
Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

121

Abstract concepts: A contemporary requirement for Rich Internet
Applications engineering

NR Dissanayake1# and GKA Dias1

1University of Colombo School of Computing, Colombo 7, Sri Lanka

#nalakadmnr@gmail.com

Abstract— Rich Internet Applications are very advanced and

complex systems, and for their development there are

numerous tools, frameworks, libraries, techniques, and

technologies are available. The underplaying concepts of the

Rich Internet Applications are still have not been defined well,

and the tools, frameworks, or libraries do not improve these

underlying concepts; instead they might use their own forms

of the concepts. If we can understand the abstract

fundamental concepts of Rich Internet Applications, we can

gain some advantages like: increased realization, knowledge

sharing, and lower learning curves. These aspects have not

being much discussed or researched within the domain;

therefore, we attempt to pinpoint the importance of having

abstract concepts for Rich Internet Applications engineering,

as a contemporary requirement. This knowledge will help to

look at the researching in Rich Internet Application

engineering in a different perspective, and will lead to

introduce abstract concepts, for Rich Internet Applications.

Keywords— Abstract Concepts, Rich Internet Applications,

Techniques and Technologies Independency

I. INTRODUCTION

This section provides the background of the Rich Internet

Applications (RIAs) and their development environment, in

order to provide a clear picture of the contemporary RIA

development setting. Then the problem of the current RIA

development environment and what is missing in this setting

– indicating the importance of filling this space – are

discussed. Finally this section specifies the methodology we

used to gather the facts, we focus and discuss in this paper.

A. Background.

RIAs provide enhanced user experience compared to the

traditional Web applications, using advanced Graphical user

Interfaces (GUIs) and faster rich communication model –

commonly known as the “Asynchronous Communication”

(Busch & Koch, 2009) (Lawton, 2008) (Koch, et al., 2009).

RIAs eliminate page sequence model of the traditional Web

applications, thus the work-wait pattern (Manu T S, 2011)

(Preciado, et al., 2005), therefore deliver desktop

application like user experience, utilizing the advanced Web

Techniques and Technologies (TTs). While delivering these

features, RIAs have grown into very complex systems, with

various components like asynchronous communication

engines, which are integrated in diverse ways.

After the introduction of the first open source JavaScript (JS)

RIA development technique named Asynchronous Javascript

And Xml (AJAX) in 2005 (Garrett, 2005), numerous TTs had

been introduced for the engineering of RIAs over the last

decade. Techniques like polling and long-polling (Carbou,

2011), which are based on AJAX; and technologies like Server

Sent Events (SSE) (Hickson, 2015) and WebSocket (WS)

(Fette, 2011) can be given as good examples of TTs,

dedicated for the RIA development. Various tools, libraries,

and frameworks had also being introduced for RIA

engineering rapidly.

B. The problem in the current RIA engineering environment

and the motivation

RIAs are very complex systems, with diverse types of

components executed in both client and server sides, and

these components can be integrated in diverse ways too

(Toffetti, et al., 2011) (Dissanayake & Dias, 2014) (Mesbah &

Deursen, 2007) (Salva & Laurencot, 2009) (Paulson, 2005)

(Prothero, 2006) (Cheung, et al., 2007. December 17-20.)

(Dissanayake & Dias, 2014). Proper guidelines, established

software engineering methodologies and solutions, and

concepts like architectural styles or design patterns, are

largely lacking for RIAs (Bozzon, et al., 2006). Even though

there are numerous tools, libraries, and frameworks for RIA

engineering, they do not improve the underlying concepts

(Kuuskeri & Mikkonen, 2009); and also, the available TTs do

not describe how to overcome the complexity in design and

development of RIAs. Furthermore, these tools, libraries,

and frameworks are depending on dedicated TTs (Bozzon, et

al., 2006), which leads to exhibit disadvantages as discussed

later in this paper. Additionally, it was noted that the

available conceptual solutions in the domain are also TTs

dependent, thus lack in generality and they do not realize

the actual abstract formalism of the RIAs.

In this setting, these available artefacts usually come with

high learning curves, making them not so easy – and

sometimes not also viable – to adopt, due to some

constraints like stakeholders’ requirements. For an example

even if the developer has good understanding of ASP related

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

122

RIA technology, if the stakeholders have JAVA servers, it is

not feasible to utilize ASP technology. In one hand, the TTs

dependencies introduce limitations for the adoption of the

artefact in wider range of platforms/environments; and on

the other hand, due to the TTs dependencies combined with

high learning curves, the knowledge and experience

transferring/sharing between multiple technological

environments is also not feasible. These facts lead to cause

mandatory inclusion of learning curves when incorporating

adoptable alternative solutions into the engineering process.

These aspects will be discussed in detail in the rest of the

paper.

Considering these fact, to overcome these cons, we think

that it is a contemporary requirement for RIA engineering is

to have evolution of the abstract concepts, such as

architectural styles and design patterns, which are

independent from TTs.

C. Methodology

We conducted an intensive literature survey to gain the

knowledge of the vast aspects of the RIA engineering,

including the specifications of the TTs like AJAX and WS. As

we gained the knowledge of the TTs, we conducted a series

of experiments to examine the utilization of these TTs, and

some available frameworks, and libraries like jQuery (Anon.,

2015), AngularJS, and Ratchet (Ratchet, 2016). In these

experiments, prototypes were developed to gain empirical

evidence, and the knowledge derived was utilized in

identifying the abstract formalism of the RIAs and their

concepts.

Knowledge gained in the early iterations of the experiments

were applied into the later iterations, and the identified facts

were continuously refined towards identification of the

abstract formalism of the RIAs and realization of the

importance of abstract concepts and the abstract

architectural formalism of RIAs, which is in the direction of

our ongoing research: designing an abstract architectural

style for RIAs.

D. Arrangement of the paper

Section II defines the terms TTs Independency and

Conceptual Abstraction, in the perspective and the context

of this paper. Based on these definitions, section III discusses

the advantages of the TTs independency, in the context of

RIAs.

Section IV provides the possible abstract concepts for the

RIAs, and also briefly discusses and reviews the available

work under the given concepts. Section V, which is the last,

concludes the papers highlighting the importance of the

abstract concepts for the RIAs, and specifying the future

work of our ongoing research, which consumes the

knowledge of this paper.

II. TECHNIQUES AND TECHNOLOGIES DEPENDANCY AND

THE CONCEPTUAL ABSTRACTION

In order to discuss the need for the abstract concepts for

RIAs and their advantaged, a good understanding about the

meaning of the terms “Techniques and Technologies

Dependency” and “Abstract Concepts” is needed. This

section discusses the notion of these terms, in the

perspective and the context of the focus of this paper.

A. Techniques and Technologies Dependency and its

limitations

The best way to explain the TTs dependency is through an

example. Consider the Oracle’s Model2 architecture (Oracle,

n.d.), which is introduced for – and highly depending on –

JAVA based web applications development. Since it is based

on JAVA, it does not assist in realizing the common

characteristics of RIAs, or adopting the same architecture in

any other environments like PHP or ASP. When it comes to

engineering of PHP based RIAs, a completely different

compatible architectural formalism should be utilized, which

might introduce additional learning curves; and the

knowledge or experience gained from Model2 architecture

will not be useful with these alternatives, since they do not

share common characteristics. Therefore we can say that

the Model2 has a TTs dependency for JAVA.

Likewise, the currently available concepts, tools, and

frameworks are depending on specific set of TTs, and

additionally the support for the adoption of other available

TTs out of the specified set of TTs is low or none. When trying

to adopt other TTs, additional learning curves and

incompatibilities can be occurred. Furthermore, the

engineers of RIA projects will experience similar situations

when trying to adopt newly introduced concepts in future,

due to the unavailability of general conceptual formalism for

RIAs, which share common characteristics. Since the new

concepts may come with their own TTs dependencies and

constraints, they will incorporate learning curves, even

though they all are in the same RIA domain. Therefore the

TTs dependency can be seen as a great limitation, barrier,

and a problem for RIA engineering.

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

123

B. Conceptual Abstraction

The aforementioned problem can be solved by introducing

concepts for RIAs, in more abstract form. The term “abstract”

is used in the context of this paper to denote the notion of

“independent from TTs”, which can ensure the ability of

adoption in wider environments, incorporating a lower

learning curve. Object Oriented Design and Development

(OODD) paradigm, and the Client-Server architectural style

(CS style) are good examples of TTs independent abstract

concepts. Once the concept is realized, it can be adopted in

wider environments, and can be applied and utilized

regardless the TTs used. Furthermore, the adoption of these

concepts into development with any supporting TTs is

relatively simpler.

It has been already seen that the researchers of RIAs are

overlooking the technological aspects, resulting gaps

between the problem concepts that capture their models,

and how these concepts are ultimately implemented

through components (Meliá, et al., 2010). We believe that

the abstract concepts like, architectural styles and design

patterns will be helpful to avoid such technological gaps.

Therefore our effort of this paper is to highlight the

advantages of the conceptual abstraction and discuss the

possible abstract concepts for the engineering of RIAs.

III. ADVANTAGES OF THE TTS INDEPENDENCY THROUGH

CONCEPTUAL ABSTRACTION

Before discussing the possible types of abstract concepts for

RIA and their usage, it’s worth looking into the advantageous

we can gain from the conceptual abstraction via the TTs

independency. In this section we discuss the advantageous

of the TTs independent abstract concepts, based on our

empirical evidence gained through the experiments, in the

context of RIAs.

Conceptual abstraction of common characteristics: For

concepts to be TTs independent, they need to understand,

incorporate, and exhibit the common abstract

characteristics related to the RIAs, which are independent

from the TTs specific concepts. Available concepts for RIAs

show TTs dependencies, which means that they have not

realized the abstract features of the RIAs, thus the abstract

architectural formalism of RIAs. This results in lack of

understanding of the common characteristics and essential

features of the RIAs; and vice versa, may be the available

concepts are TTs dependant since they find its complex to

identify the common characteristics of the RIAs.

For RIAs, identification of the common characteristics of the

client-side components, server-side components,

asynchronous communication related components, non-

asynchronous communication components, and their

configurations is really essential. This knowledge can be

utilized to derive the abstraction of the concepts behind

these components, in the direction of identifying the

architectural formalism of the RIAs. Furthermore, Abstract

concepts can assist in increasing the realization of the

common characteristics in a system, which leads to deliver

the advantages discussed below.

Increased realization: The abstract concepts will deliver

strong realization of the common characteristics, thus the

architectural elements and their configurations, without

depending on any TTs specific features, which leads to derive

the abstract architectural formalism of the RIAs. The

realization of the abstract architectural formalism helps in

reducing the complexities of the RIAs systems.

Knowledge sharing: Since the conceptual abstraction

provides increased realization, the knowledge and the

experience gained from one environment can be transferred

and shared into other environments easily, regardless the

TTs used. For an example, the knowledge and the experience

of the use of the client-server style in JAVA web applications

can be applied into PHP environment with less effort, since

the client-server style is an abstract concept. If the abstract

architectural formalism of the RIAs have been understood,

sharing knowledge and experience across projects

regardless the TTs will be easier, and it will be then a matter

of adopting TTs into the abstract architectural formalism,

instead of trying to adopt the architectural concepts into the

target platform, which is relatively costly.

Lower learning curve: Because of the easiness in knowledge

sharing through the increased realization provided by the

conceptual abstraction of the common characteristics,

learning curve of new RIA systems can be reduced, since

they all share the same abstract common characteristics

and/or the architectural formalism. This will help to reduce

the difficulties in design and development of new RIAs,

regardless the platform/environment and the TTs used.

Assist in better TTs selection and adoption: The abstraction

provided by the TTs independency will provide flexibility in

incorporating available TTs; therefore, it will assist in

selecting the proper – or may be better – TTs and adopt

them easier. In addition to that, it will assist in understanding

the adoption of the new TTs introduced in future. Adequate

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

124

realization of the abstract architectural elements of RIAs will

provide the capacity for better understand of the

applicability of the future TTs. Therefore, better decision

making can be achieved, when incorporating TTs into the

engineering projects, having a low adoption learning curves.

IV. ABSTRACT CONCEPTS FOR RICH INTERNET APPLICATIONS

This section discusses the possible abstract concept to be

utilized in design and development of RIAs. This section also

briefly discusses and reviews some available work under the

given abstract concepts.

A. Algorithms

Algorithms are originated in the domain of mathematics,

however now widely used in computer science and software

engineering. An algorithms provides a step by step

procedure for solving a specific problem (TechTarget, 2014),

and usually TTs independent and abstract. Searching and

sorting abstract algorithms are widely used in software

engineering.

We think that the asynchronous communication might get

advantages of abstract algorithms. The AJAX handling in

client-side using pure JavaScript (JS) exhibit an abstract

concept and it had been utilized in JS libraries like jQuery.

Other than that, we haven’t come across any abstract

algorithms for RIAs. We believe that the asynchronous

communication handling in the server-side might also

contain some abstract algorithms, especially when the REST

(Fielding, 2000) style is used, and currently we are

experimenting on that.

B. Design patterns

Design patterns provide reusable micro-architectures that

contribute to an overall system architecture (Gamma, et al.,

1993), and they help in reducing the complexity and

increasing the reusability in system design and development.

Currently the design patterns are also used in GUI

development (Granlund, et al., 2001). They can be utilized

for rich GUI design and development of RIAs (Duyne, et al.,

2002), and helpful in delivering rich features of RIAs with less

design and development efforts (Thung, et al., 2010).

Some useful available GUI design patterns for RIAs can be

seen as the form pattern (Neil, n.d.), pagination pattern

(Thung, et al., 2010), and data displaying patterns such as

grid/table, list, tree, and accordion (Neil, n.d.). Create, Read,

update, Delete (CRUD) pattern (Yoder, et al., n.d.) is also a

useful abstract generic design pattern, which can be utilized

for the server-side components of RIAs.

C. Architectural styles

Architectural styles offer a framework for designing system

architectures, and styles help in capturing the knowledge of

successful systems in past (Selfa, et al., 2006). We have come

across several architectural styles for RIAs, however they are

depending on some TTs, therefore not abstract. jAGA style

(Li & Peng, 2012) is based on jQuery, and the SPIAR style

(Mesbah & Deursen, 2007) depends on the characteristics of

the frameworks Echo2, GWT, and Backbase.

AJAX general architecture (Garrett, 2005), itself can be

considered as an architectural style, however it is based on

JS. Anyhow we think the abstract concept of the AJAX

general architecture can be extracted to make a TTs

independent style, to be also used in desktop application

components, which communicates with web servers.

We are working on a research towards an abstract

architectural style for RIAs, which can realize the

architectural formalism of the RIAs, in the direction of

reducing the complexity. Current we have introduced some

styles for RIAs: the Balanced Client style (Dissanayake, et al.,

2015) provides some guidelines for adoption of Model-View-

Controller (MVC) pattern into the RIAs; and the RIA-Bus style

(Dissanayake, et al., 2015) provides a mechanism for

effective rich communication handling, in the server-side of

the RIAs.

V. CONCLUSION

We conclude the paper highlighting that the need for

abstract concepts is a contemporary requirement in the

domain of RIA engineering. The TTs independency of the

abstract concepts can provide the discussed advantages,

which we think are essential in the current setting.

We expect that the knowledge of the importance of the

abstract concepts for the RIAs – as discussed in this paper –

will direct the researching in the domain of the RIAs into a

new dimension.

Our ongoing project is focusing on designing an abstract

architectural style for RIAs, in order to reduce the complexity

in engineering RIAs, by increasing the realization of the

abstract architectural formalism of them.

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

125

REFERENCES

Anon., 2015. jQuery. [Online]

Available at: https://jquery.com/

[Accessed 15 May 2015].

Bozzon, A., Comai, S., Fraternali, P. & Carughi, G. T., 2006.

Conceptual modeling and code generation for rich internet

applications. New York, s.n., pp. 353 - 360.

Busch, M. & Koch, N., 2009. Rich Internet Applications -

State-of-the-Art, Munchen: Ludwig-Maximilians-Universitat .

Carbou, M., 2011. Reverse Ajax, Part 1: Introduction to

Comet, s.l.: IBM.

Cheung, D. W., Lee, T. Y. & Yee, P. K., 2007. December 17-

20.. Webformer A Rapid Application Development Toolkit for

Writing Ajax Web Form Applications. Bangalore, India, s.n.,

pp. 248-253.

Dissanayake, N. R. & Dias, G. K. A., 2014. Essential Features

a General AJAX Rich Internet Application Architecture

Should Have in Order to Support Rapid Application

Development. International Journal of Future Computer and

Communication, 3(5), pp. 350-353.

Dissanayake, N. R. & Dias, G. K. A., 2014. What does the AJAX

Rich Internet Applications need to support the Rapid

Application Development. Sydney, Australia, s.n., pp. 1-4.

Dissanayake, N. R., Dias, G. K. A. & Ranasinghe, C., 2015. RIA-

Bus: A conceptual technique to facilitate the AJAX-based rich

internet application development. Badulla, Sri Lanka, s.n.

Dissanayake, N. R., Liyanage, U. & Dias, K., 2015. A CONCEPT

OF BALANCED-CLIENT FOR RICH INTERNET APPLICATIONS.

Malabe, Sri Lanka, s.n.

Duyne, D. K., Landay, J. A. & Hong, J. I., 2002. Making the

Most of Web Design Patterns. In: The Design of Sites.

s.l.:Pearson Education, Inc.

Fette, I., 2011. The WebSocket Protocol, s.l.: Internet

Engineering Task Force.

Fielding, R. T., 2000. Architectural Styles and the Design of

Network-based Software Architectures, Irvine: University of

California.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1993. Design

Patterns: Abstraction and Reuse of Object-Oriented Design.

s.l., s.n.

Garrett, J. J., 2005. Ajax: A New Approach to Web

Applications. [Online]

Available at: http://www.adaptivepath.com/ideas/ajax-

new-approach-web-applications

Granlund, Å., Lafrenière, D. & Carr, D. A., 2001. A Pattern-

Supported Approach to the User Interface Design Process.

New Orleans, s.n.

Hickson, I., 2015. Server-Sent Events. [Online]

Available at: http://www.w3.org/TR/eventsource/

[Accessed 15 May 2015].

Koch, N., Pigerl, M., Zhang, G. & Morozova, T., 2009. Patterns

for the Model-Based Development of RIAs. Heidelberg, s.n.

Kuuskeri, J. & Mikkonen, T., 2009. Partitioning Web

Applications Between the Server and the Client. Honolulu,

Hawaii, U.S.A., s.n.

Lawton, G., 2008. New Ways to Build Rich Internet

Applications. Computer, August, 41(8), pp. 10 - 12.

Li, J. & Peng, C., 2012. jQuery-based Ajax General Interactive

Architecture. Beijing, s.n., pp. 304-306.

Manu T S, 2011. Advances & Applications in Ajax, s.l.: CUSAT.

Meliá, S., Gómez, J., Pérez, S. & Díaz, O., 2010. Architectural

and Technological Variability in Rich Internet Applications.

IEEE INTERNET COMPUTING, May/June, pp. 24-32.

Mesbah, A. & Deursen, A. v., 2007. An Architectural Style for

AJAX. Mumbai, s.n.

Neil, T., n.d. Standard Screen Patterns v3.0. s.l.:s.n.

Oracle, n.d. About the Model 2 Versus Model 1 Architecture.

[Online]

Available at:

http://download.oracle.com/otn_hosted_doc/jdeveloper/1

012/developing_mvc_applications/adf_aboutmvc2.html

[Accessed 15 06 2015].

Paulson, L. D., 2005. Building rich web applications with Ajax.

Computer, Oct, 38(10), pp. 14 - 17.

Preciado, J., Linaje, M., Sanchez, F. & Comai, S., 2005.

Necessity of methodologie to model Rich Internet

Applications. s.l., s.n.

Prothero, J., 2006. Ajax Usability Benefits and Best Practices,

s.l.: JackBe Corporation.

Ratchet, 2016. Ratchet WebSockets for PHP. [Online]

Available at: http://socketo.me/

[Accessed 10 05 2016].

Salva, S. & Laurencot, P., 2009. Automatic Ajax application

testing. Venice, s.n., pp. 229 - 234.

Proceedings in Computing, 9th International Research Conference-KDU, Sri Lanka 2016

126

Selfa, D. M., Carrillo, M. & Boone, M. d. R., 2006. A Database

and Web Application Based on MVC Architecture. s.l., IEEE

Computer Society, p. 48.

TechTarget, 2014. Algorithm. [Online]

Available at:

http://whatis.techtarget.com/definition/algorithm

[Accessed 20 05 2016].

Thung, P. L., Ng, C. J., Thung, S. J. & Sulaiman, S., 2010.

Improving a Web Application Using Design Patterns. Kuala

Lumpur, s.n.

Toffetti, G., Comai, S., Preciado, J. C. & Linaje, M., 2011.

State-of-the Art and trends in the Systematic Development

of Rich Internet Applications. Journal of Web Engineering,

10(1), pp. 70-86.

Yoder, J. W., Johnson, R. E. & Wilson, Q. D., n.d. Connecting

Business Objects to Relational Databases, s.l.: s.n.

