

Abstract—Web applications have evolved into much complex

Rich Internet Applications, providing rich features and

enhanced user experience. Proper definitions, which deliver

abstract realization of the fundamental concepts of the Rich

Internet Application are still missing. Definitions provide

proper understanding of the subject and help in increasing the

realization of the characteristics of the same. This paper focuses

on conceptually identifying the characteristics of the rich

communication model of the Rich Internet Applications –

commonly known as the “Asynchronous Communication” –

suggesting a better term “Delta-Communication”, followed by a

definition for it. Based on the definition, we propose a term and

a definition for the abstract model of the simplest rich

communication technique, which is exploited in AJAX.

Additionally, based on the proposed definition for the rich

communication model, the paper proposes a new term to

replace the term AJAX to overcome the limitations expressed

by the term AJAX. These terms and definitions specify and

express the fundamental characteristics of the abstract concepts

of the rich communication model of the Rich Internet

Applications.

Index Terms—AJAX, asynchronous, communication, delta,

rich internet applications.

I. INTRODUCTION

Rich Internet Applications (RIAs) are very complex Web

based systems [1], [2]. RIAs are encompassed with various

types of components, integrated in diverse ways, making the

RIAs more complex systems [3]. Numerous Technologies

and Techniques (TTs), frameworks, libraries, and tools had

been introduced over the last decade for the development of

these components of RIAs [4]. However, these TTs,

frameworks, libraries, and tools do not improve the

fundamental concepts in the core of the RIAs [2], and the

complexity remains due to the lack of realization of the

abstract architectural formalism of the RIAs. Moreover, these

TTs may introduce new layers of complexity and learning

curves into development. Therefore, in the terms of the

complexity, the advancement of TTs and tools does not

provide much assistance.

Even though lots of tools had been introduced and many

researches had been conducted in the domain of RIAs, still

few researches have focused on the abstract fundamental

concepts of the RIAs; and standard definitions for these

concepts have still not been articulated [5]. Definitions of the

concepts provide precise common understanding of the

Manuscript received January 24, 2017; revised April 10, 2017.

Nalaka R. Dissanayake is with the Informatics Institute of Technology, 57,

Ramakrishna road, Colombo 6, Sri Lanka (e-mail: nalakadmnr@gmail.com).

G. K. A. Dias is with the University of Colombo School of Computing,

Reid Avenue, Colombo 7, Sri Lanka (e-mail: gkad@ucsc.cmb.ac.lk).

subject towards proper utilization of the concept. If we can

realize the fundamental abstract (by the means of TTs

independent) architectural elements of RIAs and their

characteristics well enough and strongly define them, the

complexity can be reduced; since the complexity encloses the

difficulties in understanding the software systems [6].

Our ongoing research intends to reduce the complexity of

the RIAs by identifying the fundamental abstract

architectural elements of RIAs, specifying their

characteristics, and introducing terms and definitions for

them; in the direction of introducing an abstract architectural

style for RIAs. This paper focuses on the rich communication

model of the RIAs, which can be seen as the power of the

RIAs (This is further discussed in section III). This rich

communication model has two communication modes

according to the direction of the data transmitted: 1) data-pull

and 2) data-push. In data-pull mode, the client requests and

fetches data (or pulls data) from the server, based on the

traditional request-response model. In data-push mode, the

server-components push the data to the client-component(s)

when needed, without receiving a request from the client. In

this paper we focus only on the data-pull mode.

This paper discusses the fundamental characteristics of the

rich communication model of the RIAs, as identified through

the literature survey and empirical evidence gained from a

series of experiments; then proposes a definition, indicating

the limitations of the general term “Asynchronous

Communication”, which is currently used to denote this rich

communication model. Based on this definition, the paper

also delivers a term and a definition for the simplest abstract

technique, which can be implemented using this rich

communication model; which is exploited in the popular

technique named Asynchronous Javascript And Xml (AJAX)

[7]. Additionally, the paper proposes a better conceptual term

to replace the term AJAX, considering the outdated

impression expressed by the words in the abbreviation

AJAX.

The proper understanding delivered via the definition of

the abstract fundamental concept of the rich communication

model of the RIAs, will increase the realization of the

architectural connector element [8] of rich communication

within the system. We hope to utilize this realization, to

simplify the complexity of the RIAs, by separating the rich

communication connector from the other components,

towards deriving an architectural style for RIAs. We expect

that the knowledge delivered in this paper can be utilized to

improve the available tools, and also to introduce new

momentous tools within the context of the rich

communication connector of RIAs.

A. Methodology

Delta Communication: The Power of the Rich Internet

Applications

Nalaka R. Dissanayake and G. K. A. Dias

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

31doi: 10.18178/ijfcc.2017.6.2.484

We conducted a literature survey in the domain of RIAs

covering the techniques like AJAX [7], technologies like

Websocket [9], and some other related concepts like design

patterns and architectural styles, associated with the rich

communication model. The literature survey went to the

depth of the specifications of the related techniques and

technologies. Additionally, the literature survey enclosed the

related frameworks, libraries, and tools, in order to

understand how the rich communication handling is

implemented in them.

A cross-sectional survey was conducted to examine the

experience of the developers on developing the rich features

in RIAs, the complexity level of developing them, and how

the complexity is related to the difficulty of developing of

rich communication utilizing features [10].

Even though the work covered in the paper is conceptual,

in order to draw the arguments, we required to gain empirical

evidence of the knowledge we gathered through the literature

survey. A series of experiments were conducted to gain

empirical evidence within the domain. These experiments

were prototype based and continued in incremental iterations.

The knowledge gained in early iterations were utilized to

realize the characteristics of the fundamental concepts of the

RIAs, in order to specify and define them, and to come up

with better techniques to develop them. The knowledge

gained in early iterations was applied to the later iterations,

and also refined, as the conceptual realization improves.

HTML5 and CSS3 were used to develop the pages of the

prototypes; JavaScript (JS) and jQuery [11] were used to

develop the client-side components; PHP was used to

develop the server-side components; and MySQL was used

to implement the databases. The prototypes were hosted in a

local Apache server, using XAMPP tool.

B. Structure of the Paper

Section II delivers the background of the RIAs, discussing

the available approaches to develop RIAs, indicating the

approach focused in this paper. Section II also delivers the

background of AJAX, since AJAX contains the basics of the

focused rich communication model of the RIAs.

Section III discusses the characteristics of the rich

communication model of the RIAs. Then the section

introduces the new term “Delta-Communication” (DC) and

its definition, focusing on the real power of this rich

communication, while indicating the flaws of its current

generic term “Asynchronous Communication”.

Based on the introduced definition for the rich

communication model of RIAs, section IV proposes a new

term and a definition to describe the simplest rich

communication implementation technique. Followed by that,

the section also proposes a new term to replace the term

AJAX, indicating the flaws of its current meaning.

Section V concludes the paper, specifying future work of

our ongoing research.

II. BACKGROUND

The first segment under this section delivers the

background of the RIAs, stating the available approaches

used to develop the RIAs, and specifying the approach

focused in this paper. This segment also discusses the notion

behind the richness of the RIAs. The second segment

discusses about the XHR object and its usage in

implementation of AJAX technique, since AJAX introduced

the JS based RIA development approach and implements the

simplest form of the rich communication model, which is

focused in this paper.

A. Rich Internet Applications

The term “Rich Internet Application” had been first used

by Jeremy Allaire at Macromedia, in 2002; introducing their

new technology named “Macromedia Flash MX”, which is a

client-side application development platform with dedicated

TTs [12]. As per Jeremy, the RIAs are supposed to have

“media-rich power of the traditional desktop with the

deployment and content-rich nature of Web applications”

[12].

After Flash, different RIA development TTs had been

introduced, and they can be specified under three approaches:

1) proprietary plugin based approach, 2) Open source JS

based approach, and 3) the lease known browser-based

approach [13], where Flash falls into the plugin based

approach. The JS based approach became popular with the

introduction of AJAX, while other two approached have

faded away. The scope of this paper sets within the JS based

approach. However, while experimenting we have noted that

despite the approach and the TTs used in the development,

they all share similar abstract fundamental concepts.

RIAs are capable of delivering rich features minimizing

the user experience gap between the traditional Web

applications and the desktop applications. The richness of the

features in RIAs can be analyzed into three main aspects: 1)

the rich GUIs, enabled by the advancement of client-side

development TTs, which allow building desktop applications

like GUIs; 2) the rich communication model – commonly

known as the asynchronous communication – which permits

to communicate only the smaller and needful set of data,

faster and also asynchronously; and 3) the enhanced user

experience, enabled by the synergy of the aforementioned

two features [1], [4], [14], [15].

The rich communication model of the RIAs plays a vital

role in the development of the rich features. Without it, the

rich GUIs will communicated with the server via the

traditional request-response model, based on the work-wait

pattern, which is incorporated with page refreshes, thus

slower and low in user experience. To implement the rich

communication model of the RIA, different TTs are available

like AJAX [7], Polling [16], Server-Sent-Events (SSE) [17],

and WebSocket (WS) [9].

B. XHR Object and AJAX

Microsoft was working on a technology named

XMLHTTP in their Exchange 2000 project [18], and it was

first introduced to the world as an ActiveX control in Internet

Explorer 5.0 in March 1999 [19], [20]; and later it was called

the XMLHttpRequest (XHR) object, which has an

Application Programmer Interface (API) in JS.

In 2005, Jesse James Garrett from Adaptive Path coined

the name AJAX, introducing the first JS based rich

communication technique for Web applications, which

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

32

utilizes the XHR object [21]. This technique became popular

and took the traditional Web applications to a whole new era

called Web2, which is the era of the RIAs. Later W3C

acquired the control of the XHR object and released the first

specification on 2006 [22]. Since then the term AJAX has

become an informal name for RIAs, where even some

developers refer the RIAs as AJAX applications.

AJAX can be seen as the beginning of the JS based RIA

development approach, and it became a major breakthrough

in the Web development area [23]. After its introduction,

developers were learning how to use AJAX to create

desktop-like GUIs in Web applications such as Google Maps;

and later they subsequently used AJAX even to create entire

enterprise RIAs [14]. Using the JS’s ability to manipulate the
Document Object Model (DOM) in HTML documents,

AJAX achieves and enhances the interoperability capability

of Web applications [23]. AJAX is a data-pull technique,

employing the traditional request-response model.

It should be noted that the AJAX itself is not a technology,

it is a technique; and the technology behind AJAX is the

XHR object with its JS API. Combining HTML and CSS

with JS, AJAX has become a powerful tool in RIA

development, providing the fundamental implementation of

the rich communication model.

III. DEFINING THE RICH COMMUNICATION MODEL OF THE

RIAS

The first segment of this section discusses the features/

characteristics of the rich communication model of the RIAs,

in order to gain adequate realization of the abstract concept

behind it. The second segment generalizes and rationalizes

the characteristics and introduces a term and a definition for

the abstract concept behind the rich communication model of

the RIAs.

A. Understand the Rich Communication Model

In pre-AJAX classical Web applications, when the user

preforms an action and if the processing needs to

communicate with the server, then the client-component will

send a request to the server. When the response is received,

the browser renders the results by refreshing the page,

loading a complete web page and related resources, which are

supposed to be the content of the response. Once the request

is sent, till the response is received – and loaded completely

to the browser – the user has to wait, being idle. This setting

is called the work-wait pattern [24], which makes the mode

of this traditional communication processing synchronous,

thus slow and lack in responsiveness. As Mozilla Developer

Network says “synchronous requests block the execution of

code, which creates ‘freezing’ on the screen and an
unresponsive user experience” [25], lowering the user

experience. In summary, the communication model of the

traditional web applications incorporates page refreshes and

work-wait pattern, and it is always synchronous, where all

these facts can be seen as limitations for providing good user

experience.

There are three main aspects behind the rich

communication model of the RIAs, which is generally known

as the asynchronous communication, which helps to

overcome the limitations of the communication model of the

traditional web applications.

1) Background processing and partial page rendering

The rich communication of RIAs is processed in the

background, behind the GUI of the Web page, and out of the

sight of the user [24]. With advancement of client-side

development technologies like JS, the results are displayed

on the GUI by partial rendering the visual content.

Background processing together with partial page rendering

eliminates page refreshes. Exploiting the power of this

feature, development of an entire RIA system on a single web

page has become possible.

Looking into this setting deep, in traditional web

applications, the requests are sent to the server by the browser,

and the response is sent back by the server to the browser.

When the response is received by the browser, the browser

engine processes it and the rendering engine of the browser

produces the visual representation of the response [26]. Since

the response is a complete Web page (it could also be some

resource like an image), the rendering engine replaces the

current GUI with the new GUI of the response, by loading

and displaying the new page. In contrast to this, in rich

communication model of the RIAs, the response is passed to

the JS interpreter of the browser, then processed by a

dedicated client-component, developed using JS or JS based

technology like jQuery [26]. The processing of the response

is being done in the background, while the GUI of the latest

web page is already displayed on the browser. By the end of

the processing, the client-component will update the current

GUI with the results of the processed response, by partial

rendering the necessary sections of the page, instead of

replacing the last web page [27].

2) Faster communication

In traditional web applications, when the

client-components need to communicate with the

server-components, even for a small change, once the request

is sent, a complete web page and all the related resources are

needed to be loaded to the browser as the response. In the rich

communication model of the RIAs, only the required set of

data by the particular feature – which is been executed by the

user at that time – can be communicated. It is prominent that

in this rich communication model, since only the necessary

set of data is communicated – instead of complete Web page

and related resources – the size of the data communicated is

relatively smaller, affecting the communication to be

accomplished faster. It also helps to reduce the bandwidth use

of the network.

The increased speed of the communication helps to

eliminate the work-wait pattern. The fast communication,

along with background processing capabilities enable

developing responsive rich features on web pages.

3) Synchronous vs. asynchronous mode

The distinct feature of the rich communication model of

the RIAs is generally considered as the asynchronous mode

of it, and this model is generally called asynchronous

communication, because of this ability. However, the

asynchronous mode is a controversial aspect

In asynchronous mode, the GUI of the web page does not

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

33

get blocked once the request is sent, till the response is

arrived, processed, and the results are displayed [28]; instead,

the user can continue using the application/GUI. In this

asynchronous mode, once the response is received, it is

processed in the background, by dedicated application

components in the client-side [28]. The asynchronous

communication model facilitates the user to experience the

results of the communication, even without knowing the

execution or the processing of the request.

Basically, there is nothing synchronous or asynchronous in

this communication; it’s only the way the features, which
utilize this communication is developed. Through the

experiments we noted that the user experience of the rich

features, which utilize the rich communication model, can be

offered in either synchronous (blocking) or asynchronous

(non-blocking) mode; and it is determined upon the

requirements. For example, in a case of performing a

transaction, the user has to wait till the transaction is

completed, before continuing to use some other features of

the application; therefore it should be implemented in

synchronous mode. In a case of sending a mail, the user can

click on the send mail button and continue reading other

mails, while the mail is being processed and sent in

background; thus it can be implemented in asynchronous

mode.

B. Defining Delta-Communication

Considering the aforementioned three aspects of the rich

communication model of the RIAs, we argue that the most

important aspect is its increased speed due to the smaller size

of data communicated.

As discussed above, even though the rich communication

model of RIAs is generally called asynchronous

communication, not always the features are implemented

providing asynchronous user experience. Therefore, even the

asynchronous processing is unique for the rich

communication model, it is not prominent in increasing the

user experience of the user of RIAs. Since the execution is

faster due to the fast communication, even for synchronous

features the users may not experience the work-wait pattern

similar to traditional web applications. If the communication

is not fast and the asynchronous features are processed

slower, then the GUI might not get updated adequate, thus

the users might get confused with the information on the GUI.

Therefore the increased speed is an essential factor, even

though the features are implemented in asynchronous mode.

Furthermore, if the communication is slower, the background

processing capabilities alone will not be able to increase the

user experience, since still there will be the work-wait pattern

engaged. The synergy of the increased speed of the

communication and the partial page rendering, increases the

user experience, closer to the desktop applications.

Considering these facts, we can see that the increased

speed is the prominent factor of this communication’s
richness towards increasing user experience, eliminating the

work-wait pattern. As mentioned before, the smaller size of

the data is the reason for the increment of the speed.

Therefore, we propose to use the term

“Delta-Communication” (DC) – as already had been used by

Mesbah et al. [4] – to denote the rich communication model

of RIAs, which emphasizes the smaller size of the data

communicated.

Considering the facts discussed above, we define the DC

as follows.

Delta-Communication is the rich communication model used by the rich

features of the RIAs, for client-component(s) to communicate with the

server-component(s), to exchange only the needful dataset – for a particular

feature executed at the time – which is smaller, compared to the size of the

request/response of traditional communication. Since the size of the dataset

communicated is smaller, the communication completes faster, eliminating

the work-wait pattern. The processing of the response is done by the

client-components in the background, therefore the page refreshes are

eliminated and replaced by partial page rendering to update the content of

the GUI with the results of the response. The user experience can be

determined by the implementation of the feature, in either blocking

(synchronous) or non-blocking (asynchronous) modes.

Rich GUIs of the RIAs can contain multiple features on the

same page. Once a page is loaded to the browser, all the

communications with the server, for all the features

implemented on that page, can be done using DC, eliminating

page refreshes; until the page is refreshed or redirected to

another page, explicitly by the user or by an internal

component.

IV. DEFINING SIMPLE PULL DELTA-COMMUNICATION

MODEL

The AJAX technique uses the data-pull mode, and

supports both synchronous and asynchronous modes by API.

Through experiments we have noted that the DC technique

implemented by AJAX is the simplest form of the DC.

Furthermore, the underlying concept used to implement the

AJAX technique can be developed in other environments –

like desktop applications – using other TTs like WS or C#,

even without JS and/or XHR object. We have successfully

developed and tested the technique using C#.Net, to develop

a desktop application component, which communicates with

server components using data-pull DC, asynchronously.

Moreover, the same DC technique is utilized in other

advanced DC technologies like WS, for the data-pull mode.

To denote the abstract concept of this simplest

implementation of the DC model, we propose the term

“Simple Pull Delta-Communication” (SPDC). Since the

SPCD concept is abstract, it is TTs independent and can be

developed for both browser-based and non-browser-based

clients. We defined the SPDC technique as follows.

Simple Pull Delta-Communication is the basic abstract

Delta-Communication technique, based on the data-pull mode. It

describes the simplest form of data-pull Delta-Communication, based on

the request-response model; and this technique is technology

independent.

Fig. 1 shows the SPDC model. It can be seen as a

generalized version of the AJAX architecture. The AJAX

engine has been replaced by the DC engine, and the

XML-HTTP-Request/response is replaced by the DC

request/response.

A. JS Based SPDC

Aligning to the definition of the SPDC, we can look at the

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

34

AJAX technique as a JS implementation of the SPDC, which

is limited to the browser based applications. We find that the

term AJAX expresses some flaws, and it is outdated with

regards to the latest API version of the XHR object. Due to

the evolution of the XHR object, the technical scope of the

AJAX had been expanded in terms of both XML and

Asynchronous aspects.

Fig. 1. Simple pull delta-communication model.

In W3C’s first draft of the XHR object, the result from the
server for a client request was accepted – as the name of the

XHR object implies – in XML [22]. However, according to

the latest draft, the XHR object supports various data types,

such as plain-text, XML, JSON, Blob [7].

Furthermore, the XHR object has the ability to develop the

rich communication not only in asynchronous mode, but also

in synchronous mode, since the XHR API contains a setting

to configure the synchronous/asynchronous mode. However,

even using the asynchronous setting of the XHR object, still

AJAX features can be developed and presented to the users to

perform DC in synchronous manner, and the mode of the DC

is determined by the way the feature is designed. In later rich

communication development technologies like WS, a similar

setting is not included, and the developers are given the

flexibility to determine, in which mode the DC should be

developed.

Based on these facts, considering the outdated and limited

impression of the term “AJAX”, we propose the term

“JavaScript-based Simple Pull Delta-Communication”

(JS-SPCD), in place of the term “AJAX”. The term JS-SPCS

indicates that it utilizes the SPDC technique, and developed

using JS.

V. CONCLUSION

This paper has discussed the abstract characteristics of the

rich communication model of the RIAs, which can be

considered as the power of the RIAs. Considering the ability

to communicate faster due to the smaller data-sets

communicated, we have proposed the term

Delta-Communication to denote the abstract concept of the

rich communication model of the RIAs, followed by a

definition for it.

Extending the definition of the DC, we have defined the

simplest form of the DC implementation as SPDC. SPDC can

be seen as the abstract version of the technique used in AJAX.

And based on the definition of the SPDC, we have proposed a

new term JS-SPDC in place of the term AJAX, by

considering the advancements of the latest version of the

XHR specification in the aspects of Asynchronous and XML.

Utilizing the realization provided by these definitions of

the TTs independent abstract concepts of the RIAs, we

expect to separate the DC components within the RIAs into a

dedicated connector architectural element. This separation

will increase the simplicity of the architectural realization of

the RIAs, and also the visibility of the DC. We hope to direct

this knowledge towards designing an abstract architectural

style for RIAs, which can reduce the complexity of the RIAs,

by increasing the realization of the abstract characteristics of

the RIAs.

REFERENCES

[1] M. Busch and N. Koch, “Rich internet applications-state-of-the-art,”

Ludwig-Maximilians-Universitat, Munchen, 2009.

[2] J. Kuuskeri and T. Mikkonen, “Partitioning web applications between

the server and the client,” in Proc. SAC’09, Honolulu, Hawaii, U.S.A.,

2009.

[3] J. Offutt, “Quality attributes of web software applications,” IEEE

Software special issue on Software Engineering for Internet Software,

vol. 19, no. 2, 2002.

[5] S. Casteleyn, I. Garrigo's, and J.-N. Mazo´n, “Ten years of rich internet

applications: A systematic mapping study, and beyond,” ACM

Transactions on the Web, vol. 8, no. 3, pp. 18:1-18:46, 2014.

[6] H. Zuse, Software Complexity Measures and Models, New York: de

Gruyter & Co., 1992.

[7] W3C. (2014). XMLHttpRequest Level 1. [Online]. Available:

http://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/

[8] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” University of California, Irvine, 2000.

[9] I. Fette, “The WebSocket protocol,” Internet Engineering Task Force,

2011.

[10] N. R. Dissanayake and G. K. A. Dias, “What does the AJAX rich

internet applications need to support the rapid application

development,” presented at 3rd International Conference on Human

Computing, Education and Information Management System, Sydney,

Australia, 2014.

[11] (2015). The jQuery Foundation. jQuery. [Online]. Available:

https://jquery.com/

[12] J. Allaire, “Macromedia flash MX — A next-generation rich client,”

Macromedia, San Francisco, 2002.

[13] J. Farrell and G. S. Nezlek, “Rich internet applications the next stage of

application development,” in Proc. the ITI 2007 29th Int. Conf. on

Information Technology Interfaces, Cavtat, Croatia, 2007.

[14] G. Lawton, “New ways to build rich internet applications,” Computer,

vol. 41, no. 8, pp. 10-12, August 2008.

[15] N. Koch, M. Pigerl, G. Zhang, and T. Morozova, “Patterns for the

model-based development of RIAs,” Springer, ICWE, Heidelberg,

2009.

[16] M. Carbou, “Reverse ajax, part 1: Introduction to comet,” IBM, 2011.

[17] I. Hickson. (2015). Server-sent events. [Online]. Available:

http://www.w3.org/TR/eventsource

[18] A. Hopmann. (2015). The story of XMLHTTP. [Online]. Available:

http://www.alexhopmann.com/xmlhttp.htm

[19] S. Dutta. (24 January 2006). Native XMLHTTPRequest object.

Microsoft. [Online]. Available:

http://blogs.msdn.com/b/ie/archive/2006/01/23/516393.aspx

[20] K. Smith, “Simplifying ajax-style web development,” Computer, pp.

98-101, May 2006.

[21] J. J. Garrett. (2005). Ajax: A new approach to web applications.

Adaptive Path. [Online]. Available:

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applicati

ons

[22] W3C. (2006). The XMLHttpRequest object. [Online]. Available:

http://www.w3org/TR/2006/WD-XMLHttpRequest-20060405

[23] S. Salva and P. Laurencot, “Automatic Ajax application testing,”

presented at Fourth International Conference on Internet and Web

Application and Services, Venice, 2009.

[24] D. Crane, B. Bibeault, and J. Sonneveld, Ajax in Practice, Greenwich:

Manning Publications, 2007.

Client

request

UI

DC Engine

 update

Web server

DC request DC response

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

35

[4] A. Mesbah and A. V. Deursen, “An architectural style for AJAX,” in

Proc. Working IEEE/IFIP Conference on Software Architecture,

Mumbai, 2007.

[25] (2015). Synchronous and asynchronous requests. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

/Synchronous_and_Asynchronous_Requests

[26] A. Grosskurth and M. W. Godfrey, “Architecture and evolution of the

modern web browser,” Elsevier Science, 2006.

[27] J. Li and C. Peng, “jQuery-based ajax general interactive architecture,”

in software engineering and service science (ICSESS),” presented at

2012 IEEE 3rd International Conference, Beijing, 2012.

[28] T. S. Manu, “Advances & applications in ajax,” CUSAT, 2011.

Nalaka R. Dissanayake was born in Anuradhapura,

which is a sacred city in Sri Lanka, in 1982. He

received the B.Sc. degree in information technology

from Sri Lanka Institute of Information Technology, in

2007.

From 2007 to 2011, he was working as a student

instructor, instructor, lecturer and a software designer

in various institutes. Since 2012, he has been an

assistant lecturer with the Informatics Institute of Technology, Colombo, Sri

Lanka. He is the author of 24 peer reviewed conference papers and a journal

paper. His research interests include software architectures, web engineering,

and rich internet applications.

Mr. Dissanayake is currently reading for M.Phil in University of Colombo

School of Computing, University of Colombo, Sri Lanka.

G. K. A. Dias received the bachelor of science degree

in 1982 from the University of Colombo, post graduate

diploma in computer studies in 1986 from University of

Essex UK and MPhil by research in 1995 from the

University of Cardiff. He is a member of the

Association for Computing Machinery (ACM) and

Member of the Computer Society of Sri Lanka. He is

also a member of the Modelling and simulation research

group of the University of Colombo School of Computing (UCSC).

He is an author of one book and a co-author of 4 books, and more than 30

publications. His research interest’s incudes Computer aided software
engineering, modelling and simulation and Computer aided education. He is

currently a Grade 1 Senior Lecturer and served as the Head of the

Communication and Media Technologies Department of the UCSC for 5

years (2010-2015). He has also served as the MPhil Coordinator of UCSC for

5 years (2010-2015).

Mr. Dias co-authored a publication titled “Developing a tourist arrivals

forecasting system for Sri Lanka, in the Ruhuna International Science and

Technology Conference, Matara, Sri Lanka: Jan, 2015, which won the best

poster presentation award. Mr. Dias was in-charge of the K-8 Flight

Simulator project jointly done with CRD Ministry of Defense, which won the

Bronze award at the NBQSA 2015 (National Best Quality Software Award)

under Education & Training category.

International Journal of Future Computer and Communication, Vol. 6, No. 2, June 2017

36

