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Abstract: Millions of three-wheelers in large cities of Asia and Africa contribute to the already
increasing urban air pollutants. An emerging method to reduce adverse effects of the growing three-
wheeler fleet is hybrid-electric technology. The overall efficiency of a hybrid electric vehicle heavily
depends on the power management strategy used in controlling the main powertrain components of
the vehicle. Recent studies highlight the need for a comprehensive report on developing an easy-
to-implement and efficient control strategy for hybrid electric three-wheelers. Thus, in the present
study, a design methodology for a rule-based supervisory controller of a pre-transmission parallel
hybrid three-wheeler based on an optimal control strategy (i.e., dynamic programming) is proposed.
The optimal control problem for minimizing fuel, emissions (i.e., HC, CO and NOx) and gear shift
frequency are solved using dynamic programming (DP). Numerical issues of DP are analyzed and
trade-offs between optimizing objectives are presented. Since DP strategy cannot be implemented
as a real-time controller, useful strategies are extracted to develop the proposed rule-based strategy.
The developed rule-based strategy show performance within 10% of the DP results on WLTC and
UDC-NEDC drive cycles and has the clear advantage of being near-optimal, easy-to-implement and
computationally less demanding.

Keywords: hybrid electric vehicle; auto-rickshaw; energy management strategy; multi-objective
optimization; rule-based control; dynamic programming; fuel economy; backward-facing model;
forward-facing model

1. Introduction

The ever-increasing cost of fuel, air pollution and consumer market trends have forced
the automobile industry towards investing in greener vehicles. Currently, over 90% of
the transport sector is reliant on oil and 49% of the total oil production is consumed by
the transportation sector alone. Responsible for one-quarter of energy-related unwanted
greenhouse gas emissions in 2009, the transport sector is the fastest-growing energy-
consuming source in the world [1]. Among the transportation sector, three-wheelers show
a significant growth rate. In India alone, during 2018–2019 fiscal year, domestic sales of
three-wheelers increased by 10% and exports of manufactured three-wheelers increased
by 49%; overall sales increased from 1.017 million units to 1.269 million units [2]. Even
though considerable work is being done in four-wheel category to reduce emissions and
fuel consumption, little work is been conducted on three-wheelers. Figure 1 shows a typical
motorized three-wheeler by Bajaj Motor company.
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Figure 1. BAJAJ RE 205 cc motorized three-wheeler [3]. 

Three-wheelers are found in most Asian, South American and African countries [4]. 
In large cities of Asia and Africa, millions of auto-rickshaw three-wheelers function as 
taxicabs [5]. Three-wheelers in developing countries offer a low volume, but high-fre-
quency service and they are efficient feeders that can connect bigger public transport sys-
tems and provide last-mile connectivity to the doorstep. Three-wheelers can weave 
through dense urban traffic conditions and a solution for the growing parking problem in 
urban cities due to its small size. Even though three-wheelers are known to be highly pol-
lutant vehicles due to the use of two-stroke engines and small-scale diesel engines, with 
stringent government regulations most of the three-wheeler fleet has moved to use four-
stroke engines and fuels such as Petrol, CNG and LPG to reduce overall emissions. How-
ever, to improve the air quality of worlds most polluted cities such as Delhi, Mumbai and 
Jakarta, emission levels of the growing three-wheeler fleet should be further reduced and 
Electric Vehicle (EV) technology is an emerging solution to address this issue. 

Hybrid EVs, plug-in EVs and battery EVs are common types of electric vehicles [1]. 
However, only the battery EVs can give potentially zero emissions. In recent years, the 
battery EV three-wheelers market has grown considerably. In India alone, during 2018–
2019 fiscal year, the sale of battery EV three-wheelers was 630,000 units [2]. However, the 
emission reduction from battery EVs is offset by coal-burning power plants since these 
vehicles are charged using the national power grid. A case study made in West Bengal 
state, India show that when the emissions from the coal-fired thermal power plants are 
considered, the use of battery EV three-wheelers reduced the specific CO2 emissions 
(gm/passenger-km) by only 11% compared to a diesel three-wheeler [6]. In addition, to 
the carbon intensity of electricity generation, battery manufacturing and disposal must be 
considered. An effective alternative option is the reuse of batteries and it is found that the 
carbon emission reduction potential of reusing batteries is similar to moving from an oil-
based vehicle to an EV [7]. In the global context, high infrastructure cost, anxiety on the 
resale market value, increase in demand for power generation, strong oil-base vehicle 
market and unit cost are some of the resistive forces for EVs in developing countries [8]. 
For instance, developing countries like Pakistan cannot transition directly from oil-based 
vehicles to battery EVs due to factors like charging infrastructure, load shedding of elec-
tricity and high cost of non-renewable energy [9]. In addition, battery EV three-wheeler 
owners in developing countries face challenges such as poor drivability characteristics [6], 
electricity blackouts, limited driving range and long charging times. An interim solution 
that mitigates these challenges and reduces overall fuel consumption and emissions is 
hybrid-electric technology. 

The benefits of a fuel-efficient and eco-friendly hybrid electric three-wheeler to re-
duce adverse effects from the growing motorized three-wheeler fleet is well understood. 
Thus, the design of hybrid electric three-wheelers has been extensively investigated in the 
literature under different hybrid configurations. For instance, Vezzini et al. investigated a 
series hybrid electric three-wheeler and developed a prototype in [10]. Developing on the 
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Three-wheelers are found in most Asian, South American and African countries [4].
In large cities of Asia and Africa, millions of auto-rickshaw three-wheelers function as
taxicabs [5]. Three-wheelers in developing countries offer a low volume, but high-frequency
service and they are efficient feeders that can connect bigger public transport systems and
provide last-mile connectivity to the doorstep. Three-wheelers can weave through dense
urban traffic conditions and a solution for the growing parking problem in urban cities due
to its small size. Even though three-wheelers are known to be highly pollutant vehicles due
to the use of two-stroke engines and small-scale diesel engines, with stringent government
regulations most of the three-wheeler fleet has moved to use four-stroke engines and fuels
such as Petrol, CNG and LPG to reduce overall emissions. However, to improve the air
quality of worlds most polluted cities such as Delhi, Mumbai and Jakarta, emission levels
of the growing three-wheeler fleet should be further reduced and Electric Vehicle (EV)
technology is an emerging solution to address this issue.

Hybrid EVs, plug-in EVs and battery EVs are common types of electric vehicles [1].
However, only the battery EVs can give potentially zero emissions. In recent years, the
battery EV three-wheelers market has grown considerably. In India alone, during 2018–
2019 fiscal year, the sale of battery EV three-wheelers was 630,000 units [2]. However,
the emission reduction from battery EVs is offset by coal-burning power plants since
these vehicles are charged using the national power grid. A case study made in West
Bengal state, India show that when the emissions from the coal-fired thermal power plants
are considered, the use of battery EV three-wheelers reduced the specific CO2 emissions
(gm/passenger-km) by only 11% compared to a diesel three-wheeler [6]. In addition, to
the carbon intensity of electricity generation, battery manufacturing and disposal must
be considered. An effective alternative option is the reuse of batteries and it is found
that the carbon emission reduction potential of reusing batteries is similar to moving
from an oil-based vehicle to an EV [7]. In the global context, high infrastructure cost,
anxiety on the resale market value, increase in demand for power generation, strong oil-
base vehicle market and unit cost are some of the resistive forces for EVs in developing
countries [8]. For instance, developing countries like Pakistan cannot transition directly
from oil-based vehicles to battery EVs due to factors like charging infrastructure, load
shedding of electricity and high cost of non-renewable energy [9]. In addition, battery
EV three-wheeler owners in developing countries face challenges such as poor drivability
characteristics [6], electricity blackouts, limited driving range and long charging times. An
interim solution that mitigates these challenges and reduces overall fuel consumption and
emissions is hybrid-electric technology.

The benefits of a fuel-efficient and eco-friendly hybrid electric three-wheeler to re-
duce adverse effects from the growing motorized three-wheeler fleet is well understood.
Thus, the design of hybrid electric three-wheelers has been extensively investigated in the
literature under different hybrid configurations. For instance, Vezzini et al. investigated
a series hybrid electric three-wheeler and developed a prototype in [10]. Developing on
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the series hybrid concept, Amjad et al. investigated plug-in series hybrid technology for
three-wheelers in [11]. Another popular hybrid configuration studied for three-wheelers is
the parallel powertrain configuration. For example, Hofman et al. in [5] studied parallel
micro-hybrid architecture for three-wheelers. Roy and Indulal in [12] extended the study
of parallel hybrid technology for three-wheelers by investigating a parallel configuration
where motor and engine power is coupled through road. Use of plug-in technology for
parallel hybrid electric three-wheelers is studied by Padmanaban et al. [13]. Comparative
analysis of hybrid configurations of three-wheelers is carried out by a recent study from
Maddumage et al. [14]. The study examines the effect of hybrid configuration on fuel and
emissions by studying conventional, parallel, series and complex powertrain designs for
hybrid electric three-wheelers. These studies indicate that the use of hybrid technology
for three-wheelers is a viable solution to reduce overall fuel consumption and exhaust
emissions of the vehicle.

Regardless of the intensive studies on developing hybrid-electric three-wheelers,
reports on parallel hybrid electric three-wheelers have not thoroughly dealt with designing
an efficient and easy-to-implement power management strategy. The power management
strategy of a parallel hybrid mainly involves in the management of power flow, namely,
the power split strategy between the motor and engine. Various methods in developing
power management strategies for hybrid electric vehicles have been proposed in the
literature. These methods can be classified into two main groups, i.e., optimal control-
based strategies and heuristic control strategies. Optimal control-based strategies use
global optimization and instantaneous optimization methods based on optimal control
tools. Limitations of optimal control-based strategies are that their solutions rely on future
unknown information [15] and require high computational power. An alternate approach is
heuristic control strategies. Heuristic power management strategies do not employ explicit
optimization; instead, power management is carried out through heuristic rules [15].
Heuristic control methods have monopolized the production vehicle market due to the low
computational power demand, natural adaptability to online-applications, good reliability
and satisfactory fuel consumption results [16]. Fuzzy logic [17] and deterministic rule-based
control belong in this category. One of the main limitations of this type of control strategies
is the sub-optimal results compared to optimal control-based strategies. Nevertheless,
by using results of a global optimization algorithm like dynamic programming (DP) as
a template to design empirical rules for the control strategy, it is possible to improve the
results of the rule-based control [18].

The possibility of deriving useful real-time control strategies from the global optimal
results of the DP algorithm has been widely investigated in literature [19–22]. For instance,
Wang and Lukic [23], applied DP to find the real-time optimal split between engine and
motor in a series-parallel powertrain. Similarly, Lin et al. [24], found that optimal control
rules can be extracted from DP results and used to design a near-optimal rule-based control
strategy for a parallel hybrid. Results show a 28% increase in fuel economy with the
near-optimal rule-based strategy, compared to a conventional vehicle. In another study by
Lin et al. [18], a simple approach (based on the power request ratio from engine and motor
to transmission speed) for extracting empirical rules for the control strategy from DP results
is investigated. Results from the study showed a 50–70% reduction in the performance
gap between the DP results. The combination of DP results and empirical rules of the
rule-based strategy for real-time charge sustaining control of hybrid vehicles is studied
by Biasini et al. in [15]. This study used a penalty function to control power split ratio in
relation to battery state of charge (SoC) level. Results show that the performance of the
improved control strategy is within 3% of the DP results. These studies show, extracting
empirical rules from the DP results (optimal controller) is a viable approach to improve
overall performance of a rule-based controller.

In spite of the research advances made, some of these power management strategies
have been found to yield selective performance, which is charge-depleting in highway
driving conditions and charge-hoarding in urban driving conditions [16]. In general, three-
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wheelers are used in urban areas. Thus, the use of DP to design a rule-based controller for
hybrid electric three-wheelers should be carried out carefully to avoid charge-hoarding. A
recent study from Asghar et al. [25] has attempted to implement a sub-optimal rule-based
power management strategy based on DP results for a parallel hybrid electric three-wheeler.
Despite the extensive methodology followed in extracting rules from the DP results; report
has not thoroughly dealt with transmission gear strategy, numerical issues of DP, exhaust
emissions and powertrain component sizing techniques in designing the control strategy
of the hybrid electric three-wheeler.

The aim of the present paper is to design a rule-based control strategy for a parallel
hybrid electric three-wheeler based on DP results to reduce fuel consumption and exhaust
emissions, i.e., HC, CO and NOx. These exhaust emissions have serious impact on the
urban air quality and public health [26]. Although HC, CO and NOx emissions can be
reduced with emission control technologies [27]; in general, motorized three-wheelers
on the market are not equipped with such measures. Three-wheelers are low-cost price-
sensitive vehicles with a high price elasticity of demand. Larger social benefits such as
harmful emissions are not relevant to the average user [28]. This is one of the factors for not
having a stringent emission control strategy in motorized three-wheelers yet. Therefore,
in the present study, reduction of HC, CO and NOx emission via hybrid technology is
investigated in addition to the fuel economy. Overall fuel consumption and emissions of
the powertrain are affected by gear shift strategy and component sizes of the hybrid power
train. Since parallel hybrid electric vehicles use a motor and an engine in harmony to
propel the vehicle, it is harder to develop an efficient gear shift strategy based on traditional
methodologies. Thus, in the present study transmission gear strategy is developed based
on DP results. In addition, a sequential design methodology [29] (sizing and control is
solved separately in a sequential manner) is used in developing the hybrid powertrain.
The power management strategy is developed in the present study for the sized parallel
hybrid powertrain from [14].

Contributions of the study is of interest due to the systematic procedure presented to
establish an easy to implement real time control strategy for parallel hybrid three-wheelers;
which can be used by a developer to implement an eco-friendly parallel hybrid three-
wheeler. The proposed control strategy uses only 2D maps and simple rules. Unlike with
control strategies such as time delay neural network (TDNN) [30] and model predictive
control (MPC) [31], proposed control law requires low computational power to operate.
Furthermore, online control approaches like adaptive equivalent consumption minimiza-
tion strategy (ECMS) [32] require predictive equipment like GPS; which add cost and
complexity to vehicle development. The proposed strategy can be implemented without
such equipment or sensors. The developed strategy is easy to implement and it does not
require specialize knowledge to install for a practical application.

Striking a good balance to optimize all the objectives is difficult in a high dimensional
objective space with more than three objectives using rule-based control law. Usually,
three or less multi-objective are considered in developing DP based heuristic control
laws [18,19,21,23,25]. The present study considers a multi-objective optimization problem
with more than three objectives; which are defined as many objective optimization prob-
lems [33]. In addition, the DP method use quantization and interpolation techniques and
these methods introduce numerical errors. Therefore, present study investigates numerical
issues of DP in implementing the optimal control strategy. Furthermore, rules extracted
from DP results does not necessarily constitute a comprehensive control law that can be
implemented in a real-life vehicle. Thus, present study considers additional rules such as
gearshift strategy in full EV mode.

The contributions of the study can be summarized as follows:

• Investigation of numerical errors of the DP algorithm in implementing an optimal
control strategy for hybrid vehicles.

• Comprehensive rule extraction from DP results to establish a near optimal rule-based
strategy for multi-objective (many objectives).



Energies 2021, 14, 1833 5 of 30

• Establish additional rules to overcome shortcomings of the useful strategies extracted
from DP results.

• A systematic methodology to develop an easy to implement, real time, near optimal
power management strategy for parallel hybrid three-wheelers.

This paper is organized as follows: In Section 2, simulation models for the control
strategy analysis is developed. First, the main powertrain components of a parallel hybrid
are modelled. Using the modelled powertrain components two quasi-static hybrid electric
vehicle models, i.e., a backward-facing model and forward-facing model, are developed to
simulate the DP-based optimal controller and proposed rule-based controller, respectively.
In Section 3, the DP-based optimal controller is implemented. DP for the optimal control
problem of the parallel hybrid is formulated and numerical issues of the DP algorithm are
analyzed. The controller is simulated to reduce five objectives (i.e., gear shift frequency, fuel,
HC, CO and NOx) and the trade-offs between the objectives are presented. In Section 4,
results from the DP-based controller are extracted and used to develop the proposed
rule-based strategy. In addition, the performance of the proposed rule-based strategy is
analyzed and compared with DP results. Finally, conclusions are presented in Section 5.

2. Hybrid Electric Three-Wheeler Models

DP results are used to identify the empirical rules for the rule-based control strategy
proposed for the hybrid electric three-wheeler. DP algorithm requires knowledge of future
driving characteristics. Thus, the DP controller is implemented in a backward-facing
hybrid powertrain model. Based on the DP results, a sub-optimal rule-based strategy is
developed. To perform the energy analysis and the fuel consumption evaluation of the
control strategies, the simulation method is generally used and the quasi-static models are
usually selected [34,35]. Since only the energy flow is focused, the accuracy of the quasi-
static models is sufficient for the simulation time step as large as 1 s [36]. Thus, in the present
study to evaluate the proposed sub-optimal rule-based strategy a forward-facing quasi-
static model is developed (time step of the used drive cycles is 1 s). Note, the developed
quasi-static models do not consider dynamic characteristics such as response time of the
engine and motor. The operational characteristics of the powertrain components are taken
as instantaneous. Even though quasi-static models are adequate to analyze and optimize
fuel economy and performance it is not sufficient to evaluate drivability characteristics.

In this section, mathematical models for main powertrain components of a parallel
hybrid electric vehicle are modelled and based on the powertrain models two hybrid
electric vehicle models are developed, i.e., forward-facing model and backward-facing
model. [18,22,25,36,37] used a similar methodology.

2.1. Parallel Hybrid Electric Powertrain Model

Control strategy investigation is conducted for a pre-transmission parallel hybrid
powertrain with a degree of hybridization of 0.3, the powertrain configuration is shown in
Figure 2. Type of powertrain configuration is chosen by considering the volume required
and cost. The three-wheeler is a small low-power and low-cost vehicle used in developing
countries. The design of the hybrid powertrain should be carried out within the volume
constraints of the existing three-wheeler design. Thus, the volume and cost required are
major concerns in selecting the hybrid configuration.
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Both hybrid and plug-in hybrid topologies have excellent fuel economy and environ-
mental benefits [38]. In addition, to the electricity generation from the motor in a hybrid,
the plug-in hybrids can externally charge the battery by connecting to the electrical grid.
Although plug-in hybrids have a high fuel economy compared to a hybrid [39], plug-in
hybrids are equipped with a large energy storage system [38]. In addition, the batteries
account for a significant amount of the initial cost of a plug-in hybrid [39,40]. Thus, in the
present study a non-plug-in hybrid topology is selected.

Out of the three traditional hybrid configurations (i.e., series, parallel and series-
parallel), the parallel hybrid configuration has the least number of powertrain components.
In general, the series-parallel configuration requires two electric motors, engine and a plan-
etary gear set, which make the powertrain complex and costly [41]. The series hybrid also
requires two motors and an engine. Even though for short trips engine can be downsized
relatively easily, sizing the motors and battery is still a challenge, making the series hybrids
expensive [41]. The parallel hybrid has the advantage of a downsized motor and drive
compared to the series configuration [42]. Since the mechanical power is shared between
the engine and motor, the parallel configuration does not require a large motor [43].

The powertrain consists of an internal combustion engine, an electric motor, a battery
pack, a clutch and an automatically controlled manual transmission. As mentioned before,
powertrain design follows a sequential design approach, component sizing and design of
power management strategy is carried out successively [29]. Powertrain component sizes
are found from previous work [14]. Basic parameters of the hybrid powertrain components
and the vehicle are summarized in Table 1.

Table 1. Basic vehicle parameters.

Powertrain Parameter Value

Engine Maximum power (kW) 6
Electric motor Maximum power (kW) 3

Battery No. of Modules 6
Capacity (Ah) 6

Nominal voltage (volt/module) 10.8
Vehicle Frontal area (m2) 1.86

Tire radius (m) 0.2
Coefficient of drag 0.44

Rolling resistance coefficient 0.015
Glider mass–without propulsion (kg) 280

Curb weight (kg) 448

As shown in Figure 2, the output of the engine is connected to a motor via a clutch
operated by the control unit. The automatically controllable clutch is used to connect
or disconnect the engine torque with the electric motor torque. The clutch between the
motor and internal combustion engine allows the powertrain to operate in full electric
mode (motor only) without the engine. When the powertrain is operating on parallel
mode (motor and engine operate in harmony) both electric motor torque and engine torque
are coupled. Furthermore, the engine, motor and battery models are developed based
on ADvanced VehIcle SimulatOR (ADVISOR) library maps/data. This approach already
known in literature, is used to develop hybrid vehicle simulation models for the present
study. Some examples where ADVISOR powertrain models are used for similar hybrid
powertrain investigations are [18,20,22–24,44].

2.1.1. Longitudinal Vehicle Model

The vehicle model is defined with the characteristics of a motorized three-wheeler,
with a glider mass of mgm (without the powertrain components). The total mass of the
vehicle is,

mveh = mgm + mice + mmot + mbatt + mgb + mcargo (1)
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where mice mass of the engine, mmot mass of the motor, mbatt mass of the battery, mgb mass
of the gearbox (transmission) and mcargo mass of three passengers including the driver.

The movement characteristics of a vehicle along its moving direction are determined
by all the forces acting in that direction. Forces acting on the vehicle are modelled as a
representation of the force balance at the tire patch. In the longitudinal direction, the main
external forces acting on the vehicle are aerodynamic drag force Fa, rolling resistance force
Fr, climbing resistance Fc, acceleration resistance force Fi and traction force at the wheel Ft.
The dynamic equation for the longitudinal hybrid electric vehicle model is expressed by,

Ft = Fa + Fr + Fc + Fi (2)

Ft =
1
2
· Cd·Aρ·vveh

2 + mvehgCr· cos α + mvehg· sin α + mveh·
dv
dt

(3)

where Cd is the aerodynamic drag coefficient, A is the frontal area of the vehicle, ρ is the air
density, vveh is the linear velocity of the vehicle, g is the acceleration due to gravity, Cr is
the rolling resistance coefficient, α is the road gradient and dv

dt is the linear acceleration of
the vehicle.

For the simulation, the vehicle speed is extracted from the drive cycle at each time
interval. Traction force required to overcome driving resistance forces depend on the
current characteristics of the vehicle and driver demand at the next moment.

The vehicle simulation is a discrete-time system; therefore, the current acceleration
aveh,k is defined as a discrete function as follows,

aveh,k =
vveh,k+1 − vveh,k

tstep
(4)

where vveh,k is the current vehicle velocity. vveh,k+1 is the target velocity in the next moment
and tstep is the time step of the simulation.

By considering Equations (1) and (3), traction torque required by the powertrain at
the vehicle wheel during the current step in the discrete-time space Twh, is expressed as,

Twh = rwh

(
1
2
· Cd Aρvveh,k

2 + mvehgCr· cos αk + mvehg· sin αk + mveh·aveh,k

)
(5)

where αk is the road gradient at the particular timestamp and rwh is the vehicle’s
wheel radius. The angular velocity ωwh and angular acceleration

.
ωwh of the wheel is

expressed as,

ωwh =
vveh
rwh

(6)

.
ωwh =

aveh,k

rwh
(7)

The vehicle model assumes a constant rolling resistance coefficient and a constant tire
radius. Effect of rotational inertia in the linear direction is taken as negligible. In addition,
system vibrations and wheel slip are neglected.

2.1.2. Transmission Model

The transmission assembly is modelled as a four-gear automatically controlled manual
transmission. The gearbox efficiency is considered equal for all the gears ηgb = 0.95. The
powertrain torque on the clutch side of the gearbox Tgb, is modelled as,

Tgb =
Twh

ηgb·γ(i)
, Twh ≥ 0 (8)

Tgb =
Twh·ηgb

γ(i)
, Twh < 0 (9)
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where γ(i) is the gear ratio for each gear including the final drive ratio. The angular
velocity ωc and angular acceleration

.
ωc of the crankshaft is expressed as,

ωc = γ(i)·ωwh (10)

.
ωc =γ(i)· .

ωwh (11)

The gear switching strategy for the transmission is modelled using a discrete-time dy-
namic model. The transmission gear number at k + 1 time step, Ngear(k + 1) is expressed as,

Ngear(k + 1) =


4, Ngear(k + 1) + shi f t(k) > 4,
1, Ngear(k + 1) + shi f t(k) < 1,
Ngear(k) + shi f t(k), otherwise

(12)

where Ngear(k) is the transmission gear number at kth time step and shi f t(k) is the gear
shift command, defined as shi f t(k) ∈ {−1, 0, 1}.
• shi f t(k) = −1, gear downshift.
• shi f t(k) = 1, gear upshift.
• shi f t(k) = 0, maintain the current gear.

The gearbox model assumes no energy losses during gear shifting and inertia of the
gearbox and final drive (differential) is neglected.

2.1.3. Clutch Model

The clutch between the motor and internal combustion engine allows the powertrain
to operate in full electric mode without the resistive inertial torque of the engine. During
the parallel operational mode, both electric motor resistive inertial torque Tmot_0 and engine
resistive inertial torque Tice_0, are considered. The total torque demand from the electric
motor and engine Tdem, is expressed as follows,

Tdem = Tgb + Tmot_0 , clutch disengaged (13)

Tdem = Tgb + Tmot_0 + Tice_0 , clutch engaged (14)

Tice_0 = Iice·
.

ωc (15)

Tmot_0 = Imot·
.

ωc (16)

where Iice is the moment of inertia of the engine and Imot is the moment of inertia of the
motor. Tdem is split between the internal combustion engine and electric motor depending
on the torque ratio determined by the power management strategy. The model assumes
dynamics of the clutch are negligible.

2.1.4. Internal Combustion Engine Model

The internal combustion engine model is generated with a static fuel consumption
map, developed using experimental modelling method based on the Willians approxi-
mation. By using Willians line scaling approach, based on known steady-state efficiency
data of a reference machine, efficiency of a new machine in the same category can be esti-
mated [35]. In the present work, the engine model uses a scaled fuel consumption map of a
gasoline SI Geo Metro 1.0 L engine from the ADVISOR library. The fuel consumption map
of the engine is expressed as a relationship between engine torque, speed and brake specific
fuel consumption (BSFC) as shown in Figure 3a. BSFC is a measure of fuel efficiency: the
rate of fuel consumption divided by the power produced. Like fuel consumption of the
engine, exhaust gas emissions (i.e., HC, CO and NOx) are estimated using experimental
static gas emission maps. As shown in Figure 3b–d the emissions maps are expressed as a
relationship between engine torque, speed and brake specific exhaust gas emission.
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Figure 3. Engine fuel and emission maps: (a) Fuel efficiency map; (b) HC emission map; (c) CO emission map; (d) NOx
emission map.

The engine model obtains the brake specific fuel consumption OBSFC(ωe, Te) at the
engine operating point (ωe, Te), where the engine outputs torque Te and speed ωe, using
cubic spline data interpolation method,

OBSFC(ωe, Te) = f (ωe, Te) (17)

Fuel consumption rate
.

m f (g/s) is expressed as,

.
m f =

1
3600× 1000

·ωe·Te·OBSFC(ωe, Te) (18)

The fuel power Pf uel given to the engine is calculated by,

Pf uel =
.

m f ·Qlhv (19)

Engine model considers exhaust gas emissions: HC, CO and NOx. The brake spe-
cific exhaust gas emission rate Ea(ωe, Te), “a” represent the emission gas (i.e., HC, CO
and NOx), at the engine operating point (ωe, Te) is obtained using the cubic spline data
interpolation method,

Ea(ωe, Te) = f (ωe, Te) (20)

Exhaust gas rate
.

mexh,a (g/s), “a” represent the emission gas (i.e., HC, CO and NOx),
is expressed as,

.
mexh,a =

1
3600× 1000

·ωe·Te·Ea(ωe, Te) (21)
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Engine model assumes the effect of change of temperature on the engine and frictional
force of the engine are negligible. In addition, the dynamic characteristics of the engine are
not considered.

2.1.5. Electric Motor Model

The motor model is also developed using a static efficiency map. As shown in
Figure 4, the efficiency map is expressed as a relationship between engine torque, speed
and motor efficiency.
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The electric motor efficiency ηmot(ωmot, Tmot), at the motor operating point (ωmot, Tmot),
where the motor outputs torque Tmot and speed ωmot, is obtained using the cubic spline
data interpolation method:

ηmot(ωmot, Tmot) = f (ωmot, Tmot) (22)

The electric power needed from or supplied to the battery by the electric motor
Pelec_mot, is expressed by

Pelec_mot = ηmot(ωmot, Tmot)·ωmot·Tmot, Tmot < 0 (23)

Pelec_mot =
ωmot·Tmot

ηmot(ωmot, Tmot)
, Tmot > 0 (24)

The electric motor model does not consider the dynamics of the machine. In addition,
the model assumes the frictional force of the electric motor is negligible.

2.1.6. Battery Model

The battery model is generated as multiple modules with a combination of parallel
and series cells to represent the 6 Ah Saft Li-Ion battery from the ADVISOR library. The
battery input or output power Pbatt, is expressed by,

Pbatt = Pelec_mot + Paux (25)

where Paux is a constant auxiliary power demand that represents the power consumption
of all the secondary systems of the vehicle. The battery pack is modelled as an equivalent
circuit comprising an open circuit voltage Voc in series with an internal resistance Rint as
illustrated in Figure 5. In addition, U is the terminal voltage of the battery. The model is
based on experimental data of battery charging-discharging.
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Figure 5. Battery model and electrical performance: (a) The equivalent battery circuit model; (b)
Battery module open circuit voltage with SoC at 41 ◦C.

In general, three-wheelers are widely used in countries such as India, Sri Lanka and
Pakistan. Where temperature variation over the year is not significant. Thus, in the present
study a constant temperature of 41 ◦C is considered to model the battery. The battery
open-circuit voltage Voc, which is a function of battery SoC and battery temperature Tbatt,
is shown in Figure 5b and expressed by the interpolation function,

Voc = f (SoC, Tbatt) (26)

Battery internal resistance Rint, which include Ohmic resistance Ro and polarization
resistance Rp, is expressed by the interpolation function,

Rint = f (SoC, Tbatt) (27)

Charging and discharging current of the battery, which is defined as positive during
discharging and negative during charging, is expressed by,

Ibatt =
Voc −

√
Voc2 − 4Rint·Pbatt

2Rint
(28)

The battery state of charge SoC, in the discrete system, is expressed as,

SoCk+1 = SoCk −

Voc,k −
√

Voc,k
2 − 4Rint,k·Pbatt,k

2Rint,k

· ηbatt
3600· Qbatt

(29)

where SoCk+1 is the battery SoC at the (k + 1) time step and SoCk, Voc,k, Rint,k and Pbatt,k
are the battery SoC, open-circuit voltage, the internal resistance of the battery and battery
power at the kth time step, respectively. In addition, Qbatt is the battery capacity and ηbatt
is the battery charging-discharging efficiency. Similar to [22] ηbatt is defined as,

ηbatt =

{
1.0 , Ibatt ≥ 0
0.9 , Ibatt < 0

(30)

Note that an alternate approach to calculate battery efficiency is using battery circuit
equivalent model data. Similar to [45] open-circuit voltage, internal resistance and output
power can be used to better approximate the battery charging-discharging efficiency.

2.2. Quasi-Static Hybrid Electric Vehicle Models

Forward-facing model and backward-facing model [46] are developed with the
above powertrain component models. The forward-facing model is developed in MAT-
LAB/Simulink environment and backward-facing model is developed in MATLAB applica-
tion. As mentioned above, the optimal controller (DP based) is simulated on the backward-
facing model and the proposed rule-based controller is simulated on the forward-facing
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model. Figure 6 shows the basic schematics of the backward-facing model and forward-
facing model.
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As shown in Figure 6b, the forward-facing model is implemented with a driver model.
The driver model simulates the manipulation of the accelerator pedal and the brake pedal
by the driver. The model is implemented as a PI controller, which compares the actual
velocity (velocity of the model) with the desired velocity (velocity from the drive cycle) to
generate acceleration and brake commands. Acceleration and brake commands are given
to the supervisory controller which formulates the clutch command, gear shift command,
engine torque command and the motor torque command.

The backward-facing model is implemented with two control commands, i.e., gear
shift command and torque split command (torque split factor between motor and engine).
These commands are generated by the optimal controller (DP-based controller). The torque
split factor is defined as a continuous variable u ∈ [−1 1].

• u = 1, only the motor provides necessary torque or full brake energy recuperation;
• 0 < u < 1, both the motor and engine provide the necessary torque;
• u = 0, only the engine provides the necessary torque;
• −1 < u < 0, engine provides surplus torque and motor is in generator mode;
• u = −1, engine provides surplus torque and motor is in maximum generator mode

(full recharge).

To gauge the comparability of the two models, the backward-facing model and
forward-facing model is simulated with the same parameters. The cumulative error on fuel
consumption, drive cycle and battery SoC are 1.7%, 0.75% and 0.01%, respectively.

3. Global Optimal Control Strategy Based on DP

DP is a powerful numerical method for solving optimal control problems. One of the
main advantages of the DP technique is that global optimality of the found solution is guar-
anteed even for nonlinear dynamic systems with constraints [21]. The main limitations of
the technique are the in-ability to solve causal problems and the exponential computational
power requirement growth with the increase of state variables and input variables of the
analyzing dynamic problem [47].

In the present study, the dynamic program algorithm is implemented based on the
MATLAB DP function developed by Sundstrom and Guzzella in [48]. DP technique is used
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to design the control strategy of the hybrid electric three-wheeler. Using a drive cycle, DP
based optimizing algorithm can find the optimal power management strategy. Thus, the
results of the DP optimization can be used for developing less computationally demanding
online control strategies. The drive cycle used in this study, is the worldwide harmonized
light vehicles test cycle (WLTC) class 1 test cycle. In this section, firstly, the theoretical
framework of the implemented DP controller is presented. Secondly, the formulation of
the hybrid electric three-wheeler optimization problem is shown. Thirdly, the numerical
issues of the implemented DP algorithm are analyzed. Finally, results of the multi-objective
optimization are examined.

3.1. Implementation of DP

DP solves the complex optimal problem by breaking it down to a collection of sub-
problems. To solve the DP problem, the main continuous problem is discretized, i.e., hybrid
vehicle model. The discrete hybrid vehicle model is expressed as,

xk+1 = fk(xk, uk), k = 0, 1, . . . k, k + 1, . . . , N − 1 (31)

where xk and uk are the state variables (such as: vehicle speed, transmission gear position,
battery state of charge) and control variables (such as: gear shift command, motor torque,
motor speed, engine speed and engine torque) at the kth time stamp, respectively. xk+1
is the state variable at the k+1 time step. The goal of the DP algorithm is to minimize a
cost function over a given test drive cycle by varying the control variables u(k). The cost
function of the optimization problem is expressed as,

J = g(xN) + ε(xN) +
N−1

∑
k=0

hk(xk, uk) (32)

where gN(xN) + εN(xN) is the cost at the terminal timestamp of the drive cycle. gN(xN) is
the final cost and εN(xN) is the additional cost incurred due to the partially constrained
final state, x

(
t f

)
∈
(

x f ,min, x f ,max

)
. x
(

t f

)
is the state variable value at the terminal time

step of the drive cycle. x f ,min and x f ,max is the final expected state variable range, minimum
value of the final state variable and maximum value of the final state variable, respectively.
hk(xk, uk) is the instantaneous cost incurred when the control policy represented by the
control variable uk, is applied at xk, grid point. The grid points are the intersection of
discretizing lines of the state space and time space [37]. N is the time length of the
driving cycle.

DP algorithm solves the optimization problem by finding the optimal control signal
map and optimal control sequence. Based on the principles of optimality, DP algorithm
evaluates the optimal cost-to-go function J∗k(xk) at every node in the discretized state time
space by going backwards in time [49].

The final cost at the Nth time step is calculated by

J∗N(xN) = g(xN) + ε(xN) (33)

For the kth (k = N−1, N−2, . . . , 0) time step, cost-to-go function is calculated by

J∗k(xk) = minuk [hk(xk, uk) + J∗k+1( fk(xk, uk))] (34)

The optimal control is given by the argument that gives the minimum value for
Equation (34) at every grid point of the discretized state time space. By solving Equations
(33) and (34), the optimal control signal map is found. Which is used to find the optimal
control signal by a forward simulation of the model in Equation (31), starting from a given
x0, to generate the optimal state trajectory [49]. Note that principles of the implemented DP
algorithm are already reported in [22,48,49] and thus only a summary is presented here.
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3.2. Problem Formulation

To implement DP technique to the hybrid electric three-wheeler model, state and
control variables need to be found. State of the vehicle model can be expressed through
state variables such as vehicle speed, transmission gear number and SoC. The vehicle speed
is a known value at every stage of the drive cycle. Therefore, in the present study, the state
of charge of the battery and transmission gear number are defined as the state variables.

SoC of the vehicle model over its drive cycle is continuous, for the DP, the continuous
variable must be discretized. The continuous state variable SoC is discretized into finite
number of points. Where the number of grid points of the discretized state variable, SoC,
is expressed as

Sg =
SoCmax − SoCmin

∆SoC
(35)

where SoCmax is the maximum SoC value and SoCmin is the minimum SoC value. ∆SoC is
the increment value of the discretized SoC. The state variable, transmission gear number,
Ngear(k), is defined as a discrete function with four values, to represent the gear number at
kth time step:

Ngear(k) ∈ [1, 2, 3, 4] (36)

Several control variables can be found for the vehicle model, such as gear shift com-
mand, motor torque, motor speed, engine speed and engine torque. In the present study,
gear shift command, motor torque and engine torque are considered as control variables.
The two variables, motor torque and engine torque are expressed by a single control vari-
able defined as the torque split factor. The control variable torque split factor, u ∈ [−1 1], is
the ratio between the motor torque and engine torque. Torque split factor is a continuous
variable. For the DP algorithm, it is necessary to discretize the control variable into finite
number of points. The discretization resolution for the control variable is expressed by, ∆u,
which is the increment value of the discretized control variable. The number of grid points
of the discretized control variable, u, is expressed as

ug =
umax − umin

∆u
(37)

where umax is the maximum torque split factor value and umin is the minimum torque split
factor value. The control variable, gear shift command, shi f t(k), is defined as a discrete
function to represent the shift command at kth time stamp. Variable is restricted to three
values, −1, 0 and 1, to represent downshift, same gear and upshift, respectively. Table 2
summarizes the key variables of the DP optimization algorithm.

Table 2. Variables and grids of the dynamic programming (DP) problem.

Variables Grid

Stage (k) Time 0:1:1612

State (x) SoC
Gear number

0.4:0.0027:0.7
1, 2, 3, 4

Control (u) Torque split factor
Gear shift command

−1:0.028:1
−1, 0, 1

In general, in optimizing hybrid electric vehicles, only the fuel consumption is consid-
ered. In the present work, both fuel consumption and exhaust emissions are considered.
The multi-objective optimization approach results in Pareto optimal solutions instead of
one single solution. To generate the Pareto front, a scalarization method is used. The multi-
objective problem is transformed into a series of single objectives by the classic weighted
sum approach [50]. Even though the cost of each objective, i.e., Fuel consumption, HC,
CO and NOx emissions, have the same unit of measurement, i.e., grams per second, the
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range is different. Therefore, prior to the optimization process costs are normalized [51].
The normalized cost f norm

i , where i ∈ {Fuel, HC, NOx, CO}, is expressed as,

f norm
i =

fi(xk, uk)−min( fi)

max( fi)−min( fi)
(38)

where fi(xk, uk) represents the cost incurred at kth time stamp, namely instantaneous fuel
consumption rate for fuel and instantaneous exhaust emission rate for emissions, i.e.,
HC, CO, NOx. max( fi) and min( fi) is the maximum and minimum cost values of each
objective, respectively. Normalized cost f norm

i , is a non-dimensional function with upper
and lower bounds.

The gear shifting control is governed by the DP algorithm and if the gear shift control
is not restricted, DP chooses the gear position to reduce fuel consumption and emissions at
each time step resulting in a gear position map with frequent shifting. Therefore, a fifth
objective is added to restrict the gear shifting frequency.

fgear = |shi f t(xk, uk)| (39)

The cost-to-go function at kth time step is defined as

Jk(xk) = minuk

[
∑ wi· f norm

i + wgear· fgear + Jk+1(xk+1)
]

(40)

where wi > 0 for all i ∈ {Fuel, HC, NOx, CO}, wgear > 0 and ∑ wi + wgear = 1 [52]. The
Jk+1(xk+1), is the cost of the cost-to-go function at k + 1 time step.

The objective of the dynamic program is to minimize the cost-to-go function within
defined constraints by varying the control variables. During the optimization, constraints
relating to power ratings and characteristics of the powertrain components should be
guaranteed to ensure the smooth operation of components such as the engine, motor and
battery. Following are the imposed constraints,

SoCmin ≤ SoC ≤ SoCmin

ωe_min ≤ ωe ≤ ωe_max

Te_min ≤ Te ≤ Te_max

ωmot_min ≤ ωmot ≤ ωmot_max

Tmot_min ≤ Tmot ≤ Tmot_max

(41)

where ωe_min, ωe_max, Te_min and Te_max is the engine minimum speed, maximum speed,
minimum torque and maximum torque, respectively. In addition, ωmot_min, ωmot_max, Tmot_min
and Tmot_max is the motor minimum speed, maximum speed, minimum torque and maxi-
mum torque, respectively.

3.3. Numerical Issues of DP

DP is a numerical algorithm, which is generally solved using quantization and inter-
polation methods. To solve the optimization problem, continuous variables such as state,
control and time are discretized. Discretization inherently introduces numerical errors,
which degrade the accuracy of the DP results. Therefore, to avoid these numerical errors
without increasing computational effort, careful implementation of the DP algorithm is
important [47]. In this section, numerical issues of DP are investigated, i.e., the boundary
line issue and resolution of the discretized variables.

3.3.1. Boundary Issue and Resolution of the Study

One of the numerical issues resulting from the interpolation is the boundary line error.
Infeasible states and inputs are infinitely expensive. Therefore, the cost incurred at such a
point should have an infinite cost. Using an infinite cost value make it impossible to use
linear interpolation to calculate the boundary line of the infeasible region. Therefore, a
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finite cost, which is bigger than the maximum value of the cost-to-go function is used for
the infeasible points to reduce the blurring effect of the boundary line.

The resolution of the total vehicle energy demand over a drive cycle increases with
the resolution of the time space, thus increasing the resolution of the fuel consumption and
amount of emissions released. However, the minimum sampling period of the time space
is restricted by the sampling period of the drive cycle. Therefore, in the present study, the
resolution of the time space is taken as the resolution of the drive cycle.

3.3.2. Resolution of State Variable

The only continuous state variable and control variable in the present study is the
battery state of charge and torque split factor. According to the mathematical principles
of DP, the discretization resolution of the state space and the discretization resolution of
the control variables are independent [37]. Therefore, discretization resolution of the state
variable SoC can be investigated independently of the control variable torque split factor
and vice versa.

The resolution of the SoC is determined by the number of grid points Sg, the state
variable is divided. Figure 7 represents the relationship between the number of grid points
in the state space, normalized DP results and computational effort. The number of grid
points indicates the resolution of the state space. Higher the number of grid points, higher
the resolution of the state space. Normalized DP result change represents the change of the
solution of the optimization problem, namely the output of the cost function. The relative
computational effort represents the change of the computational time requirement as a
multiple of the computational time required for the minimum grid number analyzed. Note
that DP problem is solved in the present study with an Intel® Core™ i7-7700HQ CPU and
a 16 GB RAM.

Figure 7 shows that normalized DP results decrease with the increase of the number of
grid points in the state space. However, when the resolution of the state space is sufficiently
high, DP results tend to be stable. In contradiction, with increased state-space resolution,
relative computational effort increases by many folds; computational effort increased from
30 grid points: 37 s to 300 grid points: 135 s. Even though the computational effort increases
with the accuracy of the DP result, the appropriate number of grid points for the state
variable that ensures a satisfactory DP result with a minimum computational load can
be obtained. Onwards from 110 grid points, DP results change is less than 0.1, while
computational effort increases by fourfold from 110 grid points to 300 grid points. In
the present study, the number of grid points for the state space is selected as 110 points,
resulting in a ∆SoC of 0.0027, the increment value of the discretized SoC.
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3.3.3. Resolution of Control Variable

The number of grid points of the control variable ug, indicate the resolution of the
control variable. Higher the number of grid points of the control variable, higher the
resolution. Figure 8 represents the relationship between the number of grid points of
the control variable, DP results and computational effort. Similar to the analysis on the
state space resolution, the number of grid points indicate the resolution of the control
variable. Normalized relative DP result change represents the change of the solution of
the optimization problem. The relative computational effort represents the change of the
computational time requirement as a multiple of the computational time required for the
minimum grid number analyzed.
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Results show that the normalized DP result is improved with the resolution and tends
to be stable after the resolution of the control variable is sufficiently high. In contradiction,
the computational effort has increased six-fold from 5 grid points: 28 s to 135 grid points:
167 s. Even though the computational effort increases with the accuracy of the DP result,
the appropriate number of grid points for the control variable that ensures a satisfactory
DP result with a minimum computational load can be obtained. Between 71 and 135 grid
points, DP result is improved by only 0.08, but computational effort doubled. In the present
study, the number of grid points for the state space is selected as 71 points, resulting in a
∆u of 0.028, the increment value of the discretized torque split factor. Note that the fuel
consumption map of the engine should be considered when selecting the discretization
resolution of the control variable [37]. The amount of fuel consumed and emissions released
are related to the characteristics of the engine. The relationship between DP results and the
number of grid points of the control variable is affected by the fuel consumption map and
emission maps of the engine.

3.4. Results of DP Based Control Strategy

The implemented DP algorithm produces Pareto optimal solutions for the cost func-
tion. Prior to running the DP algorithm weighting factors of the objective function should
be determined. The weight selection procedure assumes that the solution set of the present
work has a convex Pareto front [53]. The points of the Pareto front can be found by varying
the weighting factors of the objective function. In the present study, 896 Pareto points were
found by varying the weighting factors for the five objectives, i.e., gear shift, fuel, HC, CO
and NOx. The sizes of the weighting factors are decided by comparing the cost incurred by
each objective at each Pareto point except for the gear shift.

In the DP algorithm, gear shift command is a control variable and the optimization
procedure identify the optimal gear position to reduce fuel consumption and exhaust
emissions. However, each gear change increases the cost incurred by the gear shift objective.
Therefore, lower the weightage of the gear shift objective, higher the frequency of gear



Energies 2021, 14, 1833 18 of 30

shifting. Since there is no cost for changing gear positions, DP algorithm changes gears to
reduce fuel consumption and emissions with no restrictions, resulting in a gear trajectory
map with frequent shifting of gears. Since such a behavior is undesirable, the gear trajectory
is observed with different weighting factors. Concurrently, the costs incurred by the
remaining four objectives are observed to select the weighting factors for the study. Figure 9
shows the gear shift trajectory with a zero-weighting factor and the gear shift map for the
selected Pareto point.
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Figure 9. Gear shift trajectory: (a) Gear shift trajectory with zero-weighting factor; (b) Gear shift
trajectory of the selected Pareto point.

Figure 10 represents the relationship of the Pareto points with the four objectives, i.e.,
fuel, HC, CO and NOx via a parallel coordinate plot. In the parallel coordinate plot, the
“crossing lines” indicate a conflict between the two adjacent objectives. The intensity or
degree of conflict factor present can be determined by the number of crossed lines. Instead,
lines that do not cross demonstrate objectives which are in relative harmony [54]. Figure 10
shows that fuel, HC and CO aims are in harmony compared to NOx. NOx emissions have a
high degree of conflict with CO. For further investigation, the best and worst Pareto points
for fuel, CO, HC and NOx are plotted in Figure 11a,b, respectively.
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values for the objectives.

As shown in both Figure 11a,b, the Fuel consumption, HC and CO objectives are
consistent, while NOx behaves in conflict. Fuel and HC have a low degree of conflict; the
best Pareto points overlap and worst values are observed from the same Pareto point. In
addition, both the best and worst Pareto points of CO and HC show a higher degree of
harmony. In contrast, the best Pareto point of NOx has a higher cost for fuel, HC and
CO. Similar trend can be observed with the worst Pareto point of NOx. Selected Pareto
point overlaps with the best fuel, HC and CO Pareto points. With the selected Pareto point,
compared to the best Pareto point of each objective, fuel, HC, CO and NOx increased by
3%, 32%, 15% and 37%, respectively.

4. Rule-Based Power Management Strategy

The DP algorithm is based on knowing future drive cycle characteristics, but in a
real-world implementation, the drive cycle is unknown. In addition, the DP procedure
requires higher computational power to solve the energy management problem. However,
the DP results can be used to design a power management strategy based on empirical rules.
A rule-based control strategy is computationally effective for an embedded control system
of a hybrid electric three-wheeler. However, the implemented rule-based strategy can
generate driving patterns that may not be optimal, especially when the vehicle is operated
outside the drive cycle characteristics to which the control strategy is optimized. In this
section results obtained from the DP algorithm, are used to extract rules for a sub-optimal
rule-based strategy. This approach, already known in the literature, is used to design a
computationally effective rule-based supervisory power management strategy to operate a
hybrid electric three-wheeler efficiently during real vehicle driving conditions. [15,19,24,25]
used a similar methodology.

4.1. Rule Extraction from DP Based Control Strategy
4.1.1. Power Configuration Selection Strategy

The power configuration of the powertrain determines the energy flow direction and
operating status of the main powertrain components according to the power demand from
the driver. When power demand is positive, the powertrain of a hybrid electric vehicle can
operate under two main configurations. First, motor only or EV configuration, the engine
is turned off and the vehicle is propelled by the motor alone. Secondly, parallel hybrid
configuration. Three power flow methods are present in the parallel hybrid configuration.
First, the engine assist, the engine and motor are used to meet the power demand. Secondly,
engine only, the vehicle is propelled by the engine alone. Finally, recharge, the engine is
operated at a higher point than the power demand. Excess power is stored in the battery
by operating the motor as a generator. Figure 12 shows the different power flow methods
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selected by the DP algorithm as a relationship of total power demand and transmission
output speed of the powertrain.
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Figure 12. Operating points from DP optimization results when power demand is positive.

DP results show that a clear distinction is absent between recharging, engine only and
parallel hybrid methods. However, between motor only and parallel hybrid configurations,
a clear distinction is present. Below the power demand threshold shown by the black
dashed line, DP algorithm gives priority to EV mode or motor only configuration. Results
show a power demand threshold to select EV mode for the sub-optimal rule-based control
strategy can be found using the power demand map of DP results.

4.1.2. Gear Shift Logic

Determining the gear shift schedule of the transmission is paramount for efficient
control of the internal combustion engine. For a parallel hybrid powertrain, it is harder
to obtain an efficient gear shift map using traditional methodologies. Therefore, the
DP algorithm is used to determine the gear shift strategy. As mentioned above, in the
DP procedure gear shift command is given as a control input to the powertrain model.
Figure 13 shows the gear shift strategy from the DP optimization results as a relationship
between transmission output speed, engine power demand and gear number.
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From the gear shift map of the DP results, four different regions can be found for
each gear position. The boundaries between the regions can be used to determine gear
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shifting thresholds. Thresholds between each gear position are used to develop a gear
shift map for the sub-optimal rule-based strategy. To avoid continuous shifting between
gears, a hysteresis function is added to the shifting thresholds. Red solid lines and blue
dashed lines show the up-shift and down-shift gear maps, respectively, for the proposed
rule-based strategy.

4.1.3. Power Split Logic

During hybrid configuration, motor and engine both operate in harmony. DP results
are studied to understand the power split strategy between the power sources. To quantify
the power flow from the powertrain components, i.e., motor and engine, a Power Split
Ratio (PSR) is defined as,

PSR = Peng/Pdem (42)

where Peng is the power demanded from the engine and Pdem is the total power demanded at
the transmission input of the powertrain. During vehicle operation, four distinct powertrain
operating modes can be found through power split ratio:

• PSR = 0, only the motor provides the demanded power (EV mode);
• PSR = 1, only the engine provides the demanded power (engine only mode);
• 0 < PSR < 1, both engine and motor provide the demanded power (engine assist mode);
• PSR > 1, the engine provides surplus power and motor acts as a generator (recharge mode).

The engine operating points from the DP results is represented in Figure 14 as a
relationship between the transmission input speed and power split ratio.
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PSR map shows that engine operating points from DP results can be approximated.
The red dashed line in the above figure shows the approximated PSR curve. The approx-
imated PSR curve is used in the proposed sub-optimal rule-based strategy to determine
the power split between engine and motor. Mathematical expression for the approximated
PSR curve is defined as,

f (x) = −0.0027x3 + 0.0769x2 − 0.845x + 4.1139, T < 7.5
f (x) = 1, 7.5 ≤ T ≤ 9

f (x) = −0.0002x3 + 0.0055x2 − 0.0909x + 1.0484, T > 9
(43)

where T is the torque demand at transmission input. Note that similar to [23], PSR
approximated line can be replaced with an optimal torque map. Where the relationship
between the engine power demand is plotted with total power demand and transmission
input speed to form optimal engine power surfaces. This method uses the transmission
input speed axis for a better approximation of DP results.
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4.2. Proposed Rule-Based Strategy

The extracted results from DP data indicate that power demand map, which deter-
mines PEV (power demand boundary between EV and parallel configurations) and the gear
shift map contribute significantly to achieve an efficient power management logic in the
hybrid electric vehicle. However, the PSR map approximation method is not a universal
procedure for the power split strategy. The PSR method does not consider the battery SoC
level when deciding the power contribution and operational mode of the power sources,
i.e., motor and the engine. This could lead to a scenario where battery is depleted or
overcharged than the recommended levels. Therefore, additional empirical rules should be
determined to prevent the battery from depleting or overcharging. Note that alternative
approaches to link power split strategy with battery SoC are already known in the literature.
For example, Lin et al. [24] use a neural network approach and Biasini et al. in [15] use a
penalty function to change the motor to power demand ratio with battery SoC level.

The logic of the DP based; sub-optimal power management strategy proposed for the
hybrid electric three-wheeler is summarized in Figure 15.
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Six main control modes are used for the proposed strategy. Depending on the battery
SoC level and power demand, different modes are used to control the power flow. PSR
mode propels the vehicle using both motor and engine in harmony. The power ratio is
determined using the PSR map. For the charge sustaining policy, which assures that the
SoC level is kept within predetermined levels, two SoC bounds are defined as SoClow and
SoChigh. In addition, a third SoC level is predetermined as SoCmoderate to give priority
to PSR mode. SoC thresholds are defined with a hysteresis function to avoid frequent
shifting between different modes. Under charged and over-charged modes are used to
ensure that SoC levels are kept within defined boundaries. During under-charged mode,
priority is given to the IC engine and motor is operated as a generator. In contrast, during
over-charged mode priority is given to the motor to propel the vehicle. EV mode is only
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used if SoC level is higher than SoCmoderate and power demand is below PEV values. In EV
mode, vehicle is propelled by the motor alone. PSR mode is selected if SoC value is below
SoCmoderate but above SoClow. If the power demand is negative, regenerative braking is
applied. However, if the maximum brake torque supplied by the motor is below the torque
demanded, additional torque is supplied by the mechanical brake system. In addition, if
the SoC level is higher than SoChigh, only the mechanical brakes are used to decelerate
the vehicle.

Core design parameters from the DP results used for the rule-based strategy are power
demand map, which determines P EV, gear shift map, which determines the gear shift
strategy and PSR map, which determine power split strategy between the motor and engine.
The selection of EV/PSR mode, gear shift and PSR decisions are determined sequentially
because PSR command decision requires the knowledge of torque demand and speed at
the transmission input of the powertrain. These parameters can only be calculated after
determining the gear position. Figure 16 summarizes the logic proposed for the PSR mode.
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Gear shift strategy during vehicle operation is crucial to improve overall powertrain
efficiency. Under the proposed control strategy if the vehicle is operated by both engine
and motor or by engine alone the gear shift strategy adopted from the DP results is used.
However, this strategy cannot be used during EV mode or regenerative braking mode. The
procedure to derive an effective gearbox strategy for these modes is already known in the
literature [55]. In the present work, the heuristic method proposed by Zhu at el in [56], is
used to develop the gear shift strategy during regenerative braking and EV modes of the
vehicle. To achieve a desirable gear shift strategy, maximum torque curve of the motor and
motor efficiency characteristics are considered.

4.3. Comparison of Proposed Rule-Based and DP Based Control Strategy

The sub-optimal rule-based power management strategy developed above is inte-
grated into the implemented forward-facing quasi-static model. The results obtained from
the DP results are compared with the simulation results of the forward-facing model. For
both control strategies starting SoC is taken as 0.55. The Worldwide Harmonized Light
Vehicles Test Cycle (WLTC) class 1 cycle and the New European Drive Cycle (NEDC) is
selected for the simulation experiment. In addition, the vehicle is loaded to simulate the
weight of the driver and two passengers. Note that DP and rule-based (RB) strategies
are simulated in two different models (i.e., backward-facing and forward-facing models).
A comparison of the models is presented in Section 2.2. Since the cumulative energy
bought to the wheels in the two models are different, certain errors can be introduced to
the validation results.

Depending on the power to mass ratio and maximum speed of the testing vehicle,
the WLTC test cycle is selected. Three-wheelers fall into class 1 category established for
vehicles with the power to mass ratio below or equal to 22 W/kg. Test cycle includes
three-speed phases, i.e., low, medium and low speed. In general, three-wheelers operate at
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low speeds. For instance, the maximum legal speed limit for three-wheelers for all roads
in Sri Lanka is only 40 km/h [57] and the maximum speed of the 2019 Bajaj RE 4 s model
(IC engine three-wheeler) is only 65 km/h [58]. Since maximum speed of the test vehicle
is below the WLTC class 1 test exception limit of 70 km/h, the medium speed section of
the WLTC is replaced with a low-speed section. The used WLTC class 1 drive cycle is
represented in Figure 17.
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Figure 17. Speed profile of the WLTC Class 1 drive cycle.

The WLTC test cycle has a maximum speed of 49.1 km/h and an average speed
without stops of 27.6 km/h. Overall results for the drive cycle are affected by the operating
time of each control mode, i.e., EV, PSR, under-charged, over-charge, regenerative braking
and mechanical braking. During the simulation, the rule-based strategy uses the EV mode
for 43% and PSR mode for 42% of the time. Which contributes to 85% of the complete test.
The regenerative mode was used for 15% of the time. Under-charged, over-charged, or
mechanical braking modes are not used. Table 3 summarizes fuel and emission level change
with the RB control strategy (sub-optimal rule-based strategy) compared to the DP results.

Table 3. Performance comparison of DP and rule-based strategies for the WLTC class 1 drive cycle.

Controller Fuel (l/100 km) HC (g/km) CO (g/km) NOx (g/km)

DP 1.32 0.142 1.096 0.405
Rule Based 1.38 0.145 1.151 0.408
Deviation +4.92% +2.09% +5.02% +0.68%

Figure 18 represents the SoC trajectory of the control strategies (i.e., RB and DP). Final
SoC value difference is 0.004.
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Figure 18. SoC trajectory of rule-based (RB) and DP strategies over WLTC.

To gauge the performance of the proposed rule-based strategy on a never-seen-before
drive cycle, both DP and proposed RB strategies are simulated with the Urban Drive
Cycle (UDC) segments of the NEDC. Although NEDC is replaced by the WLTC, still in
countries such as Sri Lanka NEDC drive cycle is used in emission standards for petrol light-
duty vehicles [59]. In the present study, a modified NEDC is used due to the low power
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characteristics of three-wheelers. Extra urban driving cycle (EUDC) segment of the NEDC
drive cycle consists of a maximum speed of 120 km/h and average speed (without stops)
of 69 km/h; therefore, this drive cycle segment has been excluded from the simulation.
UDC-NEDC drive cycle has a maximum speed of 50 km/h and average speed (without
stops) of 26 km/h. The used UDC-NEDC drive cycle is represented in Figure 19.
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Figure 19. Speed profile of the UDC-NEDC drive cycle.

During the simulation, the rule-based strategy used the PSR mode for 34% and EV
mode for 45% of the time. Regenerative mode and under-charged mode are used for
19% and 3% of the time, respectively. Remaining modes are not used. Table 4 summa-
rizes fuel and emission level change with the proposed rule-based strategy compared to
the DP results.

Table 4. Performance comparison of DP and rule-based strategies for the UDC-NEDC drive cycle.

Controller Fuel (l/100 km) HC (g/km) CO (g/km) NOx (g/km)

DP 1.53 0.162 2.264 0.438
Rule-Based 1.59 0.157 2.485 0.474
Deviation +4.01% −2.87% +9.76% +8.16%

Figure 20 represents the SoC trajectory of the control strategies (i.e., RB and DP). Final
SoC value difference is 0.003.
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Figure 20. SoC trajectory of RB and DP strategies over UDC-NEDC.

To gauge the performance of the control strategy developed in real-life cycles, re-
sults are simulated in “Malabe” cycle from [14]. The “Malabe” real-life cycle is shown
in Figure 21.
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Figure 21. Speed profile of the real-life “Malabe” cycle.

During the simulation, the rule-based strategy used the PSR mode for 50% and EV
mode for 39% of the time. Regenerative mode and over-charged mode are used for 6%
and 5% of the time, respectively. Remaining modes are not used. Table 5 summarizes
fuel and emission level change with the proposed rule-based control strategy compared
to the DP results.

Table 5. Performance comparison of DP and rule-based strategies for the “Malabe” cycle.

Controller Fuel (l/100 km) HC (g/km) CO (g/km) NOx (g/km)

DP 1.15 0.124 0.801 0.309
Rule-Based 1.26 0.135 0.989 0.327
Deviation +9.61% +8.59% +23.50% +5.86%

Figure 22 represents the SoC trajectory of the control strategies (i.e., RB and DP). Final
SoC value difference is 0.003.
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The ADVISOR parallel hybrid three-wheeler model and conventional powertrain
model (internal combustion engine (ICE) based) developed in [14] are simulated over
“Malabe” cycle with the same parameters of the present study and fuel consumption
results of the DP and proposed rule-based strategy are compared. Findings show that
compared to the conventional (ICE-based) powertrain, fuel consumption of the parallel
hybrid power train reduced 37.4% with ADIVISOR unoptimized strategy, 52.9% with the
proposed optimized rule-base strategy and 57.0% with the DP.

The present work reveals a methodology to establish an easy-to-implement, near-
optimal and real-time control strategy for parallel hybrid electric three-wheelers. However,
additional studies are necessary to investigate the performance of the proposed strategy
in real-life conditions. The simulation models are developed with simplified models with
ADVISOR maps and data. Therefore, extensive studies on evaluating the control strategy
on detailed simulation models including dynamic characteristics of the powertrain models
and hardware-in-loop experiments should follow this study. Furthermore, the role of
uncertainty in the performance of the proposed strategy could be realized in a future study
by investigating the sensitivity of the control parameters used.
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5. Conclusions

In this article, a rule-based power management strategy that is based on an optimal
control strategy was designed for a pre-transmission parallel hybrid electric three-wheeler
through a sequential design methodology. The optimal control strategy (DP based) was
simulated in a backward-facing model to optimize fuel consumption, emissions (i.e.,
HC, CO and NOx) and gear shift frequency. Results from the DP based control strategy
were used to extract rules to develop a sub-optimal rule-based algorithm. The proposed
rule-based strategy was assessed with a forward-facing model of the hybrid electric three-
wheeler. The main conclusions are as follows:

1. Numerical issues were observed during the DP optimization procedure. Thus, the
effect of discretization resolution of the state and control variables were investigated.
Results show that computational effort and accuracy of the optimal result from the
DP optimization procedure increase with higher discretization resolutions of the state
and control variables.

2. The cost function of the optimization problem considered multiple objectives: fuel
consumption, emissions and gear shift strategy. Results showed that gear shift strategy
and remaining objectives behaved uniquely; contradictory to fuel and emission
objectives, frequency of gear shift increased with lower weighting factors and vice
versa. Moreover, within the engine model used in the present study, a higher degree of
conflict was observed between NOx and remaining objectives (i.e., fuel, HC and CO).

3. Three main useful strategies were extracted from DP results, i.e., full EV mode on/off
threshold, gear shift and power-split strategy to develop the rule-based algorithm.
The rule-based strategy-maintained fuel consumption and emissions within 10% of
the DP results for WLTC and NEDC drive cycles. The proposed control strategy is
computationally less demanding, easy-to-implement on a vehicle and near-optimal;
thus, a viable option to control a hybrid electric three-wheeler operating in densely
populated urban roads.

As future research, the proposed control strategy could be assessed on a prototype
hybrid-electric three-wheeler for performance and robustness. In addition, simulation
models could be validated with experimental testing and improved further to include
dynamic characteristics of the vehicle. With an advance simulation model, multi-objective
optimization could be extended to include vehicle dynamics and drivability characteristics.
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Abbreviations

BSFC Brake Specific Fuel Consumption
CNG Compressed Natural Gas
CPU Central Processing Unit
DC Direct Current
DP Dynamic Programming
EV Electric Vehicle
GPS Global Positioning System
IC Internal Combustion
LPG Liquefied Petroleum Gas
NEDC New European Drive Cycle
PSR Power Split Ratio
RAM Random Access Memory
RB Rule-Based
SI Spark Ignition
SoC State of Charge
UDC Urban Drive Cycle
WLTC Worldwide Harmonized Light Vehicles Test Cycle
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