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SUMMARY

This paper considers the steady-state vertical vibrations of a rigid circular disk embedded at a "nite depth
below the free surface of a poroelastic medium. Biot's elastodynamic theory for porous media is used in the
analysis. General solutions for axisymmetric poroelastic "elds are obtained by using Hankel integral
transforms. Analytical solutions for in#uence functions corresponding to four types of buried axisymmetric
excitations are derived. The embedded disk problem is fomulated in terms of a set of coupled integral
equations for unknown traction and pore pressure jumps across the disk. The kernel functions of the integral
equations are the in#uence functions corresponding to buried vertical, radial and pore pressure ring loads.
The system of integral equations is solved numerically by discretizing the disk into several concentric
annular rings. Selected numerical solutions for displacements, vertical stress and pore pressure due to
a buried fully #exible disk (uniform pressure) are also presented. The vertical compliances of a rigid disk are
examined for di!erent depths of embedment, poroelastic materials and hydraulic boundary conditions.
Solutions for traction and pore pressure jumps are also examined. The present results are useful in the study
of dynamic response of embedded foundations and anchors in poroelastic soils. Copyright ( 1999 John
Wiley & Sons, Ltd.

KEY WORDS: poroelasticity; dynamic soil}structure interaction; vibrations; foundations; anchors;
impedance

INTRODUCTION

The classical theory of dynamic poroelasticity developed by Biot1,2 has been used for more than
four decades to study a variety of interesting problems involving saturated elastic porous media.
Biot's theory is widely applied in geomechanics to analyse consolidation e!ects under static and
dynamic loading. Among others, Senjuntichai and Rajapakse,3 Beskos,4 and Philippacopoulos5
reviewed literature related to wave propagation in elastic porous media. Majority of the
theoretical studies based on Biot's elastodynamic theory focus on the derivation of solutions for
basic loading con"gurations. The development of solutions in dynamic poroelasticity for speci"c
applications in geomechanics has not received wide attention as in the case of elastic soils. For
example, analytical or semi-analytical solutions for several dynamic poroelastic soil}structures



Figure 1. Rigid circular disk embedded in poroelastic medium

interaction problems (e.g. embedded foundations, anchors, piles, etc.) have not been considered in
the past. The present study is not focusing on "nite-element-based solutions.

The classical problem involving interaction between a vertically loaded rigid disk and an elastic
medium has been used in geomechanics to examine deformations and stresses of soil} foundation
systems.6 A review of vast literature on this topic is beyond the scope of this study. Given the fact
that almost all soils are two-phase systems (soil grains and water), it is much more realistic to
examine rigid disk problems within the framework of Biot's dynamic theory of poroelasticity for
applications in geomechanics. In recent years, some progress has been made in this direction. For
example, Halpern and Christiano,7,8 Philippacopulos,9,10 Kassir and Xu,11 Kassir et al.,12
Bougacha et al.13,14 and Senjuntichai and Rajapakse15 examined the dynamics of rigid rectangu-
lar, circular and strip foundations on the surface of a poroelastic soil. These studies provided
useful insight into the in#uence of poroelastic behaviour on the compliance of rigid surface
foundations.

In this paper, the steady-state vertical vibrations of a rigid circular disk embedded at a "nite
depth in a poroelastic half-space is considered (Figure 1). The cases of a disk on the surface and
deeply buried in a poroelastic medium are the two limiting cases of the generalized problem under
consideration in the present study. The solutions to this class of problems are useful in the study
of embedded foundations, foundations of o!shore structures and anchors. To our knowledge,
a theoretical study of dynamics of an embedded rigid inclusion in a poroelastic medium has not
been reported in the literature. Analytical solutions for in#uence functions corresponding to
buried axisymmetric ring loads derived with the aid of Hankel integral transforms are used to
formulate the problem. A system of fully coupled singular integral equations is established in
terms of the jumps in tractions and pore pressure across the disk. The integral equation is solved
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numerically by discretizing the disk into concentric annular domains. Selected results for dynamic
compliance, and traction and pore pressure jumps are presented to portray the e!ects of depth of
embedment, poroelastic properties and hydraulic boundary conditions on the disk. Solutions for
an embedded fully #exible disk (uniform pressure) are also presented. The in#uence functions
corresponding to buried loads derived in the present study are powerful tools that can be used to
analyse a variety of other practical problems in geomechanics.

GOVERNING EQUATIONS

Consider the axisymmetric motion of a poroelastic half-space governed by Biot's two-phased
linear theory. A cylindrical co-ordinate system o(r, h, z) is de"ned such that the z-axis is perpen-
dicular to the free surface of the half-space, and the motion is axisymmetric with respect to the
z-axis (Figure 1). Let u

i
and w

i
denote the average displacement of the solid matrix and the #uid

displacement relative to the solid matrix, in the i-direction (i"r, z), respectively. The constitutive
relations for a homogeneous poroelastic material can be expressed as1
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, and p
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denote total stress component of the bulk material, e is the dilatation of
the solid phase, k and j are LameH 's constants of the bulk material, p is the excess pore #uid
pressure, f is the dilatation of the pore #uid and a, M are Biot's parameters accounting for
compressibility of the two-phased material.1

The governing equations for axisymmetric motion can be expressed as
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where an overdot denotes the derivatives of a "eld variable with respect to the time parameter t,
o and o

&
are the mass densities of the bulk material and the pore #uid, respectively,

m"o
&
/b(b"porosity), is a density-like parameter, b is a parameter accounting for the internal
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friction due to the relative motion between the solid matrix and the pore #uid, and de"ned as the
ratio between the #uid viscosity and the intrinsic permeability of the porous medium.

The motion under consideration is assumed to be time-harmonic with a factor of e*ut, where
u is frequency of the motion and i"J!1. The term e*ut is henceforth suppressed from all
expressions for brevity. It is convenient to non-dimensionalize all length quantities including the
co-ordinate frame by selecting the radius of the circular disk as a unit of length. Stresses and pore
pressure are non-dimensionalized with respect to the shear modulus k of the bulk material. All
variables are replaced by the non-dimensional quantities, but the previous notations are used for
convenience.

The governing partial di!erential equations are solved by applying a Helmholtz representation
for an axisymmetric vector "eld and a Hankel integral transform with respect to the radial
coordinate. The nth-order Hankel integral transform of a function f (r, z) and the inverse
transform are de"ned as16
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where J
n

and k denote the Bessel function of the "rst kind of the nth order and the Hankel
transform parameter, respectively.

The following general solutions can be obtained for the zeroth-order Hankel transfrom of u
z
,

w
z
, p

zz
and p, and the "rst-order Hankel transform of u
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where A, B, C, D, E and F are arbitrary functions to be determined from the boundary and
continuity conditions of given problem. The variables c

i
, s

i
, etc., appearing in the above equations

are de"ned in the appendix.
The #uid discharge is de"ned as the time derivative of the #uid displacement relative to the

solid matrix.17 The #uid discharge non-dimensionalized with respect to Jk/o can be expressed as

q
n
"idw

n
, n"r, z (6)

INFLUENCE FUNCTIONS

The formulation presented in an ensuing section for an embedded disk requires the in#uence
functions for axisymmetric ring loads and #uid sources applied in the interior of a poroelastic
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half-space. In this section, boundary-value problems related to interior axisymmetric loading
(ring/annular/point) are considered. The loads are applied at a depth z@ below the free surface of
the half-space. Four basic loading con"gurations are considered. These involve a buried vertical
load, a radial shear load, a #uid source and a pore pressure (#uid stress) load. The solutions can be
obtained by de"ning a "ctitious plane at z"z@ and treating the half-space as a two-domain
boundary-value problem.18 General solutions for each domain are given by equations (5) and (6)
together with arbitrary functions A

i
to F

i
, where a subscript i(i"1, 2) is used to identify the

domain number. For domain 2, set A
2
"C

2
"E

2
"0 to guarantee the regularity of the solutions

at in"nity.
The boundary conditions corresponding to a fully permeable top surface (z"0, 0)r(R)

can be expressed as

p(1)
zn

(r, 0)"0, n"r, z (7a)

p(1)(r, 0)"0 (7b)

where a superscript (1) is used to denote the domain number.
The continuity conditions at the "ctitious plane (z"z@, 0)r(R) for buried vertical/radial

loads applied to solid matrix and a #uid source are given by
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where ¹
n
(r) denotes the intensity of the buried load in the n-direction (n"r, z), and Q(r) denotes

the intensity of the #uid source.
In order to simulate the pore pressure discontinuity across an impermeable disk, it is necessary

to consider an internal #uid pressure (stress) loading with no discontinuity in solid skeleton
stresses. Such a problem is described by the following conditions in addition to the equation (7):
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where P (r) denotes the intensity of #uid pressure discontinuity at the depth z"z@.
The required in#uence functions are obtained by solving the boundary-value problems corre-

sponding to each loading case separately. It is useful to present explicit solutions for non-zero
arbitrary coe$cients appearing in the general solutions given by equations (5) and (6) since
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in#uence functions corresponding to di!erent types of axisymmetric loads (e.g. point loads, ring
loads, annular rings, etc.) can be derived by simply substituting the appropriate Hankel transform
of the load. Therefore, the present approach is more versatile in deriving solutions for a variety of
buried axisymmetric loads than the approach followed by Phillippacopoulos5 for point loads in
a half-space, which requires the corresponding full-space solutions as the starting point. The
present approach does not require the full-space solutions and can be used to derive the full-space
solution from the half-space solution through a simple application of limits. The solutions for
arbitrary functions corresponding to di!erent types of loads are given below.

Arbitrary functions for vertical loading:
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In equation (10), ¹M
z
(k) is the zeroth-order Hankel transform of the applied axisymmetric vertical

load at z"z@. In the case of a vertical point load of magnitude P
0
,
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For a vertical ring load of radius s and intensity p
0

per unit length,
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and for a vertical patch load of radius a (unit radius) and uniform intensity p
0
,
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The solutions corresponding to vertical loading applied to a poroelastic full space can be
derived by setting B

1
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1
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1
"0 and Dz!z@ D"Dz D, where the centre of the load is now

de"ned as the origin of the cylindrical co-ordinate system. The same procedure can be used in the
ensuing sections to obtain full-space solutions for radial, #uid source and #uid pressure loading.

Arbitrary functions for radial loading:
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(k) is the "rst-order Hankel transform of the applied radial loading. In the case of an

axisymmetric radial ring load of radius s and intensity p
0

per unit length,
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Arbitrary functions for -uid source:
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where QM (k) is the zeroth-order Hankel transform of the applied #uid source.
In the case of a point #uid source of strength Q

0
at the point (0, z@),
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and for a #uid source of uniform intensity q
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From equations (20), it is evident that the wave "elds in a full space due to an applied #uid
source do not create a rotational wave since E

1
"0.

Arbitrary functions for applied -uid pressure:
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and PM (k) is the Hankel integral transform of the zeroth order of the applied #uid pressure.
In the case of a #uid pressure discontinuity of intensity p

0
over a circular ring of radius s,
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and for a uniform pore pressure discontinuity of p
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VERTICAL VIBRATIONS OF AN EMBEDDED RIGID DISK

Consider the steady-state vertical excitation of a rigid, massless disk of radius a (zero thickness),
embedded at a depth h in a poroelastic half-space, as shown in Figure 1. The disk is assumed to
undergo time-harmonic vertical displacement *

z
e*ut, where *

z
is the amplitude of the motion.

In the formulation, the buried disk is replaced by traction and pore pressure jumps of unknown
intensities applied over a circular area of radius a at a depth h below the free surface of an
identical poroelastic half-space. The relationship between unknown tractions and pore pressure
jumps on S (0)r)a, z"h) and the generalized displacements of S can be expressed in terms of
the following integral equation:

P
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i
, i"r, z, p (27)

where summation is implied over the index j"r, z, p.
In equation (27), ¹

r
, ¹

z
denote jumps in tractions in the radial and vertical direction,

respectively, ¹
p
is the jump in pore pressure over the contact surface S if the disk is impermeable

(for a fully permeable disk ¹
p
,0); *

z
and *

r
(,0) are the vertical and radial displacements at

a point on S, *
p

is the relative #uid displacement normal to S (*
p
"0 for an impermeable disk),

G
ij
(r, h; r@, h) denote the radial displacement (i"r) , vertical displacement (i"z) and relative #uid

displacement normal to S (i"p) at a point (r, h) on S due to radial ( j"r) , vertical ( j"z) and
#uid pressure ( j"p) ring loads through the point (r@, h) on S. It should be noted that for a fully
permeable disk i, j"r, z in equation (27) since there is no jump in pore pressure across S.
Furthermore, for a fully permeable disk under smooth contact i, j"z only in equation (27).

The solutions for in#uence function G
ij

are directly obtained from the preceding section.
Equation (27) represents three fully coupled system of singular integral equations with a complex
kernel G

ij
expressed in terms of semi-in"nite integrals. A formal analytical solution to this type of

a coupled singular integral equation system has not been considered previously. Luco and
Westmann19 considered a set of coupled singular integral equations similar to equation (27) for
the case of a rigid strip footing on an ideal elastic half-space. They obtained a complete solution of
the integral equation system for the incompressible case and a "rst approximation valid at low
frequencies for arbitrary Poisson's ratio. The "nal integral equation system was numerically
solved.19 The classical problem involving smooth contact between an elastic medium and a rigid
circular disk has also been formulated in terms of Fredholm integral equations in literature
(References 20, 12 and others). For dynamic problems, the resulting integral equation has to be
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solved numerically for all cases. This well established approach can also be used in the present
case for smooth contact (¹

r
"0) of a fully permeable (¹

p
"0) buried disk. However, such an

approach is not used here since the intention is to solve the disk problem under full mechanical
and hydraulic contact conditions for an arbitrary set of material properties.

In the present study, the fully coupled equation system for an impermeable disk is solved by
discretizing the contact surface S into N annular rings21 of thickness *r

j
. It is assumed that

¹
z
and ¹

p
within each ring are constant and ¹

r
varies proportionally with the radius. A discrete

version of equation (27) can be expressed as

*
i
(r
k
, h)"

N
+
l/1

GM
ij
(r
k
, h; r

l
, h)¹

j
(r
l
, h), i, j"r, z, p (28)

where GM
ij
(r
k
, h; r

l
, h) denotes the displacement in the i-direction at the kth node due to a generaliz-

ed ring load of unit intensity applied in the j-direction over an annular ring corresponding to the
lth node with coordinates (r

l
, h), and

GM
ij
"P

rl`1@2

rl~1@2

G
ij
ds (29)

where r
l~1@2

and r
l`1@2

denote the inner and outer radii of the tributary area corresponding to the
lth node.

Note that the integration with respect to s (radial direction) in equation (29) can be carried out
analytically that result in an explicit solution for GM

ij
in terms of semi-in"nite integrals. It can be

also shown that the resulting GM
ij
(r
k
, h; r

l
, h) corresponding to loading over an annular region is

non-singular.
The above linear simultaneous equation system, is solved for ¹

ik
"¹

i
(r
k
, h) , where

k"1, 2, 2 , N, by setting *
z
(r
k
, h)"1, *

r
(r
k
, h)"0 and *

p
(r
k
, h)"0 for an impermeable rigid

disk.
The total vertical load P is given by the following integral of the total vertical contact traction

jump over the surface S (including both ¹
z
acting on the solid matrix and the pore pressure jump

¹
p
).

P"P
a

0

2nr (¹
z
#a¹

p
) dr

"

N
+
k/1

n(r2
k`1@2

!r2
k~1@2

)(¹
zk
#a¹

pk
) (30)

NUMERICAL RESULTS AND DISCUSSION

The major computational e!ort required in the solution of the embedded disk problem involves
the computation of GM

ij
in equation (28). The solutions for GM

ij
appear in terms of semi-in"nite

integrals with a complex-valued integrand. These integrals cannot be evaluated analytically.
Analytical evaluation of GM

ij
is not possible even for the special case of ideal elastic materials. In

view of the complexity of the integrands, it is natural to adopt a suitable numerical quadrature
scheme. By treating k as a complex variable, the singularities of the integrands can be examined.
The important singularities of the integrand are the branch points de"ned by c

i
(see the appendix)

and poles of the function R de"ned by equation (13). The branch points are given by ¸
1
, ¸

2
and
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S de"ned in the appendix. It is noted that ¸
1
, ¸

2
and S are the wave numbers corresponding to

the three kinds of dispersive and dissipative body waves propagating in a poroelastic solid
identi"ed by Biot2 as the dilatational wave of the "rst king (¸

1
), dilatational wave of the second

kind (¸
2
) and a rotational were (S). The factor R in the denominator of the integrand of integrals

of GM
ij

[equations (10), (17), (20) and (24)] is the Rayleigh equation corresponding to a poroelastic
half-space governing the surface waves. The locations of Rayleigh poles are given by

R"!S
1
v
2
#k2 (v

3
!v

4
)"0 (31)

In reality, all materials have some internal friction (i.e. bO0) and the Rayleigh wave in
a poroelastic half-space is also dispersive and dissipative like body waves. The presence of
material attenuation results in branch points and poles of the integrands which are complex-
valued quantities with negative imaginary parts. Therefore, the real k-axis is free from any
singularities and GM

ij
can be evaluated by direct numerical integration along the real k-axis. For

the limiting case (b"0), the integration can be carried along a distorted contour in the "rst
quadrant of the complex plane.3,22

For the numerical evaluation of GM
ij
, the authors used a globally adaptive numerical quadrature

scheme.23 The scheme subdivides the interval of integral and uses a 21-point Gauss}Kronrod rule
to estimate the integral over each subinterval. The error for each subinterval is estimated by
comparison of the result obtained by 21-point Gauss}Kronrod rule with that by 10-point Gauss
quadrature rule. The subinterval with the largest estimated error is then bisected and this
procedure is applied to both halves. This bisection procedure is continued until the error criterion
is reached. The accuracy of the numerical integration scheme is checked by comparing with the
solutions in Reference 22 for a time-harmonic uniform vertical patch load in the interior of an
ideal elastic half-space. Excellent agreement with Reference 22 is noted con"rming the high
accuracy of the numerical integration scheme. Additional comparisons are done in an ensuing
section. The case of an ideal elastic medium is simulated by setting the relevant poroelastic
material properties to negligibly small values.

To demonstrate the essential features of the in#uence function GM
ij
, the response of a few

poroelastic half-spaces of di!erent materials is considered. An ideal elastic material and three
poroelastic materials identi"ed as material A, B, and C are considered in the numerical study. The
non-dimensional parameter j*, is equal to 1)0 for the ideal elastic material. The properties of the
three poroelastic materials are: j*"1)0, M*"12)2, o*"0)53, m*"1)1 and a"0)97. In addi-
tion b"0)001, 2)3, and 10)0 for materials A, B, and C, respectively. The response due to a uniform
vertical loading of intensity f

0
over a circular patch of radius a (unit radius) at a depth a below the

free surface of a half-space is computed. This case represents a fully #exible circular foot-
ing/anchor buried in a poroelastic soil. The locations of branch points and poles of the integrands
of in#uence functions corresponding to the ideal elastic material and the three poroelastic
materials are given in Table I. As shown in Table I, the branch points and poles of the integrands
are complex-valued, and the real k-axis is free from any singularity.

Figures 2 and 3 show nondimensional vertical displacement, u*
zz

("ku
z
/ f

0
a) of the free surface

and along the z-axis. A non-dimensional frequency d (de"ned by equation (34) in the appendix) is
used in the numerical study. The vertical de#ections depend signi"cantly on the frequency of
excitation. Both the real and the imaginary parts of surface displacements become more oscilla-
tory as the frequency of excitation increases. Oscillations in the displacement pro"le along the
z-axis is comparatively smaller with increasing frequency. The vertical displacement along the
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Table I. Branch points and poles corresponding to di!erent materials

Material d Branch points Pole

k
L1

k
L2

k
S

k
R

Elastic 0)5 (0)28868, 0)00000) (0)50000, 0)00000) (0)54383, 0)00000)
A 0)5 (0)30180,!0)00032) (0)12392,!0)00002) (0)43146,!0)00013) (0)47035,!0)00015)
B 0)5 (0)52561,!0)43249) (0)13122,!0)00115) (0)49675,!0)01454) (0)53415,!0)02187)
C 0)5 (1)01713,!0)97231) (0)13139,!0)00027) (0)49982,!0)00350) (0)53144,!0)00826)

Elastic 2)0 (1)15470, 0)00000) (2)00000, 0)00000) (2)17533, 0)00000)
A 2)0 (1)20720,!0)00032) (0)49569,!0)00002) (1)72585,!0)00013) (1)88139,!0)00015)
B 2)0 (1)36799,!0)65995) (0)51707,!0)01368) (1)87893,!0)13577) (2)04224,!0)16076)
C 2)0 (2)17518,!1)81768) (0)52500,!0)00426) (1)98891,!0)05389) (2)13696,!0)08285)

Figure 2. Vertical displacements along the free surface due to buried uniform vertical patch load

surface is substantially di!erent for the three material at higher frequencies. However, at low
frequencies (d"0)5), the response shows little dependence on the material properties. In the case
of material B, vertical displacements show rapid decay with the radial distance when compared to
the other two materials at d"2)0. The di!erences in the de#ection pro"les are more dominant on
or near the free surface. The real part of the vertical de#ections show a kink at the level of loading.
However, the imaginary part is smooth at this level. The de#ections for all three materials decay
rapidly with depth reaching negligible values for z/a'6)0.
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Figure 3. Vertical displacements along the z-axis due to buried uniform vertical patch load

Figures 4 and 5 show the non-dimensional vertical total stress, p*
zzz

("p
zz
/ f

0
) and non-

dimensional pore pressure p*
z
("p/f

0
) along the z-axis. A unit discontinuity exists in the real part

of vertical stress at z"a due to the applied patch load. However the imaginary part of the vertical
stress varies smoothly at this level. The real part of the vertical stress varies gradually while the
imaginary part shows more oscillations with depth for increasing frequency. The in#uence of
di!erent material parameters on the vertical stress is almost negligible at d"0)5, but become
signi"cant with increasing frequency. The vertical stress is negligible for z/a'5)0 . The non-
dimensional pore pressure depends signi"cantly on the frequency of excitation and the poroelas-
tic materials properties when compared to the vertical stress. As expected, the magnitude of pore
pressure is generally smaller than the vertical stress and decays quite rapidly with depth. It shows
more oscillations with depth especially near the loading level. Since the applied vertical load is
completely taken by the solid skeleton, there is no discontinuity in the pore pressure pro"le at
z"a. The magnitude of pore pressure appears to be higher in the case of material C. Since only
b* is di!erent for the three poroelastic materials, it can be argued that an increase in relative
friction between #uid and solid phases contributes to increasing pore pressures. Given that b* is
related to permeability inversely, it also means that as permeability decreases more pore pressure
is generated in the medium.

Vertical compliance of buried disks

The relationship between the magnitude of vertical load P and the magnitude of vertical
displacement *

z
of a buried disk can be obtained from the numerical solution of equations (28)
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Figure 4. Vertical stresses along the z-axis due to buried uniform vertical patch load

and (30). The vertical compliance of an embedded disk is de"ned as

C
vv
"

*
z

P
(32)

Dynamic compliances computed in the present study are in the dimensionless form
C*

vv
"C

vv
/C0

vv
, where C0

vv
is the vertical compliance of a rigid circular disk on an ideal elastic

half-space under static loading (d"0)0). It can be shown that6

C0
vv
"

1!l
4ka

(33)

where k and l denote shear modulus and Poisson's ratio of the half-space.
Figure 6 shows a comparison of vertical compliance of a rigid disk in smooth contact with

the surface of an ideal elastic half-space (Poisson's ratio"0)25). Solutions corresponding to
the present analysis are based on the reduction of a poroelastic material to an ideal elastic case
by setting M*, o*, m*, b*, and a to very small values. For smooth contact problem, equation (28)
is solved with i, j"z only. Excellent agreement is noted with solutions reported by Luco
and Westmann.20 The contact surface was discretized by sixteen annular rings of equal thickness
in the radial direction. A convergence study was also carried out and the optimum value for
N was found to be 16. All subsequent numerical solutions correspond to N"16. Figure 6 also
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Figure 5. Pore pressure along the z-axis due to buried uniform vertical patch load

shows the vertical compliance of a rigid disk embedded in an ideal elastic half-space when
h/a"2. Close agreement with the solutions reported by Pak and Gobert24 for a rigid disk
in smooth contact with the embedding elastic medium is observed. Pack and Gobert solved
the embedded disk problem using approximate boundary conditions and the classical
reduction16,20 to a Fredholm integral equation of the second kind. These comparisons con"rm
the accuracy of the in#uence functions, formulation of the disk problem and the numerical
implementation.

The dynamic response of a rigid disk embedded in a poroelastic half-space is considered in the
remainder of this paper. Figure 7 shows the dimensionless vertical compliance of impermeable
and fully permeable rigid disks with di!erent depth ratios (h/a"0, 1, 2, 5, 20). The properties of
the poroelastic material are those of material B de"ned previously (i.e. j*"1)0, M*"12)2,
o*"0)53, m*"1)1, b*"2)3, a"0)97). The variation of compliance with non-dimensional
frequency d is smooth for both surface (h/a"0)0) and deeply buried (h/a"20)0) disks. However
for intermediate depths, both the real and imaginary parts of the compliance show oscillations
with the frequency. This is a consequence of the standing waves generated between the free surface
and the embedded disk that practically vanish for very deep embedments. Similar behaviour is
also noted in the Pak and Gobert solutions24 for the ideal elastic case. The vertical compliance
depends signi"cantly on h/a for 0)0(h/a(5)0. Another feature of the solutions in Figure 7 is the
increasing di!erence between compliances of impervious and pervious disks at high frequencies
(d'2)0). More dissipation of energy is also noted in the case of impervious disks (note that the
applied load is resisted both by discontinuities in vertical and radial shearing stresses and by
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Figure 6. Comparison of vertical compliances of rigid circular disk in an ideal elastic medium

discontinuities in pore pressure) when compared to fully pervious disks. Comparison of solutions
neglecting contact radial shear stresses [¹

r
"0 in equation (28)] showed only minor di!erences

in the frequency range 0(d(4)0.
Figure 8 shows a comparison of the vertical compliance of an impervious disk embedded in an

ideal elastic material (j*"1)0, l"0)25) and three di!erent poroelastic materials (i.e. materials
B}D). Materials B and C are de"ned previously. The poroelastic properties of material D are
identical to material B except that b*"30)0. Thus material D has the highest internal friction due
to relative motion between solid and #uid phases. Since b* is inversely proportional to permeabil-
ity, it also means that material B is the most permeable and material D is the least permeable
among the three poroelastic materials considered in Figure 8. The solutions correspond to surface
(h"0) and embedded (h"2a) disks. At low frequencies (d(1)0), the in#uence of material
properties on vertical compliance of a buried disk is almost negligible with elastic and poroelastic
media showing nearly identical compliances. This trend is changed with increasing frequencies
and more signi"cant dependence on the material type is observed. Note that j* is identical for all
four materials. Once again, the main di!erence between the three poroelastic materials is the
value of b* and the di!erences observed in Figure 8 can be interpreted as the dependence on b*.
For surface and embedded disks, the magnitude of the imaginary part of the compliance
decreases with increasing b* for d'1)0 implying the more dissipative (and less permeable) nature
of the material. The real part of vertical compliance of buried disks also decreases with increasing
b* for 1)0(d(3)0 whereas for surface disks the real part of compliance shows more dependence
on the material type over the entire frequency range considered. The results shown in Figures
7 and 8 clearly indicate that the ideal elastic solutions cannot be used to approximate the
response of buried disks in poroelastic media except at very low frequencies. The general trend of
poroelastic e!ects on the vertical compliance observed in the present study agrees with the
observations of Halpern and Christiano8 for rigid rectangular surface foundations. However, our
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Figure 7. Vertical compliance of rigid disks for di!erent depth of embedment (Material B)
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Figure 8. Vertical compliance of rigid disks in di!erent poroelastic media

solutions for vertical compliances are in disagreement with the results of Kassir et al.12 for
vertical vibrations of rigid circular disks on the surface. Their results show substantially di!erent
magnitudes and trends with frequency, with those for ideal elastic solutions, that appear to be
very unrealistic and questionable.

It is useful to examine the distribution of contact tractions ¹
i
under a rigid disk to gain some

insight into the load transfer mechanism. Figure 9 shows ¹
z
na2/P and ¹

p
na2/P corresponding to

an embedded disk (h/a"2) at d"0)5, 2)0. An ideal elastic material (j*"1)0, l"0)25) and the
poroelastic material B are considered. The results are shown for impermeable disks in the case of
material B. The real part of ¹

z
is nearly independent of the frequency and the type of material.

The imaginary part shows considerable dependence on frequency and material type with
increasing frequency. Both real and imaginary parts of ¹

z
are singular near the edge of the disk.

The real part of ¹
p

is negligible but the imaginary part is comparatively larger at d"2)0.
This implies larger amplitudes of ¹

p
and substantial phase di!erences with ¹

z
at higher

frequencies. Both real and imaginary parts of ¹
p

approach zero near the edge of the disk. This
implies that the pore pressure jump is not singular at the edge. Based on these results, it can be
concluded that negligible pore pressure is generated under an impermeable disk at low frequen-
cies for low values of b* and that the load is mainly transferred through the solid skeleton.
However, at higher frequencies, the load is transferred to the medium through both solid and #uid
phases.
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Figure 9. Pro"les of vertical stress and pore pressure jumps under rigid disks (h/a"2)

CONCLUSIONS

A complete set of in#uence functions for displacements, stresses, pore pressure and #uid
discharge of a poroelastic half-space subjected to time-harmonic, axisymmetric buried excitations
are presented. Analytical solutions for poroelastic "elds appear in terms of semi-in"nite integrals
with complex-valued integrands and Bessel functions. The numerical quadrature scheme em-
ployed in the study to compute the in#uence functions result in stable and accurate solutions. The
problem of a fully bonded impermeable disk can be formulated in terms of a set of coupled
integral equations. The kernel functions of the integral equations are the in#uence functions
corresponding to buried vertical, radial and #uid pressure excitations. The complexity of the
kernel functions eliminate any possible analytical solution of the integral equations. The integral
equation can be solved accurately by discretizing the disk into annular rings and evaluating the
in#uence functions numerically by using a globally adaptive quadrature scheme. Numerical
solutions for vertical compliance show a considerable dependence on the depth of embedment
and the frequency of excitation. In addition, the poroelastic material properties and the hydraulic
boundary condition of the disk in#uence the compliances at high frequencies. An increase in
sti!ness and radiation damping is noted due to poroelastic e!ects. Load transfer takes place
mainly through the solid skeleton at lower frequencies and through both phases at higher
frequencies. The solutions presented in this study are useful in estimating the response and load
transfer characteristics of buried foundations and anchors in poroelastic soils. The in#uence
functions presented in this study can be used in boundary element analysis and modelling of other
geomechanics problems involving poroelastic media.
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APPENDIX

For convenience, the material properties: j, M, o
&
, m, b and frequency u are nodimensionalized

as

j*"
j
k
, M*"

M

k
, o*"

o
&

o
, m*"

m

o
, b*"

ab

Jok
, and d"S

o
k

ua (34)

The variables c
i
, s

i
, b

i
, g

i
and S

1
in the general solutions (equation (5)) are de"ned as

c
i
"Jk2!¸2

i
, i"1, 2 (35)

c
3
"Jk2!S2 (36)

s
i
"

(j*#a2M*#2)¸2
i
!d2

o*d2!aM*¸2
i

, i"2 (37)

s
3
"

o*d
ib*!m*d

(38)

g
i
"(a#s

i
)M*¸2

i
, i"1, 2 (39)

b
i
"2c2

i
!j*¸2

i
!ag

i
, i"1, 2 (40)

S
1
"k2#c2

3
(41)

and

¸2
1
"

w
1
#Jw2

1
!4w

2
2

(42)

¸2
2
"

w
1
!Jw2

1
!4w

2
2

(43)

S2"(o*s
3
#1)d2 (44)

w
1
"

(m*d2!ib*d)(j*#a2M*#2)#M*d2!2aM*o*d2

(j*#2)M*
(45)

w
2
"

(m*d2!ib*d)d2!(o*)2d4

(j*#2)M*
(46)

The radicals c
i
(i"1, 2, 3) are selected such that Re(c

i
)*0. In above, ¸

1
, ¸

2
and S are the

non-dimensional wave number of three kinds of dispersive and dissipative body waves, i.e. two
dilatational waves (fast and slow waves) and a rotational wave, respectively, propagating in
a poroelastic solid.2
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