new obstacles, the existing

path information available in the BIMcache will be replaced by the new information using the

AccessBIM_Database_Optimizer_Algorithm that is further discussed in section 4.5.

71

Algorithm - DYNAMIC_INDOOR_REALTIME_MAP_GENARATION (U, r, S, D)
mapping information

BEGIN Input - Crowdsourced data consisting of users U = (U1, U2,…Un) where x
is user Un’s X-coordinate, and y is user Un’s Y-coordinate which provides user
location. ObjX is the X-Coordinates to the object for user Un, and ObjY is the Y-
Coordinates to the object for user Un. Block size for user is r and the time interval
of data retrieval is t. S stands for the special environmental information obtained.

Output – Recursively obtain the

1) Initialize
2) while |U|.newReqest do {
3) GET_REQUEST (Si, D);
4) if (D!) then
5) redirect_to (User_App);
6) else {
7) find P such that

8) GET_BIMCACHE{ opt_path (P) S,D };
9) if (P=1) then
10) LOAD{ opt_path (P) };
11) else {

12) DB_QUERY{ find P such that opt_path(P) S,D };
13) for (i=1) to END do {
14) CROWDSOURCE_DATA_ GATHERING (U,x,y,Obj[O]);
15) GET_PARAMETER(|U| new,r);

16) for (opt_map(S) = (db_map (U) r)) do {

17) (opt_path (P) opt_map (S)(|U| new,Obj[Oi],r));
18) LOAD{ opt_path (S) };
19) }
20) }
21) }
22) }
23) if (Obj(S)t != Obj(S)t-1) then
24) AccessBIM_BIMCACHE_OPTIMIZER_ALGORITHM();
25)}

END

Figure 4.1: Dynamic Indoor Real-Time Map Generation

72

Indoor map generation is a process that consists of three major parts, namely crowdsourced

related data collection, database optimization and efficient data retrieval. Data was collected

via a simulation environment. Collected data was stored in an optimized data model with the

help of stored procedures in order to build the AccessBIM data model. Stored data is retrieved

with minimal effort as proven under section 6.3.1, from the AccessBIM using stored

procedures and query rewriting. Retrieved data was classified to generate a meaningful map.

Figure 4.2 illustrates the workflow of the AccessBIM database optimization model in terms

of a flow chart.

73

Figure 4.2: Flow of AccessBIM database optimization model

74

4.4 Algorithm for Database Optimization

Algorithm – AccessBIM _DATABASE_OPTIMIZER_ALGORITHM

Input – AccessBIM model consist of 11 relations Q = {Q1, Q2, ... ,Q11}

Output – Optimized AccessBIM database model

BEGIN

1) if (SELECT * QUERIES) then {
2) field(Path_history_id, Movement_id, X_coordinate, Y

coordinate)
3) goto(step_4); }
3) else {
4) if (JOIN_QUERIES) then {
5) GET_JOIN_TABLE(value);

6) if (TABLE primary_key, foreign_key) then {
7) if (WERE clause) then {

8) if (COLUMN index) then {
9) if (RETURN MULTIPLE PARAMETERS) then {
10) CREATE_STORED_PROCEDURE();
11) return; }
12) else
13) return; }
14) else {
15) CREATE_COLUMN_INDEX;
16) goto(step_9); }
16) else
17) goto(step_9); }
18) else {
19) CREATE_PRIMARY_KEY_FOREIGN_KEY;
20) goto(step_7); }
21) else {
22) goto(step_7); }
23) }

END

Figure 4.3: AccessBIM Database Optimizer Algorithm

75

The introduced database schema model is explained in section 3.3.2. Figure 4.1 illustrates the

flow that is followed to build the optimized database model. The AccessBIM database

optimizer algorithm in figure 4.3 focusses on applying stored procedures and query rewriting

to the existing relations (R) in the database. The eleven relations listed in figure 3.5 of section

3.3.2.1 act as inputs to this algorithm. Each relation traverses through the algorithm to apply

query rewriting and stored procedure to the exact location. The algorithm contains a set of

conditions that check qualities of the relations. It has the capability of minimizing problems

that occur in data creation, insertion, updating and deletion. A set of identified conditions

supported the process of generating optimal data model.

4.5 Algorithm for BIMcache Optimization

BIMcache is a technique used to find the existing movement information for a particular

source and destination. The use of BIMcache reduces the time taken to search data for map

creation whilst updating environmental changes that occur after navigation.

BIMcache is an approach that could be used for faster data retrieval from the AccessBIM

framework. The most recent navigation is added to the BIMcache for possible distinct

navigation. The map generated based on the most recent navigation is loaded automatically to

the user when trying to navigate to a previous destination, hence saving time and the cost of

searching data. The following algorithm introduced by the researcher in figure 4.4 facilitates

successful implementation and application of BIMcache.

76

Figure 4.4: Flow of BIMcache time reduction model

77

Figure 4.5 illustrates the BIMcache optimizer algorithm for rapid data access.

Algorithm – AccessBIM_BIMCACHE_OPTIMIZER_ALGORITHM

Input – Movement_info table data and crowdsourced data consisting of users U =
(U1, U2,…Un) where x is a user Un’s X-coordinate, and y is user Un’s Y-coordinate
which provides user location. ObjX is the X-Coordinates to the object for user Un,
and ObjY is the Y-Coordinates to the object for user Un. Path variable is defined as
P.
Output – Optimized real time map, Updated BIMcache

BEGIN

1) if (opt_path (P) S,D == true) then {

2) LOAD{ opt_path (P) };

4) TRIGGER_CHANGES;

5) return; }

6) else {

7) DYNAMIC_INDOOR_REALTIME_MAP_GENARATION (U, r, S, D);

8) }

9) UPDATE _BIMCACHE;

END

Figure 4.5: AccessBIM BIMcache Optimizer Algorithm

78

4.6 Algorithm for Crowdsourced Data Collection

Generating an indoor map requires collecting crowdsourced data via mobile devices. The

accuracy of the data is the key element in this research, as the map is entirely based on the

collected data. The collection of the data from crowdsourced environments should follow the

steps mentioned in figure 4.6 to ensure accuracy of the data collected.

Algorithm - CROWDSOURCE_DATA_ GATHERING (U, x, y, Obj[O])

Input - Crowdsource data consisting of users U = (U1, U2,…Un). x is user Un’s X-
coordinate, and y is user Un’s Y-coordinate which provides user location. Obj(Xn)
is the X-Coordinates to the object for user Un and Obj(Yn)is the Y-Coordinates to
the object for user Un. Block size for user is r and the time interval of data retrieval
is t

Output – Recursively gather crowdsource data

BEGIN
1) Initialize
2) for (i=1) to n do {
3) location { Ui (xi ,yi) }
4) collect { Ui [Obj (X1,Y1)] }
5) }
6) db_storage { U1 (X1 ,Y1 , [Obj(X1,Y1)])t , U2 (X2 ,Y2 , [Obj(X2,Y2)]

)2t , U3 (X3 ,Y3,[Obj(X3,Y3)])3t ,…… ,Un (Xn ,Yn , [Obj(Xn
,Yn)])nt }

7) AccessBIM _DATABASE_OPTIMIZER_ALGORITHM (R= { R1,
R2,.. ,Ri})

END

Figure 4.6: Crowdsourced Data Gathering

According to the CROWDSOURCE_DATA_GATHERING() algorithm, each user’s

location based on x, y coordinates and information on obstacles (x, y coordinates) within the

environment of the user is gathered periodically (t). The gathered data is sent to the

AccessBIM database for storage. At the end of each data collection session, the database is

optimized using the AccessBIM _Database_Optimizer_Algorithm() that utilizes the user

block size to define the user space in the environment.

79

4.7 Chapter Conclusion

This chapter introduced four algorithms developed by the author that facilitates map

generation, data collection, storage and database optimization. The real-time map generation

algorithm is used to generate the optimal path for navigation while the database optimization

algorithm applies stored procedures and query rewriting to speed up data creation, insertion,

updating and deletion. The algorithm for BIMcache optimization reduces the time and cost of

searching data by examining the database for previously navigated paths while Crowdsourced

data collection algorithm facilitates the generation of an accurate map through the

identification of x, y coordinates.

The main objective of the above mentioned algorithms is to obtain a map with the support of

a simulated environment and an optimized AccessBIM database. The process stages of each

algorithm were followed clearly throughout the map generation process to obtain the intended

outputs.

All the outcomes and discussions in chapter five are based on the algorithms introduced in

this chapter. The above-mentioned algorithms have the capability of generating a map in real-

time as described in section 3.4.

80

 Chapter 5 – The Simulation Environment and Test cases

5.1 Chapter Overview

This chapter discusses how a real-time map is generated with the use of the algorithms

presented in chapter 4. Section 5.2 gives a brief introduction to the simulation environment

while section 5.3 describes five test cases that were used to assess the reliability of the

simulation environment. Section 5.4 concludes the chapter with a brief discussion on how the

use of the four algorithms and the simulation environment resulted in generating an accurate

real-time map.

5.2 The Simulation Environment

This research was modelled on a simulation of a virtual environment that is similar to the test

area which is the 7th floor at Sri Lanka Institute of Information Technology. As discussed in

chapter 3, simulated data behaves similarly to actual data [19, 20]. The use of a computer

simulation reduces the cost of building a controlled environment apart from reducing the time

associated in creating a new system. The data was collected via a simulator to ensure the

strength of the AccessBIM database and identify bugs and performance capabilities prior to

the actual implementation.

A series of test cases described in section 5.3 were generated and tested using the simulation

engine to justify the accuracy of the generated real-time map. In each of the test cases, the

real-time map generated through the simulation was compared to the output expected by the

author before the tests were carried out. The real-time map generated via the simulation

environment and the AutoCAD floor plan on which the test cases were based were compared

to determine the accuracy of the AccessBIM framework in a real-world scenario.

5.3 Test Scenarios

The AutoCAD floor plan is shown in figure 5.1. Based on the floor plan, a set of scenarios

were created to check the accuracy of real-time map generation.

According to Figure 5.1 the 7th floor of Sri Lanka Institute of Information Technology is

partitioned as; C – Cabin, D – Door ,E- Entrance ,EL –Elevators, L-Labs, W-Wash room,L1-

81

Lab 701, L2-Lab 702, L3-Multimedia Lab, R1-Assistance Room, R2-Maintainence Room,

R3-Server Room, R4-Research Room and R5-Air Condition Control Room.

Figure 5.1: Floor plan of simulated environment (7th floor of Sri Lanka Institute of Information Technology)

In the framework described in figure 3.2, data was collected via an Application Programming

Interface (API) and stored inside the AccessBIM database with the aid of the four algorithms

discussed in chapter 4. The use of these algorithms ensured that the real-time map generated

through the data collected from the simulation environment was similar to the map created

through AutoCAD. Hence, the floor plan drawn using AutoCAD can be used to check the

accuracy of the real-time map generated.

A series of test cases described in section 5.3 were generated and tested using the simulation

engine to justify the accuracy of the generated real-time map. In each of the test cases, the

real-time map generated through the simulation was compared to the output expected by the

author before the tests were carried out. The real-time map generated via the simulation

environment and the AutoCAD floor plan on which the test cases were based were compared

to determine the accuracy of the AccessBIM framework in a real-world scenario.

82

The reasons for using a virtual environment (computer simulation) was to reduce the cost of

building a controlled environment, time associated in creating a new system and the

complexity in data collection. Furthermore, faster data retrieval and the detection of problems,

bugs and difficulties in map generation were the major benefits of implementing a computer

simulation before the actual implementation. The author used a test simulation engine which

had the capability to collect and submit environmental data while a vision impaired individual

moves within the simulated floor. The simulator consisted of functionalities such as the ability

to provide localization information in the form of X, Y coordinates together with the distance

(R) and direction (ϴ).

Five test cases were generated and tested using the simulation engine to justify the accuracy

of the real-time map generated of the 7th floor of Sri Lanka Institute of Information

Technology. Further analysis on the test cases enabled the author to identify characteristics of

the spatial environment that can effectively impact an individual. Each of these scenarios have

been implemented separately as they have no relationship with each other. For instance, test

case 1 examines the user’s path from the main entrance to Lab 702 while test case 2 examines

a user navigating from the Lab 701 to the multimedia lab with a change in the location of the

obstacle. Thus, there would be no impact on the test results if the order of the test cases were

reversed.

The five test cases given below demonstrate how user movements facilitate in generating the

real-time map through the collection of crowdsourced data in each phase.

a) Test case 1: This test case examines the user’s path from the main entrance

(A) to Lab 702 (B) in order to justify the map generated through the data

collected via the simulation environment with the aid of the algorithms

discussed in chapter 4.

Scenario: A user navigates to a nearby destination (From the main entrance of the 7th

floor to lab 702)

URL of video for test case 01 – https://youtu.be/bLLgo1CUNrU [71]

83

Figure 5.2: Desired navigation plan for scenario 1

Expected output:

Figure 5.2 depicts a portion of the 7th floor plan with the desired source and destination that

the user wishes to reach. The doors are illustrated in green and the desired path of navigation

in blue. It is expected that the user will pass door number 1 and 2 to reach lab 702. The map

generated with the aid of the algorithms discussed in chapter 4 would include both doors,

nearby walls, obstacles and the navigation path.

Database status (before navigation):

The structure of the AccessBIM database before navigation is observed as given below:

 Wall information, door information and object information tables contain

X, Y coordinates of walls, doors and the current position of obstacles.

(Figure 5.3, 5.4 and 5.5)

 Path history table contains details of source and destination available for

map generation

84

 Movement table is empty

Figure 5.3: Wall_info table

Figure 5.4: Door_info table

85

Figure 5.5: Object_info table

Image of the simulator (before navigation):

Figure 5.6: Simulator with object positioning

Database status after navigation (Figure 5.7):

 Wall, door and object information tables remain the same

 Path history table will be updated by adding source and destination

 Movement table will change with the navigation details

Current obstacle position

Empty data collector

86

 Figure 5.7: Update movement_info table

The files in the movement information table are simultaneously updated while the user

navigates as shown in figure 5.6.

Test Result:

The Real-time map generated for the given source and destination of the given test case

scenario after successful navigation is shown on figure 5.8. It includes:

 Door 1 and 2

 Nearby walls

 Obstacle location as shown in figure 5.6. The location of the obstacles remain

the same since the user did not navigate across the obstacle. Hence, the

database does not provide any change in information relevant to the obstacle.

 Navigation Route to justify how the user reached from A to B as shown in

test case 1.

When another user requests assistance to navigate to the same destination from the same

source, the previously generated map would be loaded to their mobile device via BIMcache.

87

BIMcache is a caching system used to speedup map rendering by reducing the number of

times the same data is accessed through the database as discussed under section 3.3.2

The output of test case 1 (figure 5.8) is the real-time map generated through the data collected

via the simulation environment with the aid of the algorithms discussed in chapter 4. This

real-time map matches with the output expected by the author before the simulation is carried

out.

The real-time map generated in each of the five test cases, signify the doors by a blue line

while a thick black line represent the walls. The dotted lines represent the path taken by the

user to reach his desired destination.

Figure 5.8: Generated real-time map according to navigation

b) Test case 2: This test case demonstrates how the algorithms discussed in

chapter 4 identifies the obstacles and changes the movement based on the

location of the obstacles and how the map is updated in real-time with the

expected changes.

Scenario: A user navigates to a nearby destination with a change in the location of the

obstacle. (From the Lab 701of the 7th floor (A) to the multimedia lab (B) after changing

the obstacle’s previous position as shown in figure 5.9)

URL of video for test case 02 - https://youtu.be/-7t_svmBuXw [72]

Current obstacle position

88

Figure 5.9: Desired navigation plan for scenario 2

Expected output:

The user will pass door number 3, 4 and the obstacle. The map that is generated in real time

will include both doors, walls passed in test case 1 and 2, the new location of the obstacle and

the navigation path. Since test case 2 is carried out after test case 1, movement details

pertaining to test case 1 will be already stored in the AccessBIM database.

Database status (before navigation):

The structure of the AccessBIM database before test case 2 is observed as given below:

 Wall information, door information and object information tables contain X,

Y coordinates of walls, doors and the current position of obstacles.

 Path history table contains details of source and destination available for map

generation.

 The movement table contains data of test case 1; figure 5.10 demonstrates

the movement information table after test case 1 while the status of the

simulator after changing the obstacle’s location is illustrated in figure 5.11.

89

 Figure 5.10: Movement_info Table after test case 1

Image of the simulator (before navigation):

Figure 5.11: Simulator after changing object’s location

Database status (after navigation):

 Wall_info, Door_info table remain the same

 Object table is updated with new X, Y coordinates of the obstacle

New location of object

Data collector with

movement information

90

 Movement table is changed with the current navigation details

(Movement_info table contains foreign keys for door_info and object_info

tables to identify updates)

Test result:

-The map is updated with,

 Door 1 & 2 from test case 1

 Door 3 & 4 from test case 2

 All walls that were passed

 The new location of the object

 Navigation route; after successful navigation within the simulator.

The output of test case 2 (figure 5.12) is the real-time map generated through the data collected

via the simulation environment with the aid of the algorithms discussed in chapter 4. This

real-time map matches with the output expected by the author before the simulation is carried

out hence, it justifies the accuracy of the simulation and the four algorithms.

Figure 5.12: Updated real-time map with new object location

c) Test case 3: This test case is carried out to demonstrate how the algorithms

discussed in chapter 4 facilitates identification of the current position of the

obstacle, the remote locations from the source and how the map is updated in

real-time with the expected changes.

Updated obstacle position

91

Scenario: A user navigates to a remote destination with replacement of the previous

obstacle. (From the main entrance of the 7th floor (A) to cabin 1 (B) located far from the

main entrance. Figure 5.13 illustrates a part of the floor plan of the 7th floor of Sri Lanka

Institute of Information Technology.

URL of video for test case 03 - https://youtu.be/2U6BF4Wcxm0 [73]

Figure 5.13: Desired navigation plan for scenario 3

Expected output:

It is expected that the user will pass door number 1, 6 and the obstacle. The real-time map will

be generated with all the doors passed including door 1 and 6, walls passed in test case 2 and

3, new location of the obstacle and the navigation path. Since test case 3 is carried out after

test case 1 and 2, movement details pertaining to test case 1 and 2 will be already stored in the

AccessBIM database.

Database status (before navigation):

The structure of the AccessBIM database before test case 3 is observed as given below:

92

 Wall information, door information and object information tables contain X,

Y coordinates of the walls, doors and the current position of the obstacles.

 Path history table contains the details of source and destination available for

map generation.

 The movement table contains data of test case 1 and 2

Database status (after navigation):

 Wall_info, Door_info, Object_info tables do not change

 Path history table is updated by the addition of new source and destination

details

 Movement table is updated with the new path history id

Test result:

The map is updated with the new source and destination after successful navigation with the

current object positioning, by filtering data in the movement_info table. The output of test

case 3 (figure 5.14) is the real-time map generated through the data collected via the

simulation environment with the aid of the algorithms discussed in chapter 4. This real-time

map matches with the output expected by the author before the test is carried out.

Figure 5.14: Updated real-time map with new environmental characteristics

d) Test case 4: The aim of this test case is to demonstrate how the algorithms

facilitate multiple user navigation and how the map is updated in real-time

with the expected changes

Updated environmental

characteristics

93

Scenario: Multiple users are trying to navigate to multiple destinations with the replacement

of the previous obstacle when all doors are open.

URL of video for test case 04 - https://youtu.be/MiYx7STJuRQ [74]

 User1 navigates to washroom 2 (B) from the main entrance (A) via door 1 &

14,

 User 2 navigates to cabin 2 (C) from the main entrance (A) via door 1, 11

and 12,

 User 3 navigates to the multimedia lab (E) from lab 701 (D) via door 3 and

4,

 User 4 navigates to cabin 1 (G) from the washroom 1 (F) via door 9 and door

6.

Expected output:

 Figure 5.15: Desired navigation plan for scenario 4

It is expected that the real-time map will be generated with door number 1, 3, 4, 6, 11, 12, and

14, in addition to all the walls passed by the users in previous and current test cases and the

new location of the obstacle.

Database status (before navigation):

94

The structure of the AccessBIM database before navigation is observed as given below:

 Wall information, door information and object information tables contain X,

Y coordinates of walls, doors and the current position of the obstacles.

 Path history table contains details of source and destination available for map

generation.

 Movement table contains data of test case 1, 2 and 3

Image of the simulator (when navigating):

Figure 5.16: Multiple user navigations at once

Database status (after navigation):

 Wall_info, Door_info and obstacle_info tables do not change

 Movement table changes with the current navigation details for all users

simultaneously

Test result:

After successful navigation, the map is updated with all the routes that are currently available

and the new positions of the objects, by filtering the data in movement_info table.

The map contains:

 Door 1, 3, 4, 6, 11, 12, and 14

95

 Walls passed by the users in previous test cases

 Walls passed by the users in the current test case

 Current location of the obstacle

The output of test case 4 (figure 5.17) is the real-time map generated through the data collected

via the simulation environment with the aid of the algorithms discussed in chapter 4. This

real-time map matches with the output expected by the author before test case 4 is carried out.

Figure 5.17: Updated map with multiple user navigations (Map is approximately complete)

The real-time map generated as the output of test case 4 is very much similar to the floor plan

of the 7th floor drawn using AutoCAD. (Figure 5.1) This indicates that when more users

navigate within an environment more and more information is collected which would result

in generating a real-time map that is accurate.

e) Test case 5: The aim of test case 5 is to demonstrate how the algorithms identify

the status of the doors while navigating and update the database with that

information

Scenario: A user navigates to a previously entered room when the door is closed.

(From the main entrance to the multimedia room when the door is closed)

URL of video for test case 05 - https://youtu.be/qunEWHBpKR4 [75]

96

Figure 5.18: Desired navigation plan for test case 5

Expected output:

It is expected that the real-time map updates the status of door 4 as closed and prevents the

user from entering the multimedia lab. The real-time map should contain all the doors and

walls the user meets while navigating and the current position of the obstacle. Soon after this,

if a new user tries to enter the multimedia lab, the loaded real-time map will show that the

door is closed indicating that it is impossible to enter the lab.

Database status (before navigation):

The structure of the AccessBIM database before navigation is observed as given below:

 Wall information, door information and object information tables contain X,

Y coordinates of walls, doors and the current position of obstacles.

 Path history table contains details of source and destination available for map

generation.

 Movement table contains data of the previous test cases

97

Image of the simulator (when navigating):

Figure 5.19: Door closed in simulator

Database status (after navigation):

 Wall_info table does not change

 Door_info table is updated with the new door status as “door open -> no” for

the selected door (default door status is “door open -> yes”)

 Movement_info table is replaced with the current navigation details

Test result:

The real-time map is updated with the current status of the door after each successful

navigation, the current position of the objects and the status of the door by filtering data in the

movement_info table

Closed door

98

The user is unable to enter a room which he previously entered as the simulation identifies the

closed door as an obstacle and prevents the user from moving further.

Figure 5.20: Updated map with current door status and routes

5.4 Chapter conclusion

The AccessBIM framework collects and stores simulated crowdsourced data with the aid of

the four algorithms discussed in chapter 4. The algorithms for crowdsourced data collection,

database optimization, BIMcache optimization and indoor real-time map generation ensured

that the real-time map generated through the data collected from the simulation environment

was similar to the map drawn manually through AutoCAD.

Since the movement details of the previous test cases are already stored in the AccessBIM

database, it can be observed that an increase in the number of users navigating to various

locations would result in generating a real-time map that is accurate as more and more

crowdsourced data is collected.

In each of the test cases, the real-time map generated through the simulation was in accordance

with the output expected by the author before the tests were carried out. This justifies the

accuracy of the simulation and the real-time map that was generated in each test case.

However, a major issue encountered during the implementation of the test cases were the

accumulation of records with the increasing number of users in the PostgreSQL database

Updated door status with

user navigation

Route for scenario 5

Route for scenario 4

99

which had to be manually cleared out. Continuous execution of the code due to the application

of multiple users resulted in increased time consumption in running the simulation. In addition

access was limited to internal simulation data due to issues faced in transferring data from the

simulation to the database which was mitigated through the use of Dynamic Link Libraries

(DLL). This was mainly due to the fact that the simulator did not support long, real or integer

type data for which DLL was required to map different data types to ensure compatibility.

Furthermore, the default RID RIT file used in configuring the simulator environment required

to be edited each time a new scenario was being tested. Similarly, the delivery of data was

affected by the difference in network time which was later overcome by synchronizing a

centralized network time server wherever possible. One other major issue faced in

implementing the test cases were the training of users to identify and avoid obstacles. Thus, a

Probabilistic Graphical Model (PGM) was used for extracting features and a generic

geometric model was built to detect objects by coalescing edges and corners

In conclusion, it can be further stated that the use of the four algorithms ensured efficient and

reliable data collection and accurate real-time map generation.

100

 Chapter 6 – Evaluation and Discussion

6.1 Chapter Overview

This chapter evaluates the performance of the AccessBIM framework in generating a real-

time indoor map through the use of database optimization techniques such as stored

procedures, indexing and query rewriting. Section 6.2 evaluates the performance of the

AccessBIM framework in terms of the database optimization techniques that were utilized in

the research while section 6.3 compares the total time taken for real-time map generation.

Section 6.4 compares the AccessBIM framework with a similar database optimization

framework. The fundamental goal of the AccessBIM framework was to generate a real-time

map to facilitate indoor navigation among the vision impaired individuals. Section 6.5

compares the AccessBIM framework with existing solutions while section 6.6 concludes the

chapter with a brief discussion on how this goal was successfully achieved.

6.2 Evaluation of the AccessBIM framework

The AccessBIM model is a digital representation of the indoor building features which

facilitates the exchange and interoperability of real-time information thereby assisting vision

impaired individuals to independently access unfamiliar building indoor environments. The

AccessBIM framework (Figure 3.2) collects simulated crowdsourced data through an API to

generate a real-time map that would facilitate vision impaired indoor navigation. Since the

indoor map is to be generated in real-time, the database must be optimized to process the

queries in real-time.

Research on database optimization has been constantly evolving as the design of a database

must cater to both the needs of the clients as well as the efficiency of the database processes.

Database optimization immensely facilitates tasks that have critical timelines. The

AccessBIM framework utilizes query optimization and indexing which have a significant

influence on database optimization.

The AccessBIM framework facilitates in saving time as collecting data via crowdsourcing is

much faster compared to collecting data from mobile robots. The use of the AccessBIM

101

framework also ensures less confusion as the map is being updated regularly with real-time

changes of the indoor environment. Furthermore, the use of database optimization techniques

speeds up the process of query execution enabling the map to be generated as and when

requested by a user.

The AccessBIM database is capable of achieving the above-mentioned benefits due to faster

query processing, lesser cost per query and efficient use of the database engine with less

memory consumption. Indexing makes it convenient to search the required data from large

data sets while query optimization facilitates the identification of the best query for retrieving

data using minimal resources thus enabling high performance of the system via faster

processing and lesser database cost thereby increasing the performance of the real-time map

generation layer. This leads to efficient usage of the database engine with less memory

consumption as the database is generated without data duplication. Thus, query optimization

enables faster data insertion, updation, deletion and retrieval.

The AccessBIM framework utilizes an Object Relational Database (ORDB) to store spatial

characteristics of indoor environments. The use of an ORDB provides numerous benefits over

the use of traditional relational databases [76]. The need, to handle an enormous amount of

IMU data together with the use of many stored procedures and indexes were one of the major

reasons behind selecting an Object Relational Database despite the fact that it is complex and

costly.

Consequently, the main advantage of using an ORDB for the AccessBIM framework is its

reusability by providing the ability to store standard procedures (or functions) on the server,

rather than coding them in each execution. For example, the application needs to call the

function “check_path_availability” each time when the user selects source and destination. If

the stored procedure for checking path availability is embedded in the server, it saves time in

having to define them, each time the function is called.

Apart from reusability, the use of an ORDB has enabled the AccessBIM framework to

increase its flexibility and functionality. ORDB’s can be easily maintained with respect to

relational databases and is easily extensible and reliable than traditional databases.

102

Furthermore, systems that use ORDB’s have reduced response times in executing simple,

user-defined queries compared to relational databases [76] which is the main reason behind

implementing an ORDB for the AccessBIM framework despite its limited performance due

to database cost.

6.3 Database optimization

Database optimization techniques such as stored procedures and indexing facilitate the

AccessBIM framework to generate an effective real-time map. The ability to compile and

reutilize the execution plan to provide efficient performance boots is one of the major benefits

that can be obtained in utilising stored procedures. After refining the schema it was identified

that 32 stored procedures were required to eliminate the database overhead. Hence, 32 stored

procedures were created to insert, delete, select, check and update data within the AccessBIM

database. The use of stored procedures facilitated complex proccessing of several query

statements by enabling input parameters and multiple output parameters rather relying on SQL

queries. Given below are few factors that need to be considered in generating a real-time map.

 Check whether the requested path is available in BIMcache.

 Get details from the path_history_info table regarding the starting and ending

points of the route if the movement details are not available in the BIMcache.

 Insert movement information while the user navigates within the simulator.

 Select wall, door and object information from the database that is specific to the

navigation information (Environmental data related to that particular navigation)

 Update door information table about door status (whether the doors are open or

not).

 Update object information table with the current location of the obstacles/objects.

In order to generate an accurate indoor map, the above-mentioned factors should be strictly

followed in every map generation instance. Hence, the author decided to add indexing

strategies to the stored procedures as they have the capability of fulfilling the above-

mentioned tasks.

103

6.3.1 Performance Enhancement with Stored Procedures and Indexing For Real-
Time Indoor Map Generation

Robot based solutions are the most common practices available to generate a real-time map

[40, 44]. However, robot based solutions neither utilize stored procedures nor indexing

strategies to retrieve data for map generation. Hence, robot based solutions are unable to

experience the benefits of using stored procedures for real-time map generation.

The benefits of stored procedures can be listed as follows:

 Reutilizing the execution plan to provide efficient performance boots

 Ability to collect multiple input parameters to generate the real-time map (UDF

allows only one input parameter at once)

 Minimizing round trips between the database and application to save execution

time by enfolding all SQL statements inside a function stored in PostgreSQL

database server. (The AccessBIM framework utilizes a PostgreSQL database as

its DBMS)

Since this research is based on crowdsourced data, the solution customizes the stored

procedures and applies indexing for the ones that have the greatest impact on the query

execution time. Out of the thirty two (32) stored procedures listed on Appendix F, indexing

was applied to the (eight) 8 stored procedures listed below. The following stored procedures

were indexed to increase the performance of the real-time indoor map generation.

 BIMcache()

 select_values_from_wall_info()

 select_values_from_door_info()

 update_door_info ()

 select_starting_and_ending()

 update_object_info()

 get_routing_details_for_a_specific_day()

 select_object_info()

104

The main reason behind selecting the above-mentioned stored procedures is their ability to

support major tasks that require to be completed in the map generation process. Each map

generation instance utilizes the selected stored procedures with indexing together with the

remaining 24 stored procedures without indexing, to generate maps that are accurate. The next

section discusses the above-mentioned stored procedures in detail.

6.3.1.1 Retrieve details regarding previous navigations

Stored procedure name: BIMcache ()

When a user successfully navigates to a certain destination, his movement information will be

added to BIMcache. Using that movement information, a real-time map could be generated.

If another user requires to reach the same destination from the same source, the generated map

will be automatically loaded to the user via the BIMcached data without allowing them to

navigate using the simulator. Generating and loading the real-time map via BIMcache reduces

the time of query execution and increases the performance. Two B-tree indexes were

implemented on the BIMcache stored procedure for performance enhancement.

The flow of the BIMcache () stored procedure:

105

Figure 6.1: Flow of BIMcache () stored procedure

Index name: path_history_info_to_starting and path_history_info_to_ending

Implemented index:

//create index on starting point

CREATE INDEX path_history_info_to_starting ON path_history_info (starting_point

ASC)

106

//create index on ending point

CREATE INDEX path_history_info_to_ending ON path_history_info (ending_point

ASC)

Results of indexing

The test was conducted with three users and they had to navigate to a nearby location, a remote

location and undergo an obstacle replacement. The total runtime of the BIMcache stored

procedure was found before and after indexing was applied. The mean values were calculated

for both scenarios after executing the stored procedure for 5 times. The mean runtime of the

BIMcache stored procedure before indexing was 3.348 s whereas the mean runtime of the

BIMcache stored procedure after indexing turned out to be 0.880 s.

Cost comparison for index on BIMcache () stored procedure

The graph in figure 6.2 illustrates the reduction in the total runtime before and after indexing

was applied on the BIMcache stored procedure.

6.3.1.2 Obtain path history information

Stored procedure: select_starting_and_ending ()

3.348

0.88

0

0.5

1

1.5

2

2.5

3

3.5

4

Before indexing After indexing

T
ot

al
 r

un
 ti

m
e(

s)

Stage of indexing

Index on BIMcache() stored procedure

Figure 6.2: Cost comparison for stored procedure with indexing

107

This stored procedure is used to find the path history id for a given source and destination

from the path_history_info table where the end user successfully reaches the destination

(achieve = 1). Path history id filters movement information for map generation from the

movement_info table, which generates the real-time map. Due to the importance of obtaining

the path history id, the performance of the stored procedure was increased by adding a partial

index on it. Figure 6.3 illustrates the flow of select_starting_and_ending () stored procedure.

Flow of the select_starting_and_ending () stored procedure:

Figure 6.3: Flow of select_starting_and_ending () stored procedure

Index name: path_history_info_get_achieve

Implemented index:

108

//create index on successfully reached path history information

CREATE INDEX path_history_info_get_achieve ON path_history_info (achieve)

WHERE achieve = '1'

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and undergo an obstacle replacement. The total runtime of the

select_starting_and_ending () stored procedure was found before and after indexing was

applied. The mean values were calculated for both scenarios after executing the stored

procedure for 5 times. The mean runtime of the select_starting_and_ending () stored

procedure before indexing was 0.789 s whereas the mean runtime of the

select_starting_and_ending () stored procedure after indexing turned out to be 0.175 s.

Cost comparison for index on select_starting_and_ending () stored procedure

 Figure 6.4: Cost comparison of select_starting_and_ending () stored procedure

The graph in figure 6.4 illustrates the reduction in the total runtime before and after indexing

was applied on the select_starting_and_ending () stored procedure

6.3.1.3 Obtain wall information

Stored procedure: select_values_from_wall_info ()

1.363

0.24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Before Indexing After Indexing

Stage of Indexing

T
ot

al
 r

un
 ti

m
e

(s
)

Index on select_starting_and_ending () stored
procedure

109

After navigating within the simulator, environmental data should be collected based on the X,

Y coordinates. The X, Y coordinates of the walls can be collected by obtaining the coordinates

of the start and end points of the wall together with the coordinates in between. The walls

passed by the users are the most important environmental data that can facilitate users in

navigation. Hence, the “select_values_from_wall_info” stored procedure was created to filter

out accurate wall information. Two B-tree indexes were implemented on this stored procedure

to increase the efficiency of the data filtering process. Figure 6.5 illustrates the flow of

select_values_from_wall_info () stored procedure

Flow of the select_values_from_wall_info () stored procedure:

Figure 6.5: Flow of select_values_from_wall_info () stored procedure

Index names: wall_info_select_with_building_id

 wall_info_select_with_floor_id

110

Implemented indexes:

//create index on building id of wall_info table to retrieve walls inside specific building

 CREATE INDEX wall_info_select_with_building_id ON wall_info(b_id_fk_w ASC)

//create index on floor id of wall_info table to retrieve walls inside specific floor

CREATE INDEX wall_info_select_with_floor_id ON wall_info(f_id_fk_w ASC)

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and undergo an obstacle replacement. The total runtime of the

select_values_from_wall_info () stored procedure was found before and after indexing was

applied. The mean values were calculated for both scenarios after executing the stored

procedure for 5 times. The mean runtime of the select_values_from_wall_info () stored

procedure before indexing was 1.770 s whereas the mean runtime of the BIMcache stored

procedure after indexing turned out to be 0.287 s.

Cost comparison for index on select_values_from_wall_info () stored procedure

Figure 6.6: Cost comparison for select_values_from_wall_info stored procedure

The graph in figure 6.6 illustrates the reduction in the total runtime before and after indexing

was applied on the select_values_from_wall_info stored procedure.

1.363

0.24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Before Indexing After Indexing

Stage of Indexing

T
ot

al
 r

un
ti

m
e

(s
)

Index on select_values_from_wall_info () stored
procedure

111

6.3.1.4 Obtain door information

Stored procedure: select_values_from_door_info ()

Gathering information on doors is another important feature in real-time map generation. The

door information would be filtered from the AccessBIM model based on the user’s X, Y

coordinates. The X, Y coordinates of the door’s starting and ending points and the current

status (whether it is open or close) are the key factors that are required to present door

information in a real-time map. Therefore, “select_values_from_door_info()”stored

procedure was created and placed with two indexes. Figure 6.7 illustrates the flow of

select_values_from_door_info () stored procedure

Flow of the select_values_from_door_info () stored procedure:

Figure 6.7: Flow of select_values_from_door_info () stored procedure

Index names: door_info_select_with_building_id

 door_info_select_with_floor_id

112

Implemented indexes:

//create index on building id of door_info table to retrieve doors inside specific building

CREATE INDEX door_info_select_with_building_id ON door_info(b_id_fk_d ASC);

//create index on floor id of wall_info table to retrieve doors inside specific floor

CREATE INDEX door_info_select_with_floor_id ON door_info(f_id_fk_d ASC);

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and undergo an obstacle replacement. The total runtime of the

select_values_from_door_info () stored procedure was found before and after indexing was

applied. The mean values were calculated for both scenarios after executing the stored

procedure for 5 times. The mean runtime of the select_values_from_door_info () stored

procedure before indexing was 1.735 s whereas the mean runtime of the

select_values_from_door_info () stored procedure after indexing turned out to be 0.360 s.

Cost comparison for index on select_values_from_door_info () stored procedure

Figure 6.8: Cost comparison for select_values_from_door_info stored procedure

The graph in figure 6.8 illustrates the reduction in the total runtime before and after indexing

was applied on the select_values_from_door_info () stored procedure.

1.363

0.24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Before Indexing After Indexing

Stage of Indexing

T
ot

al
 r

un
ti

m
e

(s
)

Index on select_values_from_door_info ()
stored procedure

113

6.3.1.5 Update door information

Stored procedure: update_door_info ()

Current door information could be retrieved using “select_values_from_door_info” stored

procedure. After the user navigates via simulation, if the status of any door changes, it needs

to be updated in the database. “update_door_info()” stored procedure was built to increase the

efficiency of updating the database. Two partial indexes were placed on the stored procedure

to enhance the efficiency. Figure 6.9 illustrates the flow of update_door_info () stored

procedure

Flow of the update_door_info () stored procedure:

Figure 6.9: Flow of update_door_info () stored procedure

Index names: door_info_get_update_isopen

 door_info_get_update_isclosed

114

Implemented indexes:

// create index on door isOpen column to retrieve the doors that are open

CREATE INDEX door_info_get_update_isopenON door_info (isopen) WHERE

isopen =0

// create index on door isOpen column to retrieve the doors that are close

 CREATE INDEX door_info_get_update_isclosed ONdoor_info (isopen) WHERE

isopen=1

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and with an obstacle replacement. The total runtime of the update_door_info

() stored procedure was found before and after indexing was applied. The mean values were

calculated for both scenarios after executing the stored procedure for 5 times. The mean

runtime of the update_door_info () stored procedure before indexing was 1.745 s whereas the

mean runtime of the update_door_info () stored procedure after indexing turned out to be

0.373 s.

Cost comparison for index on update_door_info () stored procedure

Figure 6.10: Cost comparison for update_door_info stored procedure

The graph in figure 6.10 illustrates the reduction in the total runtime before and after indexing

was applied on the update_door_info stored procedure.

1.363

0.24

0

0.5

1

1.5

Before Indexing After Indexing

Stage of Indexing

T
ot

al
 r

un
ti

m
e

(s
)

Index on update_door_info () stored procedure

115

6.3.1.6 Find object information

Stored procedure: select_object_info()

Obstacle identification in navigation is a vital factor for real-time map generation. Vision

impaired individuals feel comfortable if they can identify obstacles accurately.

select_object_info() was created to find out obstacles/ objects within a few seconds, that the

user meets while navigating. Figure 6.11 illustrates the flow of the select_object_info() stored

procedure.

Flow of the select_object_info() stored procedure:

Figure 6.11: Flow of select_object_info () stored procedure

Index names: object_info_select_with_building_id

 object_info_select_with_floor_id

116

Implemented indexes:

//create index on building id of object_info table to retrieve objects inside specific building

 CREATE INDEX object_info_select_with_building_id ON object_info(b_id_fk_o

ASC)

//create index on floor id of object_info table to retrieve objects inside specific floor

CREATE INDEX object_info_select_with_floor_id ON object_info(f_id_fk_o ASC)

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and undergo an obstacle replacement. The total runtime of the

select_object_info () stored procedure was found before and after indexing was applied. The

mean values were calculated for both scenarios after executing the stored procedure for 5

times. The mean runtime of the select_object_info () stored procedure before indexing was

1.363 s whereas the mean runtime of the select_object_info () stored procedure after indexing

turned out to be 0.240 s.

Cost comparison for index on select_object_info () stored procedure

Figure 6.12: Cost comparison for select_object_info stored procedure

1.363

0.24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Before Indexing After Indexing

Stage of Indexing

T
ot

al
 r

un
ti

m
e

(s
)

Index on select_object_info () stored procedure

117

The graph in figure 6.12 illustrates the reduction in the total runtime before and after indexing

was applied on the select_object_info () stored procedure.

6.3.1.7 Update object details

Stored procedure: update_object_info ()

Select object info supports to filter details regarding an object from the database. If the

position of any object changes, AccessBIM model should be updated with the most recent

information. “update_object_info ()” Stored procedure is there to update modifications

according to the user’s most recent navigation. Two indexes were created to enhance the

performance of the stored procedure further. Figure 6.13 illustrates the flow of

update_object_info () stored procedure

Flow of the stored procedure:

Figure 6.13: Flow of update_object_info () stored procedure

118

Index names: object_info_update_with_building_id

object_info_update_with_floor_id

Implemented indexes:

//create index on building id of object_info table to update objects inside specific building

 CREATE INDEX object_info_update_with_building_id ON object_info(b_id_fk_o

ASC)

//create index on building id of object_info table to update objects inside specific building

 CREATE INDEX object_info_update_with_building_id ON object_info(b_id_fk_o

ASC)

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and undergo an obstacle replacement. The total runtime of

update_object_info () the stored procedure was found before and after indexing was applied.

The mean values were calculated for both scenarios after executing the stored procedure for

5 times. The mean runtime of the update_object_info () stored procedure before indexing was

1.557 s whereas the mean runtime of the update_object_info () stored procedure after indexing

turned out to be 0.558 s.

119

Cost comparison for index on update_object_info () stored procedure

The graph in figure 6.14 illustrates the reduction in the total runtime before and after indexing

was applied on the update_object_info stored procedure.

6.3.1.8 Find the routes

Stored procedure: get_routing_details_for_a_specific_day ()

Wall, door and object information could be filtered to generate the necessary classes and the

map within a lesser time. As the map is generated in real time it is important to identify the

user’s route to obtain the exact environmental values. Therefore,

“get_routing_details_for_a_specific_day ()” stored procedure was created. Consequently, the

research project uses a simulator procedure to find route details for a specific day. In an actual

environment, it is important to optimise this procedure so that the routes could be found within

an hour to generate an efficient real-time map. Reducing the time intervals provides a real-

time map with latest environmental characteristics for vision impaired individuals, each time

they require a map for indoor navigation. One index on the procedure supports further

optimization of data filtering and loading. Figure 6.18 illustrates the flow of the

get_routing_details_for_a_specific_day () stored procedure.

1.557

0.558

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Before indexing After indexing

T
ot

al
 r

un
 ti

m
e(

s)

Stage of indexing

Index on update_object_info () stored procedure

Figure 6.14: Cost comparison for update_object_info stored procedure

120

Flow of the stored procedure:

Figure 6.15: Flow of get_routing_details_for_a_specific_day () stored procedure

Index names: movement_info_get_routing_for_date()

Implemented indexes:

//create index on date of movement_info table to get specific routings per day

CREATE INDEX movement_info_get_routing_for_date ON movement_info

(date(time_stamp));

Results of indexing

The test was conducted with three users after allowing them to navigate to a nearby location,

a remote location and undergo an obstacle replacement. The total runtime of the

get_routing_details_for_a_specific_day () stored procedure was found before and after

indexing was applied. The mean values were calculated for both scenarios after executing the

stored procedure for 5 times. The mean runtime of the get_routing_details_for_a_specific_day

() stored procedure before indexing was 10.776 s whereas the mean runtime of the

121

get_routing_details_for_a_specific_day () stored procedure after indexing turned out to be

1.337 s.

Cost comparison for index on get_routing_details_for_a_specific_day () stored procedure

The graph in figure 6.16 illustrates the reduction in the total runtime before and after indexing

was applied on the get_routing_details_for_a_specific_day stored procedure.

6.3.2 Performance Enhancement with the use of BIMcache for Real-Time Indoor
Map Generation

BIMcache is a database optimization technique used in this research to enhance the

performance of the AccessBIM database. This section demonstrates how BIMcache facilitates

the generation of the indoor map in real-time with its test results described in section 6.4.2.

a) Scenario 1

Name: The user navigates to a nearby destination (Main entrance to Lab 702-Test

Simulation). The user needs to navigate from the main entrance of the 7th floor (A) to the Lab

702 (B) which is a nearby location.

10.776

1.337

0

2

4

6

8

10

12

Before indexing After indexing

T
ot

al
 r

un
 ti

m
e(

s)

Stage of indexing

Index on get_routing_details_for_a_specific_day ()
stored procedure

Figure 6.16: Cost comparison for get_routing_details_for_a_specific_day stored procedure

122

.

Figure 6.17: Floor arrangement for first-time navigation

Figure 6.18: Floor arrangement for second-time navigation.

Expected output:

The author expects that, when a vision impaired individual selects the source and destination:

 The simulator would check BIMcache.

 If the selected route is unavailable in BIMcache, the user is allowed to navigate

within the simulator and the movement information of the user and the selected

source and destination is stored in the database.

 When a new user selects the same source and destination, a map will be loaded via

the existing movement information available in the BIMcache.

123

 The user can refer the map to navigate within the indoor environment and if there

is any change such as the movement of an obstacle or change in the status of a door,

it will be updated in the BIMcache movement information for future use.

Test results:

Test results for first-time navigation:

-Simulator checks the availability of a route for the given source and destination within

the BIMcache data as shown in figure 6.19.

-Allows the user to navigate within the simulator due to the unavailability of movement

information in the BIMcache data.

Current obstacle position

Empty data collector

Selected source and

destination

Figure 6.19: Check route availability in BIMcache data

Figure 6.20: User navigate to the desired destination within simulator

BIMcache

124

-Generate real-time map after the navigation

-Add movement information of scenario 1 to the BIMcache.

-Load movement information when user 2 selects the same source and destination for

navigation.

- Generate real-time map based on the loaded movement information

- Allow the user to navigate with the help of the generated map.

- Update the BIMcache movement information with the object replacement and door

status.

Current obstacle position

Select same source and

destination

Loaded movement

Figure 6.21: Generated real-time map

Figure 6.22: Loaded movement information for scenario 1

BIMcache

125

6.3.3 Performance Enhancement with the use of Query Rewriting for Real-Time
Indoor Map Generation

Query rewriting was used throughout the real-time map generation project to obtain the most

relevant data from the collected data set through the use of The SQL JOIN clause. This section

demonstrates how query rewriting facilitates the generation of the indoor map in real-time

with its test results described in section 6.4.3.

i.e.: To obtain the real-time map, data from both movement_info and path_history_info

tables, are required.

a) Scenario 1

Figure 6.23 demonstrates a situation where query rewriting is not used. Highlighted

area of the figure proves that without the SQL JOIN condition, it is unable to filter

the most recent path history information to generate the real-time map.

Figure 6.23: Output of query execution without SQL JOIN

126

b) Scenario 2

Figure 6.24 is an example of a situation, which uses query rewriting. Highlighted area of the

figure proves that with the use of the SQL JOIN condition it is possible to filter the most

relevant details for map generation within a short period of time.

6.4 Comparison of Results and Discussion

The research on Vision Impaired Indoor Navigation and Real-time map generation utilized

several database optimization techniques such as stored procedures, Indexing, BIMcache and

Query rewriting. The previous section described how each of these database optimization

techniques were utilized in the research. This section discusses the results of database

optimization apart from comparing the total time taken for real-time map generation. It also

describes the quantitative benchmark for performance enhancement.

Figure 6.24: Output of query execution with SQL JOIN

127

6.4.1 Discussion on stored procedures and indexing

Figure 6.25: Summary of time reduction comparisons

The use of indexes facilitate in reducing the execution time of the stored procedures in

inserting, updating, deleting and retrieving data. The same map generation instance was

executed for 8 times by applying indexing on one stored procedure at a time for which the

results are presented in figure 6.25. It can be observed from figure 6.25 that the use of indexing

has reduced the execution time of each instance by a substantial amount.

As per the results indicated in figure 6.25 the addition of the total runtime of executing each

stored procedure without indexing adds up to 23.077 s while the sum of the total runtime of

executing each stored procedure with indexing totals to 4.22 s. However, as the author has

considered each stored procedure individually, the total run time values represent the sum of

the individual changes of applying indexing to each stored procedure. Besides, indexing that

supports one operation may slow down another. Thus, to overcome this problem a single map

generation instance was executed by applying indexing on all the 8 stored procedures at once

and their execution times were noted. The graph given below depicts the total runtime for

executing all the 8 stored procedures at once, before and after indexing was applied.

SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8

Total runtime (s) before
indexing 3.334 0.791 1.765 1.732 1.749 1.368 1.559 10.769

Total runtime (s) after indexing 0.883 0.173 0.289 0.362 0.378 0.239 0.559 1.338

0

2

4

6

8

10

12
T

ot
al

 r
un

ti
m

e
(s

)

Stored procedure

Summary of runtime reduction

Total runtime (s) before indexing Total runtime (s) after indexing

128

Figure 6.26: Execution time of all 8 stored procedures with and without indexing

When indexing was applied on all the 8 stored procedures at once, the total run time amounted

to 5.34 s while the total run time of all 8 stored procedures before indexing was applied

accounted to 27.89 s. Hence the percentage of database optimization due to stored procedures

and indexing can be calculated as a percentage of an index efficiency factor (Ef).

The following index efficiency calculation is based on the output illustrated in figure 6.46

 T n = ∑ ܽ݅
ୀଵ Equation 1

n = Number of stored procedures

a = Summation element

nw = Number of stored procedure with indexes

i = Index counter

T n = Total execution time without indexing

T nw = Total execution time with indexing

Ef = Index efficiency factor

According to figure 6.42:

T n= 27.89 ms

T nw= ∑ ܽ݅௪
ୀଵ Equation 2

T nw= 5.34 ms

27.89

5.34

0

5

10

15

20

25

30

Executing all stored procedures with
indexing

Executing all stored procedures without
indexing

T
ot

al
 r

un
ti

m
e

(s
)

Runtime of stored procedures

129

Ef = T n / T nw Equation 3

Ef =
ଶ.଼ଽ	௦

ହ.ଷସ	௦
 = 5.2228 5.2

6.4.2 Discussion on the use of BIMcache

The use of BIMcache reduces the time of query execution and increases performance of the

database as the real-time map will be automatically loaded to the user if any previous

navigation to the same destination from the same source has taken place. Table 6.1 illustrates

the test results of the queries executed with and without the use of BIMcache.

Table 6.1: Query execution time with and without the use of BIMcache

Number_of_users (n)

Execution_time
without the use of
BIMcache (s)

Execution_time with the use

of BIMcache (s)

1 15.926 8.613

2 17.605 9.826

3 19.459 8.303

4 17.918 8.835

5 16.994 9.335

6 11.506 9.824

7 15.314 8.999

8 17.138 7.844

9 14.866 8.47

10 14.619 9.367

11 11.213 9.976

12 17.625 8.589

13 14.724 9.978

14 16.253 9.598

15 13.354 7.943

130

It can be observed in figure 6.27 that, the use of BIMcache has significantly reduced the time

of query execution.

6.4.3 Discussion on query rewriting

As illustrated in section 6.3.3 a query to find the most recent path history information was

executed with and without a SQL JOIN to assess the efficiency of query rewriting. The query

executed without the SQL JOIN retrieved 541 rows of most recent path history information

within 247 ms while the query with the SQL JOIN retrieved only 170 rows of most recent

path history information within 230 ms. This indicates that the use of a SQL JOIN increases

the efficiency of the database by minimizing the execution time by reducing the number of

rows retrieved. Hence, the use of a SQL JOIN facilitates real-time map generation by

retrieving the most relevant information from the database within a short period of time.

The number of data rows retrieved within a specific period determines the Optimization factor

(Of). The Optimization factor analyzes the proportion of efficiency of query rewriting in terms

of a numeric value. The Optimization factor of the query to find the most recent path history

information executed with and without the SQL JOIN is given below.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

Q
ue

ry
 e

xe
cu

ti
on

 ti
m

e
(s

)

Number of users (n)

Query execution time with and without the use of BIMcache

Execution_time without the use of BIMcache (s)

Execution_time with the use of BIMcache (s)

Figure 6.27: Query execution time with and without the use of BIMcache

131

 Tq Nd

 Tq = Of x N d Equation 4

 Of =
்

ேௗ
 Equation 5

The following calculations were performed using equation 7;

 Optimization factor for the query executed without the SQL JOIN (Of1)

Of1 =
ଶସ	௦

ହସଵ	௪௦
 = 0.4565 0.46

 Optimization factor for the query executed with the SQL JOIN(Of2)

Of2 =
ଶଷ	௦

ଵ	௪௦
 = 1.3529 1.36

Tq = Query execution time

Nd = Number of retrieved data rows

Of = Optimization factor

Of1 = Optimization factor for scenario 1

Of2 = Optimization factor for scenario 2

Equation 5 shows the relationship between the execution time and the number of rows

corresponding to the query execution with and without a SQL JOIN. The Optimization factor

for the query executed without the SQL JOIN (Of1) is 0.46 whereas the Optimization factor

for the query executed with the SQL JOIN (Of2) is 1.36. Since the Optimization factor for the

query with the SQL JOIN is greater than the Optimization factor for the query without the

SQL JOIN (Of2>Of1), it can be justified that the use of SQL JOINS enhances the efficiency of

the AccessBIM database.

6.4.4 Comparison of the total time in real-time map generation

The key factor of monitoring the system performance indicates that the implemented

AccessBIM database optimization model is successful in building a real-time map based on

proposed algorithms in a simulated environment.

132

The database is responsible for executing queries; hence, priority must be given to efficient

query execution as a factor of time. Since the real-time map is generated based on the inputs

of environmental changes, the comparison of the total time in real-time map generation was

calculated for 15 occurrences of user navigations. The total time taken for map

generation൫ ܶ_௧௧൯ depends on the following time factors used in equation 8.

1. Time which takes a user to navigate within the simulator൫ ௨ܶ_௩൯

2. Time taken to process the collected data൫ ܶ௦௦൯

3. Time to generate the real-time map based on collected data൫ ܶ_൯

		 ܶ_௧௧ ൌ 	 ௨ܶ_௩ ܶ௦௦ ܶ_ Equation 6

The total map generation time can be calculated by changing the following parameters to

evaluate the strength of the AccessBIM framework.

1. Indoor map generation time without database optimization

2. Map generation time with query rewriting

3. Map generation time with stored procedures and indexing

4. Map generation time with BIMcache

5. Map generation time with all 3 optimization techniques: query rewriting, stored

procedures & indexing and BIMcache

The analysis given below was conducted to further signify the efficiency of the AccessBIM

database in a simulated environment.

In order to analyze the efficiency of stored procedures and query rewriting for performance

enhancement in real-time map generation, fifteen scenarios were selected for the analysis with

increasing number of users. Each of the 15 scenarios were run for 5 times and the mean time

for usual execution, with query rewriting, with stored procedures and indexing together with

BIMcache were calculated. All the times were measured in seconds.

133

Table 6.2: Analysis based on Total real-time map generation time

Number of

Users

Original

execution time

(Ot)

With query

rewriting

(Or)

With query

rewriting +

stored

procedures &

 indexing (Oi)

With query

rewriting +

stored

procedures &

 indexing +

BIMcache (Om)

1 72.18 17.86 13.20 34.24

2 180.46 44.65 33.00 46.13

3 400.29 99.03 73.20 42.15

4 442.94 109.58 81.00 27.93

5 482.31 119.33 88.20 31.36

6 656.21 162.35 120.00 20.64

7 725.11 179.39 132.60 33.77

8 787.45 194.82 144.00 38.55

9 790.73 195.63 144.60 47.17

10 803.85 198.88 147.00 35.27

11 816.98 202.12 149.40 46.59

12 823.54 203.75 150.60 29.82

13 987.59 244.33 180.60 36.49

14 1023.68 253.26 187.20 26.92

15 1033.53 255.70 189.00 44.56

Table 6.2 indicates that the total time taken to generate the real-time map using all three forms

of database optimization is greater than the total time taken to generate the map using only

stored procedures + indexing and query rewriting, in the first two instances. This is mainly

due to the fact that when few users request navigation assistance less crowdsourced data is

available in the database thereby taking a greater time to generate the real-time map. However,

when more and more users navigate, more and more crowdsourced information on specific

locations can be obtained. Hence, the real-time map takes less time to be generated as the

134

queries are processed much faster as data is already available in the AccessBIM database.

Thus, it can be concluded that the total map generation time reduces with the increasing

number of users.

The graph shown in figure 6.28 was plotted in accordance to the total real-time map generation

times to show the effectiveness of using stored procedures, BIMcache and query rewriting in

real-time map generation.

Figure 6.28 compares the usual time taken to generate the real-time map with the total time

taken to generate the real-time map with the use of query rewriting, BIMcache, stored

procedures and indexing. The total map generation time has reduced by a considerable amount

with the application of stored procedures and query rewriting. It is evident that the use of

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16

T
ot

al
 m

ap
 g

en
er

at
io

n
tim

e
(s

)

Number of users

Total map generation time comparison

Original execution time (Ot)

With query rewriting (Or)

With query rewriting + stored procedures & indexing (Oi)

With query rewriting + stored procedures & indexing + BIMcache (Om)

Figure 6.28: Total real-time map generation time comparison

135

BIMcache has significantly reduced the total time taken to generate the real-time map by a

substantial amount. The use of algorithms discussed in chapter four makes a significant impact

on the total real-time map generation time by reducing the time of query execution.

Table 6.3 given below summarizes the results of all the tests performed on the AccessBIM

framework. The research results indicate that the synthesis of the three database optimization

techniques has significantly reduced the total map generation time facilitating the indoor map

to be generated in real-time.

Table 6.3: Summary of research results

Element Details

Results

Without optimization With optimization

Stored
procedures &

indexing

A map generation instance
was executed for 8 times
by applying indexing on
one stored procedure at a
time.

23.077 s 4.22 s

A single map generation
instance was executed by
applying indexing on all
the 8 stored procedures at
once.

27.89 s 5.34 s

BIMcache

The query execution time
when a single map
generation instance was
executed with 5 users
requesting for navigation
assistance simultaneously.

16.994 s 9.335 s

136

Query rewriting

The query execution time
when the queries are
executed with and without
a SQL join.

Retrieved 541 rows
within 247 ms

Retrieved 170 rows
within 230 ms

Query execution
time

25000 queries from the
movement_info table
related to map generation
was executed with and
without the use of query
rewriting, BIMcache,
stored procedures and
indexing with 5 users
requesting for navigation
assistance simultaneously.

16.994 s 10.016 s

Total map
generation time

The total map generation
time when a single map
generation instance was
executed with 5 users
requesting for navigation
assistance

482.31 s 313.64 s

6.4.5 Quantitative benchmark for performance enhancement

It is crucial that vision-impaired individuals navigate safely through indoor environments

without collisions. Hence, faster retrieval of data is essential to generate a reliable indoor map.

This section mainly focuses on establishing a benchmark to assess the performance of the

AccessBIM database that facilitates faster data transactions. Linear association was used to

evaluate the performance of the AccessBIM database where two numerical variables were

used to demonstrate and forecast the dependent variable [77].

In order to test the performance of the AccessBIM model, 25000 records were used from the

movement_info table demonstrated in chapter 3. The queries were tested and simulated using

the PostgreSQL Graphical User Interface (GUI) using an Intel® Core™ i5 processor with an

137

8GB memory. Real-time Indoor Navigation simulation engine was used to test the

performance of the AccessBIM framework. The test results have been obtained by the

simultaneous execution of queries in the database by changing the number of simultaneous

executions from 1 to 50 queries at a time. The PostgreSQL command EXPLAIN ANALYZE

[68] was used to measure the query execution time ൫ ܶ_௫൯ of the above mentioned

simultaneous executions.

PostgreSQL formulates a query plan for each query it receives. The EXPLAIN command is

used to monitor the query plan for each query executed. The EXPLAIN ANALYZE command

shows additional execution statistics such as the plan node execution times and rows counts

[78].

According to the gathered test results, Execution time ሺ ܶ_௫ሻ	is taken to predict the

performance enhancement, which will act as the dependent or the response variable of the

linear association. Number of Occurrences resembles the number of users (n), which is the

predictor or else the independent variable that was used to forecast the performance.

The table in Appendix D indicates the test results collected by executing 25000 queries related

to map generation among 100 users. (100 occurrences) Table 6.4 demonstrates the execution

time for the first 15 occurrences without the use of query rewriting, BIMcache, stored

procedures and indexing. Table 6.5 demonstrates the execution time for the first 15

occurrences with database optimization techniques such as query rewriting, BIMcache, stored

procedures and indexing. Both the tables contain two columns named “Number of users”	ሺ݊ሻ

and “Execution time” ሺ ܶ_௫ሻ which represents the X-axis and the Y-axis of the graph drawn

to represent the linear relationship between the dependent and the independent variable. In

order to demonstrate a clear relationship, the graphs have been drawn to represent the

execution times of all the 100 occurrences (Appendix D) even though the tables given below

illustrate only the first 15 occurrences.

138

Table 6.4: Comparison between the number of occurrences and execution time without optimization

Number_of_users (n) Execution_time (ms)	
ሺࢋ࢞ࢋ_ࢀሻ

1 15.926

2 17.605

3 19.459

4 17.918

5 16.994

6 11.506

7 15.314

8 17.138

9 14.866

10 14.619

11 11.213

12 17.625

13 14.724

14 16.253

15 13.354

139

Figure 6.29 indicates the linear association between the number of users and the execution

times without optimization. The regression equation obtained from the linear association

generates the below-mentioned quantitative benchmark:

ܶ_௫ ൌ 16.256 െ 0.0233	݊ Equation 7

Where;

ܶ_௫ : Execution time in ms

݊ : Number of users

The equation given above inherits the pattern of the linear association as Y = β 0+ β 1X. β 0 exhibits

the intercept of the line whereas ᵝ1 indicates the slope of the line. According to equation 9, ᵝ0

= 16.256 and ᵝ1 = -0.0233. The equation can be used to predict the execution time when the

number of users are known.

0

5

10

15

20

25

0 20 40 60 80 100 120

E
xe

cu
ti

on
 ti

m
e

(m
s)

Number of users

Linear association in execution time - without optimization

Execution_time
(ms)

Linear
(Execution_time
(ms))

Figure 6.29: Linear association between number of users and execution times (without optimization)

140

In order to compare the significance of the AccessBIM framework, the same queries were

executed along with several optimized strategies such as query rewriting, BIMcache, stored

procedures and indexing. Table 6.5 displays the execution times of the first 15 occurrences

with optimization.

Table 6.5: Comparison between number of occurrences and the execution time with optimization

Number_of_users(n) Execution_time(ms)

ሺࢋ࢞ࢋ_ࢀሻ

1 8.0097

2 10.986

3 11.28

4 8.3745

5 10.016

6 9.89

7 12.242

8 11.841

9 10.005

10 10.816

11 8.507

12 14.392

13 11.677

14 12.365

15 11.04

141

Figure 6.30 indicates the linear association between the number of users and the execution

times with optimization. The regression equation obtained from the linear association

generates the below-mentioned quantitative benchmark:

ܶ_௫ ൌ 10.62 െ 0.03092	݊ Equation 8

Where;

ܶ_௫ : Execution time in ms

݊: Number of users

Here too the dependent variable Y (ܶ_௫ሻ, is related to the independent variable X (n). ᵝ0

exhibits intercept of the line whereas ᵝ1 indicates the slope of the line. According to equation

11, ᵝ0 = 10.62 and ᵝ1 = -0.03092.

The slope of both the graphs (figure 6.29 & figure 6.30) being a negative value indicate that

the time of query execution reduces with the number of users. This is mainly due to the fact

that when few users request navigation assistance less crowdsourced data is available in the

database thereby taking a greater time to generate the real-time map. However, when more

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

E
xe

cu
ti

on
 ti

m
e

(m
s)

Number of users

Linear association in execution time - with optimization

Execution time

Linear (Execution
time)

Figure 6.30: Linear association between number of users and execution time (with optimization)

142

users navigate, more crowdsourced information on specific locations can be obtained thereby

enriching the data in the AccessBIM database with relevant and new information. The figures

6.29 and 6.30 indicate the linear association between the number of users and the query

execution times with the use of database optimization. The slope of the graph being negative

indicate that the time of query execution reduces with the increasing number of users as the

queries are processed much faster given that data is already available in the AccessBIM

database.

In addition, the author would like to express that the simulated users are performing the task

of navigation from a set of starting points to a set of destinations, one set per each occurrence.

This set is a random selection on the simulation environment and the path variables of each

navigation set is collected into the database and updated when changes occur. A change occurs

in an event of an obstacle in the path such as an object, closed door, etc. As it is illustrated in

the above figure the user data vector is a vital factor in the database optimization process. The

performance enhancement benchmark generated to predict the execution time in this research

can be used to assess the performance of any other relational databases as we

143

6.5 Evaluation of the AccessBIM framework against existing work

6.5.1 Comparison between query execution time and size of data retrieved

Mithani et al. paper on ‘A Novel Approach for SQL Query Optimization’ [79] compares the

execution time (sec) and the size of the data retrieved (MB) for both optimized and non-

optimized queries. Figure 6.31 illustrates the output of the experiment performed in executing

the actual query and the optimized query by varying the size of data retrieved. The results of

the experiment depict that both the optimized queries and the non-optimized queries has had

a similar execution time.

Mithani et al. followed an approach where an input query was run first to acquire information

on the database schema, number of joins, missing indexes and the redundant use of tables

from which syntax, constraint information and join aggregation can be identified. This output

was then used to rewrite the input query in an optimized mode. The new input query is used

to generate a detailed query execution plan to identify any existing performance pitfalls. The

optimized execution plan would include SQL tuning, hash temporary table, join benchmark

and summarized data.

Figure 6.31: Query execution with respect to time and size
(Taken from: ‘A Novel Approach for SQL Query

Optimization’ [79])

144

Due to the absence of technically identical research work for evaluation, the results of Mithani

et al. paper was used as a benchmark to assess the degree of performance of the AccessBIM

framework as both models contained quite a few technical similarities despite its optimization

approach. The similarities between the two frameworks are described in table 6.6.

Table 6.6: Technical comparison of the two models

 Variable

Framework
described in the

referenced paper
[78]

AccessBIM
framework

Similarities

Processor Core i5-2430M

System type 64 bit operating system

Clock frequency 2.4 GHz

RAM 4 GB

Differences

Operating system Windows 7 Windows 8.1

DBMS MySQL PostgreSQL

The work in Mithani’s paper was done in a windows 7-64 bit machine that uses a Core i5-

2430M CPU with a clock frequency of 2.4GHz and 4GB of RAM while the work in this thesis

was performed in a windows 8, 64 bit machine that uses the same Intel core i5-2430M

processor with a 4 GB RAM. It is presumed that the difference in the version of the operating

system and DBMS has no striking impact on query execution as both MySQL and PostgreSQL

are world renowned, time proven enterprise open source relational database management

solutions. Hence, the performance of the AccessBIM framework could be determined by

comparing the execution time of the queries executed through the AccessBIM framework with

the execution times of this research.

145

For the comparison, three optimized queries were executed based on the movement_info table

with varying data sizes and their execution times were noted. These values were then

compared to three specific points on the graph denoted in figure 6.32.

Figure 6.33 depicts one of the three queries executed through the AccessBIM framework.

The first query executed through the AccessBIM framework retrieved 2891 rows within

0.202s, which represented 484 KB (0.47 MB) of data. This was then compared to the outcome

of Mithani’s paper which retrieved 0.5 MB of records within 0.75 s.

select distinct path_history_id_fk

from movement_info

where path_history_id_fk in (select distinct path_history_id_fk from

movement_info where time_stamp > CURRENT_TIMESTamp - interval '15

minutes')

order by path_history_id_fk asc;

Figure 6.32: Query execution with respect to time and size

Figure 6.33: Sample query

146

The second query executed through the AccessBIM framework retrieved 4823 rows within

0.412s, which represented 871 KB (0.85 MB) of data while Mithani’s solution has taken 1.25s

to retrieve 0.9 MB of records.

The third query executed through the AccessBIM framework retrieved 13,482 rows within

1.003s, which represented 1652 KB (1.61 MB) of data while Mithani’s solution has taken

1.75s to retrieve 1.6 MB of records.

Table 6.7 summarizes the results obtained by executing the three queries through the

AccessBIM framework in comparison to the results obtained in Mithani’s paper.

Table 6.7: Comparison between the solution described in the referenced paper and AccessBIM framework

Solution described in the referenced

research
AccessBIM framework

Size of data

retrieved (MB)
Execution time (s)

Size of data

retrieved (MB)
Execution time (s)

0.5 0.75 0.47 0.202

0.9 1.25 0.85 0.412

1.6 1.75 1.61 1.003

147

Figure 6.34 depicts the comparison between the referenced research and the AccessBIM

framework. The y-axis represents the query execution time in seconds while the x-axis

represents the size of the data retrieved in Megabytes. It is observed that there is a significant

difference in the execution times of the AccessBIM framework and the solution described in

the referenced research. The queries executed via the AccessBIM framework has experienced

a lesser execution time compared to the queries executed via the solution described in the

referenced research despite of the similar size of data retrieved.

Hence, it can be concluded that the AccessBIM framework has better performance in terms

of database optimization. This is due to the fact that the AccessBIM framework utilizes three

database optimization techniques in addition to the four algorithms described in chapter 4,

while the solution introduced in the reference paper utilizes a single algorithm, depicted in

figure 6.35, in addition to join and aggregation, query rewriting and an alternate query with

execution plan for query optimization.

0.75

1.25

1.75

0.202

0.412

1.003

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2

E
xe

cu
ti

on
 ti

m
e

(s
ec

)

Retrieved Data Size (MB)

Comparison between the referenced research and the
AccessBIM framework

Solution described in the
referenced research

AccessBIM framework

Figure 6.34: Comparison between the solution described in the referenced paper and AccessBIM
framework

148

6.5.2 Comparison between the frequency of executing the query and the number
of users

J. A. D. C. A. Jayakody et al.’s paper on “A Database Optimization Model with Quantitative

Benchmark” [80] proposed a database optimization model that is capable of significantly

reducing the amount of query execution time thus improving the optimization efficiency. The

research utilized 1500 records from a blood information management system to validate the

efficiency and effectiveness of the proposed optimization model. Results were obtained for

queries executed simultaneously by the database with the increasing number of users. The

optimization model has been tested and simulated using a MYSQL database run on machine

that uses an Intel® Core™ i7 processor and a 8GB RAM.

In order to assess the degree of performance of the AccessBIM framework, the simulation

was run on a windows machine that used an Intel® Core™ i7 processor, and a query similar

to the one used in the research paper was executed using the PostgreSQL AccessBIM database

which contained 1555 records.

Although the referenced research paper utilized different queries on a different system, its

results could be used to evaluate the performance of the AccessBIM framework as both

models have been implemented in a machine with identical technical specification. Besides,

both the frameworks utilized a phpMyAdmin graphical user interface as the simulation

software.

Figure 6.35: Proposed algorithm of the referenced paper (Taken
from: ‘A Novel Approach for SQL Query Optimization’ [79])

149

Figure 6.36: Query used in the referenced paper (Taken from: A database optimization model with quantitative benchmark
[80])

Figure 6.37 depicts the query executed to test the performance of the AccessBIM database

while figure 6.36 illustrates the query used in the referenced research paper. It is observed that

both queries are similar to a greater extent as they contain an INNER JOIN with an ‘ON’

clause.

Figure 6.37: Query executed by the AccessBIM framework

After executing the query, its frequency of execution was determined to obtain a considerable

difference as the time of execution takes a very small value. The frequency of executing the

query was calculated as follows:

݊݅ݐݑܿ݁ݔ݁	݂	ݕܿ݊݁ݑݍ݁ݎܨ ൌ 	
1

݁݉݅ݐ	݊݅ݐݑܿ݁ݔܧ

Table 6.8 compares the frequency of execution for the optimization model proposed in the

paper with the frequency of execution of the AccessBIM framework for the increasing number

of users.

Equation 9

150

Table 6.8: Frequency of execution with changing number of users

Number of users (n) Frequency of execution of
the optimization model in

the referenced paper

Frequency of execution of
the AccessBIM framework

1 2074.69 2080.81

2 1219.51 1517.08

3 766.28 1477.54

4 634.12 1432.17

5 558.66 1414.00

6 508.13 1395.20

7 422.48 1361.43

8 382.36 1330.54

9 343.64 1280.83

10 324.46 1240.93

Figure 6.38 compares the frequency of execution of the AccessBIM model with the

optimization model proposed in the referenced research.

151

Figure 6.38: Comparison between the frequency of execution

It is observed that frequency of execution and the number of users have an inversely

proportional relationship where the frequency of execution approaches zero when the number

of users approaches infinity. The frequency of execution of the AccessBIM framework

decreases by a lesser amount when compared to the database optimization model of the

referenced paper [80]. This indicates that more users can request navigation assistance

simultaneously from the AccessBIM framework rather than the optimization model suggested

in the referenced paper.

6.6 Chapter conclusion

Real-time map generation for indoor navigation is a tough task to achieve due to the rapid

environmental changes. The AccessBIM framework is optimized using stored procedures and

query rewriting. BIMcache, which is a time reduction mechanism is also applied to optimize

the AccessBIM framework. When navigators collect and submit crowdsourced data into the

optimized framework, the real-time map generated within a few seconds to facilitate vision-

impaired individuals.

Since the crowdsourced data for this study was collected via a simulated environment, there

could be changes in the results when the framework is applied in real world due to

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12

F
re

qu
en

cy
 o

f
ex

ec
ut

io
n

Number of Users (n)

Comparison between the frequency of execution

Frequency of execution of the optimization model in the referenced paper

Frequency of execution of the AccessBIM framework

152

uncontrollable environmental factors such as alterations in mobile device platforms, varying

strength of Wi-Fi signals, bandwidth issues and accuracy fluctuations in mobile sensors.

Furthermore there would be latency issues in getting data from the user to the database in an

actual environment.

Following relationships shows the correlation between stored procedure, query rewriting,

BIMcache reduction time and database optimization.

 {Stored procedures, Query rewriting} Database optimization

 {Database optimization, BIMcache time reduction} Optimized AccessBIM

{Optimized AccessBIM, Crowed sourced data} Real-time map

This chapter explains the evaluation matrices, query execution time and query processing time

taken as the baseline to assess the performance of the AccessBIM framework.

Further, this chapter illustrates the database optimization layer which was discussed in section

3.3.1, figure 3.2 with the test results of data insertion and the retrieval involved to generate a

real-time map, which was discussed graphically. A quantitative benchmark was designed to

evaluate the performance enhancement of the AccessBIM framework.

153

 Chapter 7 – Conclusion and Future Research

7.1 Chapter Overview

This chapter discusses the findings of the research with regard to the problem statement and

the general conclusions that were derived from the findings. Section 7.2 summarizes the

findings of the research and its significance while section 7.3 introduces a recommended

framework for database optimization and real-time map generation that could be implemented

in similar research work. Section 7.4 discusses the limitations of the research while section

7.5 refers to the areas of future work.

7.2 Research outcomes and significance

The foremost objective of this research was to determine:

“How indoor structural characteristics could be stored, optimized and used to generate a real-

time map of an indoor environment?”

With the aim of addressing the above question, the author wished to improve the quality of

life for people with vision impairment by assisting them in their indoor navigation, by the

generation of a real-time indoor map that used an improved schema design which incorporated

database optimization techniques such as stored procedures, indexing, query rewriting and

BIMcache. Thus, the AccessBIM model was developed to ease real-time indoor map

generation with enhanced performance and speed, to assist vision impaired in their navigation.

The following significant outcomes were achieved through the research:

● A method to store and traverse data within the AccessBIM server and retrieve related

features and thus generate a map of the spatial environment using the received simulated

crowdsourced data.

● Introduced a quantitative database optimization benchmark.

● Represent building information within the model to be used by vision impaired individuals

to help navigation and path finding in an unknown environment.

154

● Ensures multi-user access of the AccessBIM, due to the real-time nature. In a real

environment, multiple users can access the AccessBIM server and receive related information,

features, and updates that are specific to the place.

● Allow correction and changes in floor plans when errors or replacements are encountered.

This thesis introduced the AccessBIM framework of environmental characteristics that store

and generate an accurate map based on the real-time indoor environmental changes. The

AccessBIM framework tested using a simulator, eases accessibility of the vision impaired as

it aids the management of indoor spatial data in a digital format to assist vision impaired

individuals to independently access unfamiliar indoor environments via the generation of an

indoor map in real-time. The AccessBIM framework collects simulated crowdsourced data

through an API, thus saving time as collecting data via crowdsourcing is much faster

compared to collecting data via mobile robots. The use of the AccessBIM framework also

ensures less confusion as the map is being updated regularly with real-time changes of the

indoor environment. Furthermore, the use of database optimization techniques speeds up the

process of query execution, enabling the map to be generated as and when requested by a user.

The AccessBIM database is capable of achieving the above benefits due to faster query

processing, lesser cost per query and efficient use of the database engine due to less memory

consumption. The author created 32 stored procedures to ensure speed of high end data

transactions and to minimize round trips between the AccessBIM database and the application

to reduce the execution time in generating a real-time map. As the research was based on

simulated crowdsourced data, indexing was applied only to 8 stored procedures that were

critical in minimizing the execution time while indexing was not applied to the rest of the

stored procedures. The use of indexing on stored procedures enhanced the speed of the

database to a greater extent.

Similarly, a memory caching mechanism known as BIMcache was utilized for database

optimization. The BIMcache facilitates in reducing the time taken for map generation by

searching the database for already existing movement information, thus saving time and the

cost of searching data. The use of stored procedures, indexing and BIMcache would optimize

155

the performance of any database, thus enabling the insertion and retrieval of information in

real-time through faster query execution.

The AccessBIM database is also equipped with four algorithms that correlate the AccessBIM

framework with other indoor navigation systems. The Crowdsourced Data Collection

Algorithm identifies the location of each user and obstacle on a periodic basis, in the form of

X and Y coordinates while the Database Optimizer algorithm applies stored procedures and

query rewriting to the relations in the database. The BIMcache Optimizer Algorithm acts

similar to a caching mechanism by searching the database for already existing paths thus

saving time and the cost of searching data. The synthesis of these three algorithms facilitates

the Real-Time Map Generation Algorithm to generate a meaningful indoor map with minimal

consumption of resources.

The use of database optimization makes it convenient to search the required data from large

data sets while facilitating the identification of the best query for retrieving data using minimal

resources. This enables high performance of the system via faster processing and lesser

database cost thereby increasing the performance of the real-time map generation layer which

leads to efficient use of the database engine.

Table 7.1 summarizes the results of the three database optimization techniques used in the

research.

Table 7.1: Summary of research results

Database optimization

technique

Results

Without optimization With optimization

Stored procedures & indexing 23.077 s 4.22 s

BIMcache 16.994 s 9.335 s

Query rewriting Retrieved 541 rows Retrieved 170 rows

156

The total time taken for map generation	depends on the time taken by a user to navigate within

the simulator, the time taken to process the collected data and the time taken to generate the

real-time map based on collected data. Thus, figure 7.1 summarizes the difference in query

execution time and the total map generation time with and without database optimization

when five users request navigation assistance simultaneously.

Figure 7.1: Comparison between query execution time and total map generation time with & without database
optimization

It is evident that the synthesis of the three database optimization techniques has significantly

reduced the total map generation time facilitating the indoor map to be generated in real-time.

Besides, the synthesis of the revised database optimization techniques together with the map

construction algorithms introduced in the research is competent to be implemented in any

other database offering indoor and outdoor navigation assistance to not only the vision

16.994

482.31

10.016
31.36

0

100

200

300

400

500

600

Query execution time Total map generation time

T
im

e
(s

)

Instance

Comparison between query execution time and total map generation time
with & without database optimization

Without optimization With optimization

157

impaired individuals but also tourists and the aged who are unfamiliar with complex and

dynamic environments.

The AccessBIM framework turns out to be the author’s foremost research contribution as the

entire study is based on it while database optimization and the real-time map generation

algorithm also stands out to be significant contributions to the research community. Hence, it

is understood that the author has made three major contributions to the research community

related to vision impaired indoor navigation and database optimization.

According to Helen Keller, “What a blind person needs is not a teacher but another self”, thus

the AccessBIM model of environmental characteristics for vision impaired indoor navigation

and wayfinding stands in place of another self by generating an indoor map in real-time with

the aid of algorithms and the fusion of multiple database optimization techniques introduced

in the research. Hence, the author’s contribution of how crowdsourced data can be used to

create a real-time map that facilitates vision impaired indoor navigation in known and

unknown environments was clearly demonstrated using the AccessBIM model of

environmental characteristics.

7.3 Recommended framework

Based on the significant outcomes of the research, the author presents a recommended

framework for database optimization and real-time map generation which could be

implemented in any other indoor or outdoor navigation related research work. The

recommended database optimization model is capable of being employed in any database to

minimize the time of query execution irrespective of its resolution and characteristics.

Similarly, the recommended real-time map generation model is proficient to be implemented

in any research related to providing indoor and outdoor navigation assistance to individuals

through the generation of a real-time map.

158

7.3.1 Recommended database optimization model

The recommended database optimization model illustrated in figure 7.2 provides an optimized

execution plan at minimum cost, by identifying the missing terms in the input query relations,

to retrieve data from a dataset.

Input: Query relations

Output: Retrieve data with minimum cost (with an optimized evaluation plan)

1. Scan table and schema and select the relevant attribute fields.

2. If multi table joins are available search for the joined tables and its attributes.

3. Search for the existence of primary keys and foreign keys with relations to

missing column index and redundantly used tables.

4. If column index are not available create new column indexes.

5. Rewrite the query and create new stored procedure with relation to the attributes

in results.

6. Execute the query which gives the best evaluation plan with minimum cost.

Figure 7.2: Recommended database optimization model

159

7.3.2 Recommended real-time map generation model

The recommended real-time map generation model illustrated in figure 7.3 generates the real-

time map based on collected and optimized crowdsourced data and stores the optimal path in

AccessBIM cache memory ‘BIMcache’

Input: Request for generating a real-time indoor map

Output: Dynamic real time map

1. When a user requests for guidance to a destination in an indoor environment, first

check BIMCACHE for existing map with optimal path

2. If a path already exists draw the dynamic real time indoor map with optimized data

3. If a map is not available in BIMcache, collect environmental characteristics on

users and objects and store in AccessBIM database

4. Query the database for the path information with the crowdsourced data input.

5. Load map and update BIMCACHE with new optimized environmental path

information

6. Repeat the above steps until the user reaches the destination

Figure 7.3: Recommended real-time map generation model

160

7.4 Limitations of the research

As the work presented in this thesis is a part of a large research project that focuses on

developing an indoor navigation system for vision impaired individuals that uses smartphones

and tablets, few unavoidable limitations prevailed. Since the crowdsourced data for this study

was collected via a simulated environment, there can be changes in results when the

framework is applied in real world due to uncontrollable environmental factors such as

alterations in mobile device platforms, varying strength of Wi-Fi signals and accuracy

fluctuations in mobile sensors. However, there will be no direct impact on the AccessBIM

model as the simulated data used in the testing were evaluated using a database optimization

benchmark.

7.5 Future Research Work

While this thesis demonstrated the potential of AccessBIM model by collecting simulated

crowdsourced data in an indoor environment, many opportunities for extending the scope of

this thesis still remains. Hence, the following ideas could be suggested as future extensions of

the research.

A voice-user interface could be integrated with the AccessBIM model to enhance human

computer interaction where the system is queried with voice based instructions, thus making

navigation even more convenient for vision impaired individuals. Similarly, the AccessBIM

model could be integrated with existing building management systems to provide real-time

information access to the environmental characteristics of specific buildings. The model also

requires a security framework to maintain integrity of the collected environmental

information.

Furthermore, the use of ide transactions and ide impotence as an optimization method would

allow extensive query caching. As per this approach two servers could be used in real-time

map generation where the first server commits crowdsourced information about a set of

commands to indicate that the set has committed whereas the second server determines

whether the user’s request identified the latest set received for map generation in a

corresponding session.

161

Thus, the use of this approach would enable extensive query caching in instances which cannot

be cached easily.

162

References

[1] World Health Organization, "World Health Organization," October 2017. [Online].

Available: http://www.who.int/mediacentre/factsheets/fs282/en/. [Accessed 3

January 2018].

[2] World Health Organization, "Lions Center for the Visually Impaired," 2016.

[Online]. Available: http://www.seniorvision.org/resources/facts-about-blindness-

and-visual-impairment. [Accessed 5 April 2018].

[3] University of Hertfordshire, "Visual Impairment: Its Effect on Cognitive

Development and Behaviour," [Online]. Available:

http://www.intellectualdisability.info/physical-health/articles/visual-impairment-

its-effect-on-cognitive-development-and-behaviour. [Accessed 10 Apr 2017].

[4] learn.org, "What Is CAD Drafting?," [Online]. Available:

http://learn.org/articles/What_is_CAD_Drafting.html. [Accessed 17 Apr 2017].

[5] "Potential Problems with GPS Tracking," Auto Alert Limited, 2013. [Online].

Available: http://www.autoalert.me.uk/problems-with-gps-tracking/. [Accessed 02

Dec 2016].

[6] S.Bhandari, "Reasons for Slow Database Performance," 30 Apr 2011 . [Online].

Available: https://dzone.com/articles/reasons-slow-database. [Accessed 20 Apr

2017].

163

[7] M. Petrovic, "SQL Shack," 14 April 2014. [Online]. Available:

https://www.sqlshack.com/poor-database-indexing-sql-query-performance-killer-

recommendations/. [Accessed 04 January 2018].

[8] Julius, "Electronic Mobility Devices for Persons Who are Blind or Visually

Impaired," 12 Sep 2010. [Online]. Available:

http://evengrounds.com/blog/electronic-mobility-devices-for-persons-who-are-

blind-or-visually-impaired. [Accessed 28 Dec 2016].

[9] A. Leyden, "40 Uses For Smartphones in School," 19 Feb 2015. [Online].

Available: https://www.goconqr.com/en/examtime/blog/40-uses-for-smartphones-

in-school/. [Accessed 09 Dec 2016].

[10] A. Ilindra, "How has Smartphones Made Our Life Easier?," 26 Nov 2016. [Online].

Available: http://www.geekdashboard.com/smartphone-made-our-life-easier/.

[Accessed 09 Dec 2016].

[11] M. Milošević, M. T. Shrov and E. Jovanov, "Applications of Smartphones for

Ubiquitous Health Monitoring and Wellbeing Management," Journal of

information technology and applications, vol. 1, no. 1, pp. 7-15, 2011.

[12] MiTAC International, "What is GPS?," [Online]. Available:

http://www.mio.com/technology-what-is-gps.htm. [Accessed 04 Jan 2017].

[13] Laboratory, University of Maryland Space Systems, "Inertial Measurement Unit

(IMU)," 2013. [Online]. Available:

164

http://www.ssl.umd.edu/projects/RangerNBV/thesis/2-4-1.htm. [Accessed 09 Dec

2016].

[14] J.Victor and et-al, "Indoor navigation with smart phone IMU for the visually

impaired in university buildings," Journal of Assistive Technologies, vol. 10, no. 3,

pp. 133 - 139, 2016.

[15] C. Wen, S. Pan, C. Wang and J. Li, "An Indoor Backpack System for 2-D and 3-D

Mapping of Building Interiors," in IEEE Geoscience and Remote Sensing Letters,

2016.

[16] J.Tang and Y. Chen, "Fast Fingerprint Database Maintenance for Indoor

Positioning Based on UGV SLAM," in Special Issue Sensors for Indoor Mapping

and Navigation, 2015.

[17] "merriam-webster," 3 December 2017. [Online]. Available: https://www.merriam-

webster.com/dictionary/crowdsourcing. [Accessed 3 January 2018].

[18] Statista, "Number of mobile phone users worldwide from 2013 to 2019 (in

billions)," Aug 2015. [Online]. Available:

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-

worldwide/. [Accessed 09 Dec 2016].

[19] N. Abhayasinghe and I.Murray, "A novel approach for indoor localization using

human gait analysis with gyroscopic data," in International conference on indoor

positioning and indoor navigation, Sydney, AU, 2012.

165

[20] N.Rajakaruna and I.Murray, "Efficient and Adaptive Generic Object Detection

Method for Indoor Navigation," in International conference on indoor positioning

and indoor navigation, Montbeliard,belfort,Fr, 2013.

[21] A.Riazi,C.Bridge, "Potential environmental hazard from perspectives of people

with central vision loss who reside in Sydney," Independent Living Journal, vol.

29, no. 1, pp. 16-21, 2013.

[22] R. G. Golledge, J.R. Marston, J.M. Loomis,R. L. Klatzky, "Stated Preferences for

Components of a Personal Guidance System for Nonvisual Navigation," Journal of

Visual Impairment & Blindness, vol. 98, no. 3, pp. 135-147, 2014.

[23] Unite For Sight, " Eye Disease and Mental Health," [Online]. Available:

http://www.uniteforsight.org/community-eye-health-course/module11#_ftn1.

[Accessed 20 Dec 2016].

[24] Dr.M.Saarela, "Solving way-finding challenges of a visually impaired person in a

shopping mall by strengthening landmarks recognisability with iBeacons," Finland,

2015.

[25] Abbas Riazi, Fatemeh Riazi,Rezvan Yoosfi,Fatemeh Bahmeei, "Outdoor

difficulties experienced by a group of visually impaired Iranian people," Current

Opthalmology, vol. 28, no. 2, pp. 85-90, 2016.

[26] Society for Accessible Travel and Hospitality, "How to travel with sight impairment

or blindness," 123YourWeb.com, [Online]. Available: http://sath.org/how-to-

travel-with-a-sight-impairment-or-blindness. [Accessed 18 Dec 2016].

166

[27] Texas School for the Blind and Visually Impaired, "Specific Eye Conditions,

Corresponding Impact on Vision, And Related Educational Considerations,"

[Online]. Available: http://www.tsbvi.edu/eye-conditions. [Accessed 20 Dec 2016].

[28] W. Elmannai and K. Elleithy, "Sensor-Based Assistive Devices for Visually-

Impaired People: Current Status, Challenges, and Future Directions," Sensors, vol.

17, no. 3, 2017.

[29] P. Chanana, R. Paul, M. Balakrishnan and P. V. Rao, "Assistive technology

solutions for aiding travel of pedestrians with visual impairment," Journal of

Rehabilitation and Assistive Technologies Engineering, vol. 4, pp. 1-16, 2017.

[30] B. HITZ, "Photonics.com," Photonics media, June 2003. [Online]. Available:

https://www.photonics.com/a16107/Lasers_Assist_the_Blind. [Accessed 5 May

2018].

[31] K. Elleithy and W. Elmannai, "Sensor-Based Assistive Devices for Visually-

Impaired People: Current Status, Challenges, and Future Directions," Sensors, vol.

17, no. 3, 2017.

[32] Able Data, "Able Data," 19 April 2012. [Online]. Available:

https://abledata.acl.gov/product/sonic-pathfinder. [Accessed 5 May 2018].

[33] The Miniguide mobility aid, "The Miniguide mobility aid," [Online]. Available:

http://www.gdp-research.com.au/minig_1.htm. [Accessed 5 May 2018].

167

[34] Assistive IT, "Assistive IT," [Online]. Available: http://www.assistiveit.co.uk/VI-

Products/Portable-Devices/Trekker-Breeze-GPS. [Accessed 4 May 2018].

[35] H. Liu, H. Darabi, P. Banerjee and J. Liu, "Survey of Wireless Indoor Positioning

Techniques and Systems," IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), vol. 37, no. 6, pp. 1067-1080, 2007.

[36] S. S. Saab and Z. S. Nakad, "A Standalone RFID Indoor Positioning System Using

Passive Tags," IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp.

1961-1970, 2011.

[37] J. Yang, . Z. Wang and X. Zhang, "An iBeacon-based Indoor Positioning Systems

for Hospitals," International Journal of Smart Home, vol. 9, no. 7, pp. 161-168,

2015.

[38] O.Lahav, "Virtual reality as orientation and mobility aid for blind people," Journal

of Assistive Technologies, vol. 8, no. 2, pp. 95 - 107, 2014.

[39] American Foundation for the Blind, "Orientation and Mobility Skills," [Online].

Available: http://www.visionaware.org/info/everyday-living/essential-skills/an-

introduction-to-orientation-and-mobility-skills/123. [Accessed 22 Dec 2016].

[40] Y.W. Weidong and C.J Wang, "Map-based localization for mobile robots in high-

occluded and dynamic environments," Industrial Robot: An International Journal,

vol. 41, no. 3, pp. 241 - 252, 2014.

168

[41] A. Beamer, "Map metadata: essential elements for search and storage," Program,

vol. 43, no. 1, pp. 18 - 35, 2008.

[42] M.Tanaka,Y.Mizuchi,A.Suzuki,H.Imamura,Y.Hagiwara, "Enhanced view-based

navigation for human navigation by mobile robots using front and rear vision

sensors," in International conference on indoor positioning and indoor navigation,

Montbéliard, France, 2013.

[43] C. Ching and J. Bianca, "Mobile Indoor Positioning Using Wi-Fi Localization and

Image Processing," in Proceedings in Information and Communications

Technology , 2012.

[44] P. Benavidez, M. Muppidi, P. Rad, J. J. Prevost, M. Jamshidi and L. Brown, "Cloud-

based realtime robotic Visual SLAM," in 2015 Annual IEEE Systems Conference

(SysCon) Proceedings, Vancouver, BC, 2015.

[45] J. Dhruv, A. Prabhav and M. Aman, "DESIGN AND USER TESTING OF AN

AFFORDABLE CELL-PHONE BASED INDOOR NAVIGATION SYSTEM

FOR VISUALLY IMPAIRED," New Delhi, 2012.

[46] RF Wireless World, "RF Wireless World," RF Wireless World, [Online]. Available:

http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-

of-Infrared-Sensor.html. [Accessed 12 March 2018].

[47] Y. Wu, W. Guo, C.-Y. Chan and K.-L. Tan, "Fast Failure Recovery for Main-

Memory DBMSs on Multicores," in SIGMOD '17- Proceedings of the 2017 ACM

International Conference on Management of Data, Chicago, 2017.

169

[48] "TechTarget," July 2006. [Online]. Available:

http://searchsqlserver.techtarget.com/definition/ACID. [Accessed 3 January 2018].

[49] "Data Source Consulting," Data Source Consulting, 25 April 2015. [Online].

Available: http://ds.datasourceconsulting.com/blog/data-profiling/. [Accessed 3

January 2018].

[50] F. Yuanyuan and M. Xifeng, "Distributed database system query optimization

algorithm research," in 2010 3rd International Conference on Computer Science

and Information Technology, Chengdu, 2010.

[51] "DB-Engines," solid IT gmbh, 01 Oct 2012. [Online]. Available: http://db-

engines.com/en/ranking_trend. [Accessed 25 Nov 2016].

[52] "PostgreSQL," The PostgreSQL Global Development Group, [Online]. Available:

https://www.postgresql.org/about/advantages/. [Accessed 10 Dec 2016].

[53] D.Thakur, "What is Object-Relational Database Systems? Advantages and

Disadvantages of ORDBMSS.," [Online]. Available:

http://ecomputernotes.com/database-system/adv-database/object-relational-

database-systems. [Accessed 25 Feb 2017].

[54] M.Wang, "Implementation of Object-Relational DBMSs in a Relational Database

Course," in Special Interest Group on Computer Science Education, Charlotte, NC

USA , 2001.

170

[55] P.Karthik, G.T.Reddy and E.K.Vanan, "Tuning the SQL Query in order to Reduce

Time Consumption," IJCSI International Journal of Computer Science, vol. 9, no.

4, pp. 418-423, 2012.

[56] L. Hong, M. Lu and W. Hong, "A Business Computing System Optimization

Research on the Efficiency of Database Queries," in International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing,CN,

2013.

[57] I.Jimenez,J. LeFevre, N.Polyzotis, H.Sanchez. and K. Schnaitter, "Benchmarking

Online Index-Tuning Algorithms," IEEE Data Eng. Bull, vol. 34, no. 4, pp. 28-35,

2011.

[58] S. W. Schlosser and S. Iren, "Database storage management with object-based

storage devices," in Workshop on Data Management on New Hardware, Maryland,

2005.

[59] O. Papaemmanouil, M. Cherniack and Z. Li, "OptMark: A Toolkit for

Benchmarking Query Optimizers”," in The 25th ACM International on Information

and Knowledge Management, Indianapolis, 2016.

[60] N. Roussopoulos, "View Indexing in Relational Databases," ACM Transactions on

Database Systems (TODS), vol. 7, no. 2, pp. 258-290, 1982.

[61] J. A. D. C. A. Jayakody and I. Murray, "The construction of an indoor floor plan

using a smartphone for future usage of blind indoor navigation," in 2014

171

International Conference on Contemporary Computing and Informatics (IC3I),

Mysore, 2014.

[62] J.A.D.C Jayakody and I. Murray, "Proposed novel schema design for map

generation to assist vision impaired in an indoor navigation environment," in 2014

International Conference on Contemporary Computing and Informatics (IC3I),

Mysore, 2014.

[63] M. Richards, "Software Architecture Patterns," Safari Books Online, [Online].

Available: https://www.safaribooksonline.com/library/view/software-architecture-

patterns/9781491971437/ch01.html. [Accessed 8 May 2018].

[64] J. Maymala, PostgreSQL for Data Architects, India: Packt Publishers, 2015.

[65] Raghavendra, "Relational Database Technologies," July 2011. [Online]. Available:

http://raghavt.blogspot.com/2011/07/pgmemcache-setup-and-usage.html.

[Accessed 11 November 2016].

[66] Essential SQL, "Database Indexes Explained," Essential SQL, [Online]. Available:

https://www.essentialsql.com/what-is-a-database-index/. [Accessed 15 May 2018].

[67] Heroku Dev Centre, "Efficient Use of PostgreSQL Indexes," Heroku Dev Centre,

[Online]. Available: https://devcenter.heroku.com/articles/postgresql-indexes.

[Accessed 15 May 2018].

172

[68] PostgreSQL, "PostgreSQL," PostgreSQL, [Online]. Available:

https://www.postgresql.org/docs/8.4/static/indexes-expressional.html. [Accessed

15 May 2018].

[69] R.McHaney, Understanding Computer Simulation, Denmark : BookBoon 2009,

2009.

[70] C. Qiu and M. W. Mutka, "iFrame: Dynamic indoor map construction through

automatic mobile sensing," in 2016 IEEE International Conference on Pervasive

Computing and Communications (PerCom), Sydney, NSW, 2016.

[71] A. Jayakody, Director, Test Case 1. [Film]. Sri Lanka.2017.

[72] A. Jayakody, Director, Test Case 2. [Film]. Sri Lanka.2017.

[73] A. Jayakody, Director, Test Case 3. [Film]. Sri Lanka.2017.

[74] A. Jayakody, Director, Test Case 4. [Film]. Sri Lanka.2017.

[75] A. Jayakody, Director, Test Case 5. [Film]. Sri Lanka.2017.

[76] N. Ritter and W. Zhang, "The Real Benefits of Object-Relational DB-Technology,"

in 18th British National Conference on Databases, Germany, 2001.

[77] J.H.Hanke,D.W.Wichern, Business Forcasting, New Delhi: Prentice hall of India,

2007.

173

[78] PostgreSQL Tutorial , "PostgreSQL Stored Procedures," [Online]. Available:

http://www.postgresqltutorial.com/postgresql-stored-procedures/. [Accessed 05

Feb 2017].

[79] F. Mithani, S. Machchhar and F. Jasdanwala, "A Novel Approach for SQL Query

Optimization," in IEEE International Conference on Computational Intelligence

and Computing Research (ICCIC), Chennai, 2016.

[80] J. A. D. C. A. Jayakody, S. Lokuliyana, I. Murray, J. Hermann, D. S. A. Kandawala

and S. E. C. Nanayakkara, "A database optimization model with quantitative

benchmark," in International Conference on Computational Techniques in

Information and Communication Technologies (ICCTICT) , New Delhi, 2016.

Every reasonable effort has been made to acknowledge the owners of copyright material. I

would be pleased to hear from any copyright owner who has been omitted or incorrectly

acknowledged.

174

Appendices

Appendix A: System Specification

The system under test has the following features:

 Microsoft Windows 8.1, 64 bit version as the operating system.

 As real-time-database management system products, PostgreSQL windows version

 Both the operating system and the database management system run on a Hardware

platform having the following features:

 64 bit machine

 Intel® Core ™ i5-2430M CPU @ 2.40GHZ

 8 GB of RAM

 500GB of Hard Disk

175

Appendix B: C# DLL to interact C# application and web service

//Following segment contains names of common libraries used for the implementation

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Net;

using System.Text;

using System.Threading.Tasks;

 //Following code segment contains set of key words used for simulation implementation

namespace INS

{

 public class Api

 {

 public void insert_object_info(string lbl_id_fk,string b_id_fk,string f_id_fk,string
image_description,string category ,string x_coordinate,string y_coordinate) {

 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/insert_object_info.php";

 string POST_DATA = "lbl_id_fk=" + lbl_id_fk + "&b_id_fk=" + b_id_fk + "&f_id_fk=" + f_id_fk +
"&image_description=" + image_description + "&category=" + category + "&x_coordinate=" + x_coordinate +
"&y_coordinate=" + y_coordinate;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 }

176

 public void update_object_info(string object_id, string b_id_fk, string f_id_fk, string x_coordinate, string
y_coordinate)

 {
string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/update_object_info.php";

 string POST_DATA = "object_id=" + object_id + "&b_id_fk=" + b_id_fk + "&f_id_fk=" + f_id_fk +
"&x_coordinate=" + x_coordinate + "&y_coordinate=" + y_coordinate;

 string responseString = DataRequestToServer(POST_DATA,post_url);
 }
public void update_object_info_with_lable(string object_id, string lable_id, string b_id_fk, string f_id_fk,
string x_coordinate, string y_coordinate)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/update_object_info_with_lable.php";

 string POST_DATA = "object_id=" + object_id + "&lable_id=" + lable_id + "&b_id_fk=" + b_id_fk +
"&f_id_fk=" + f_id_fk + "&x_coordinate=" + x_coordinate + "&y_coordinate=" + y_coordinate;

 string responseString = DataRequestToServer(POST_DATA, post_url);
 }
 public string select_registration_info(string object_id)
 {
 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_registration_info.php";

 string POST_DATA = "object_id=" + object_id;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString;

 }

177

 public string insert_path_history_before_achieve(string user_id_fk_apb, string b_id_fk_apb, string
f_id_fk_apb, string starting_point_apb, string ending_point_apb)
 {
 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/insert_path_history_before_achieve.php"
;

 string POST_DATA = "user_id_fk_apb=" + user_id_fk_apb + "&b_id_fk_apb=" + b_id_fk_apb +
"&f_id_fk_apb=" + f_id_fk_apb + "&starting_point_apb=" + starting_point_apb + "&ending_point_apb=" +
ending_point_apb;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString;
 }
 public void update_path_history_after_achieve(string path_history_id_apa, string achieve_p2_apa)
 {
 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/update_path_history_after_achieve.php";

 string POST_DATA = "path_history_id_apa=" + path_history_id_apa + "&achieve_p2_apa=" +
achieve_p2_apa;

 string responseString = DataRequestToServer(POST_DATA, post_url);
 }
 public string BIMcache(string starting_point, string ending_point)
 {

string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/BIMcache_movement_info.php";

 string POST_DATA = "starting_point=" + starting_point + "&ending_point=" + ending_point;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString;

 }

178

public string chechDoorStatus(string b_id_fk_d, string f_id_fk_d, string d_id_fk_d)
 {
 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/check_door_status.php";

 string POST_DATA = "b_id_fk_d=" + b_id_fk_d + "&f_id_fk_d=" + f_id_fk_d + "&d_id_fk_d=" +
d_id_fk_d;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString;
 }
 public void add_movement_info(string object_id_fk_movement, string path_history_id_fk_movement, string
walking_distance_movement, string angel_movement, string direction_movement, string
time_stamp_movement, string x_coordinate_movement, string y_coordinate_movement)
 {
 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/insert_movement_info.php";

 string POST_DATA = "object_id_fk_movement=" + object_id_fk_movement +
"&path_history_id_fk_movement=" + path_history_id_fk_movement + "&walking_distance_movement=" +
walking_distance_movement + "&angel_movement=" + angel_movement + "&direction_movement=" +
direction_movement + "&time_stamp_movement=" + time_stamp_movement + "&x_coordinate_movement="
+ x_coordinate_movement + "&y_coordinate_movement=" + y_coordinate_movement;

 string responseString = DataRequestToServer(POST_DATA, post_url);
 }
public void add_movement_info_with_out_object(string path_history_id_fk_movement, string
walking_distance_movement, string angel_movement, string direction_movement, string
time_stamp_movement, string x_coordinate_movement, string y_coordinate_movement)

 {

179

 string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/insert_movement_info_without_object.p
hp";

 string POST_DATA = "path_history_id_fk_movement=" + path_history_id_fk_movement +
"&walking_distance_movement=" + walking_distance_movement + "&angel_movement=" + angel_movement
+ "&direction_movement=" + direction_movement + "&time_stamp_movement=" + time_stamp_movement +
"&x_coordinate_movement=" + x_coordinate_movement + "&y_coordinate_movement=" +
y_coordinate_movement;

 string responseString = DataRequestToServer(POST_DATA, post_url); }

public string select_object_info(string building_id, string floor_id)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_object_info.php";

 string POST_DATA = "building_id=" + building_id + "&floor_id=" + floor_id;

 string responseString = DataRequestToServer(POST_DATA,post_url);

 return responseString; }

 public string select_object_info_for_specific_lable(string lable_id,string building_id, string floor_id)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_object_info_for_specific_lable.ph
p";

 string POST_DATA = "lable_id=" + lable_id + "&building_id=" + building_id + "&floor_id=" +
floor_id;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

public void insert_wall_info(string f_id_fk_w, string b_id_fk_w, string starting_x, string starting_y, string
ending_x, string ending_y)

180

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/insert_wall_info.php"; string
POST_DATA = "f_id_fk_w=" + f_id_fk_w + "&b_id_fk_w=" + b_id_fk_w + "&starting_x=" + starting_x +
"&starting_y=" + starting_y + "&ending_x=" + ending_x + "&ending_y=" + ending_y;

 string responseString=DataRequestToServer(POST_DATA, post_url);
 }
public string select_wall_info(string b_id_fk_w, string f_id_fk_w)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_wall_info.php";

 string POST_DATA = "b_id_fk_w=" + b_id_fk_w + "&f_id_fk_w=" + f_id_fk_w;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

 public string select_door_info(string b_id_fk_d, string f_id_fk_d)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_door_info.php";

 string POST_DATA = "b_id_fk_d=" + b_id_fk_d + "&f_id_fk_d=" + f_id_fk_d;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }
public string getting_starting_and_ending(string path_history_id)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_starting_and_ending_from_path_h
istoty.php";

 string POST_DATA = "path_history_id=" + path_history_id;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

181

public string check_path_availability(string building_id,string floorId,string Spoint,string Epoint)
 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/check_path_availability.php";

 string POST_DATA = "building_id=" + building_id + "&floorId=" + floorId + "&Spoint=" + Spoint +
"&Epoint=" + Epoint;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }
 public string select_starting_point_and_ending_point(string status)
 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_starting_and_ending.php";

 string POST_DATA = "status=" + status;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

 public string BIMcache1(string starting_point, string ending_point)
 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/BIMcached/BIMcache_movement_info1
.php";

 string POST_DATA = "starting_point=" + starting_point + "&ending_point=" + ending_point;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

public string select_user_current_location(string user_id)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_user_current_location.php";

182

 string POST_DATA = "user_id=" + user_id;

string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

 public string get_distinct_user_location(string user)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/receive_distinct_user_location.php";

 string POST_DATA = "user=" + user;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

 public string select_lable_info(string b_id_fk_lbl_in, string f_id_fk_lbl_in)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_lable_info.php;

 string POST_DATA = "b_id_fk_lbl_in=" + b_id_fk_lbl_in + "&f_id_fk_lbl_in=" + f_id_fk_lbl_in;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

 public string select_registartion_info(string user)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/select_registration_info.php";

 string POST_DATA = "user=" + user;

 string responseString = DataRequestToServer(POST_DATA, post_url);

 return responseString; }

183

public void delete_movement_info_and_path_history_info(string status)

 { string post_url =
"http://localhost:8080/Simulation_Based_Indoor_Navigation_System/delete_movement_and_path_history_inf
o.php";

 string POST_DATA = "status=" + status;

 string responseString = DataRequestToServer(POST_DATA, post_url); }

 public string DataRequestToServer(string postData, string url)

{ try

//Following code segment contains common method that used for HTTP POST request

 { HttpWebRequest httpWReq = (HttpWebRequest)WebRequest.Create(url);

 ASCIIEncoding encoding = new ASCIIEncoding();

 byte[] data = encoding.GetBytes(postData);

 httpWReq.Method = "POST";

 httpWReq.ContentType = "application/x-www-form-urlencoded";

 httpWReq.ContentLength = data.Length;

 using (Stream stream = httpWReq.GetRequestStream())

 { stream.Write(data, 0, data.Length); }

 HttpWebResponse response = (HttpWebResponse)httpWReq.GetResponse();

 string responseString = new StreamReader(response.GetResponseStream()).ReadToEnd();

 return responseString;
 }
 catch (Exception e)

 { return e.Message;

 } } } }

184

Appendix C: 7th floor of Sri Lanka Institute of Information Technology

Figure 1: Main entrance of 7th floor

185

Figure 2: Paths to multimedia lab and Lab 701

186

Figure 3: Path to washroom 1, Maintenance room, Cabin 1, Room1 and Room2

Figure 4: Entrance of cabin 1

187

Figure 5: Path to washroom 2

188

Appendix D: Results of query execution

Test results for the comparison between number of occurrences and execution time without optimization

Number_of_users (n) Execution_time (s)

ሺࢋ࢞ࢋ_ࢀሻ

1 15.926

2 17.605

3 19.459

4 17.918

5 16.994

6 11.506

7 15.314

8 17.138

9 14.866

10 14.619

11 11.213

12 17.625

13 14.724

14 16.253

15 13.354

16 17.562

17 16.046

18 17.007

19 17.966

20 16.957

189

21 15.207

22 14.326

23 18.887

24 19.484

25 14.352

26 16.488

27 17.518

28 19.228

29 14.369

30 16.641

31 11.303

32 17.167

33 12.016

34 17.547

35 17.322

36 11.934

37 13.756

38 14.757

39 14.01

40 17.081

41 15.954

42 17.981

43 13.275

44 15.65

190

45 15.964

46 13.203

47 14.172

48 11.006

49 14.079

50 17.448

51 17.127

52 19.691

53 12.539

54 18.749

55 16.992

56 16.244

57 14.077

58 12.502

59 16.379

60 11.891

61 13.254

62 18.456

63 17.379

64 14.763

65 11.699

66 14.354

67 17.868

68 15.95

191

69 14.057

70 12.65

71 13.687

72 12.79

73 13.8

74 12.765

75 11.478

76 13.791

77 12.255

78 13.857

79 12.572

80 15.493

81 11.77

82 11.457

83 14.153

84 11.191

85 14.453

86 16.689

87 11.728

88 13.741

89 17.445

90 19.052

91 11.122

92 19.565

192

93 15.784

94 15.167

95 11.492

96 17.793

97 16.098

98 14.177

99 14.539

100 14.166

 Test results for the comparison between number of occurrences and execution time with optimization

Number of
occurrences (n)

Execution time
ሺ ܶ_௫ሻ

1 8.0097

2 10.986

3 11.28

4 8.3745

5 10.016

6 9.89

7 12.242

8 11.841

9 10.005

10 10.816

11 8.507

12 14.392

193

13 11.677

14 12.365

15 11.04

16 10.3341

17 9.7437

18 10.4823

19 9.7865

20 10.8232

21 11.0684

22 10.0367

23 9.4637

24 10.5717

25 9.6783

26 9.549

27 11.4994

28 10.6902

29 9.0392

30 8.2249

31 10.4183

32 10.4992

33 8.9946

34 11.077

35 9.862

36 10.0751

194

37 8.9187

38 8.6673

39 7.8029

40 8.6036

41 8.1625

42 8.8937

43 8.4453

44 8.9302

45 9.0691

46 10.0969

47 9.0656

48 9.5022

49 11.2213

50 10.4029

51 6.591

52 6.985

53 10.189

54 8.19

55 8.632

56 8.224

57 6.478

58 6.525

59 7.069

60 8.394

195

61 11.554

62 7.518

63 6.682

64 6.375

65 9.639

66 6.57

67 6.647

68 7.096

69 6.869

70 6.604

71 6.992

72 6.575

73 7.384

74 7.45

75 8.558

76 7.625

77 6.691

78 6.909

79 8.175

80 7.414

81 7.335

82 10.993

83 8.164

84 6.722

196

85 7.459

86 8.135

87 6.945

88 6.694

89 10.474

90 11.38

91 8.322

92 10.324

93 6.899

94 8.655

95 8.982

96 13.519

97 7.049

98 6.993

99 8.777

100 11.707

197

Appendix E: Summary of the Interview conducted with the Visual Impaired of
Employee Federation of Ceylon

Questions asked in the interview with “The Employers' Federation of Ceylon”.

1. Your age group 15-25 26-35 36-
45

46-
55

2. How long have you suffered
from vision impairment

Since birth

At the age of

3. Are you able to find rooms in
your house without others help

Yes
No

4. Do you feel anxious to
navigate in unknown indoor
environments

Yes
No

5.Do you use any technical
devices to get the assistance for
indoor navigation

Yes No

If yes please provide device name

………………………………………………………………………..

6. What are your expectations on an indoor navigation system?

198

The above questions were asked from vision impaired individuals who get computer training

at The Employers' Federation of Ceylon (EFC).

Summary of the interview answers

8 out of 10 trainee students whose age between 25-45 have been suffering from vision

impairment since birth. They can identify familiar places in their house such as rooms, kitchen

washrooms and etc. They are also able to find their path in a familiar indoor environment.

However, they find it difficult to avoid obstacles in an indoor environment which are dynamic.

They feel uncomfortable to navigate in an unfamiliar or complex environments where they do

not t have any idea about physical arrangement of objects. They prefer to use the white cane

when navigating in an unknown environment, however, they find it difficult to navigate with

confidence using the white cane in an unfamiliar environment.

Vision impaired trainees at EFC suggest that a product to support vision impaired navigation

should include a way to recognize doors, windows, objects and walls separately and provide

guidance for navigation so that they can reach their preferred destination easily.

199

Appendix F: List of Available Stored Procedures

1. check_door_status

2. check_path_availability

3. connection

4. delete_movement_and_path_history_info

5. delete_movement_info_with_achieve

6. delete_movement_info_without_achieve

7. delete_path_history_info_with_achieve

8. delete_path_history_info_without_achieve

9. email_confirm

10. insert_door_info

11. insert_movement_info

12. insert_movement_info_without_object

13. insert_object_info

14. insert_path_history_before_achieve

15. insert_wall_info

16. BIMcache_movement_info

17. receive_distinct_user_location

18. register

19. select_door_info

200

20. select_lable_info

21. select_object_info

22. select_object_info_for_specific_lable

23. select_registration_info

24. select_starting_and_ending

25. select_starting_and_ending_from_path_histoty

26. select_user_current_location

27. select_wall_info

28. update_door_info

29. update_object_info

30. update_object_info_with_lable

31. update_object_info_with_return_result

32. update_path_history_after_achieve

