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Abstract
Automated identification of insects is a tough task where many challenges like data limita-
tion, imbalanced data count, and background noise needs to be overcome for better per-
formance. This paper describes such an image dataset which consists of a limited, imbal-
anced number of images regarding six genera of subfamily Cicindelinae (tiger beetles) of 
order Coleoptera. The diversity of image collection is at a high level as the images were 
taken from different sources, angles and on different scales. Thus, the salient regions of 
the images have a large variation. Therefore, one of the main intentions in this process was 
to get an idea about the image dataset while comparing different unique patterns and fea-
tures in images. The dataset was evaluated on different classification algorithms including 
deep learning models based on different approaches to provide a benchmark. The dynamic 
nature of the dataset poses a challenge to the image classification algorithms. However 
transfer learning models using softmax classifier performed well on the current dataset. 
The tiger beetle classification can be challenging even to a trained human eye, therefore, 
this dataset opens a new avenue for the classification algorithms to develop, to identify fea-
tures which human eyes have not identified.
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1 Introduction

There are millions of species on earth, of which 1.2 million have already been formally 
described [38]. Some species have been identified and described using molecular tech-
niques while morphology and morphometrics have been used to identify others. How-
ever, the application of molecular techniques requires considerable expertise knowledge, 
high cost and time while morphology-based identification poses challenges in identify-
ing cryptic and less abundant taxa [5, 21]. Difficulties in morphological identification 
are mainly due to the number of visually similar categories which are required to iden-
tify inter-class similarity. Therefore, traditional species identification requires expert 
knowledge of each species in detail and consumes a large amount of time. The lack of 
expert knowledge, cost of species identification and high time consumption has shown 
importance towards image classification using Artificial Intelligence [35].

The rapid improvement in machine learning models especially convolutional neural 
networks (CNN) image classification has shown dramatic performances. These models 
are capable of identifying features that are visible and non-visible to the naked eye to 
classify objects [7, 28]. However, these models require a large number of training data 
from each class to learn the features, which are organized to form a feature vector, an 
arbitrary length, vector which collects all the properties that are useful in describing the 
object under analysis [54] to enhance the model for better performance [29, 44, 50]. As 
a result, Ultra-specific classifications such as insect species classification which have 
inter-genus similarities in morphology, require an extremely large amount of image data 
to gain high validation accuracy [22, 41, 58]. Therefore, this is a challenging task for 
automated models to extract features to identify these insect species who are with enor-
mous inter-class similarities (Fig. 1).

Fig. 1  Visually similar species from two different genera (a) Myriochila distinguenda (b) Calomera angu-
lata 
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This paper introduces an ultra-specific data set on tiger beetles, which is one of the first 
datasets that focus on entomological specific image data. The tiger beetle images require 
expert knowledge to classify them as they were taken from various image sources and 
various environments. Each image has different noise levels, different size and a different 
zoom level on the beetle. Therefore, classifying these images using computational models 
are challenging as general computational models are not capable of handling noise and 
variations of the images to classify. Hence, the dataset would provide a good platform for 
new image analysis methods for real-world ultra-specific image classification, with highly 
different noise levels and variations. In this paper, benchmarks are also set to show the 
responses to each machine learning algorithm.

Almost all the dominant image classification datasets used in computer vision tend to 
have a uniform (balanced) and copious distribution of images across object categories. As 
an example, the well-known, highly diverse ImageNet dataset [12] consists of more than 14 
million images belonging to more than 20,000 categories with a typical category consist-
ing of several hundred images. However, the feature vectors identified for such datasets are 
not substantially suitable for highly specific scenarios such as identification of zoological 
image sets of species belonging to the same family. To become more specific for animal 
species identification by machine learning, the Caltech-UCSD Birds-200-2011 Dataset 
[13] which is comprised of 11,788 bird images and Stanford Dogs Dataset which contain 
images of 120 breeds of dogs from around the world, has been built using images and 
annotation from ImageNet for the task of fine-grained image categorization [30]. Further, 
iNaturalist species classification and detection dataset, consisting of 859,000 images from 
over 5000 different species of plants and animals [24] and IP102, a large-scale dataset spe-
cifically constructed for insect pest recognition which contains more than 75,000 images 
belonging to 102 categories [56] have been developed. All above-mentioned datasets have 
at least more than 10,000 images in their collection, but this is often impractical, or even 
impossible, as in many real-world scenarios some species are more abundant and easier to 
photograph, and some are rare and endemic and not visible in the common environment 
frequently.

In some scenarios, the image collections in the databases have been taken in proper 
light condition, in specific dimensions (angle) with less background noise. Marques et al. 
[37], describes ant genera identification methodology using an image dataset as an online 
database on ant biology, the Antweb (http:// www. antweb. org). The images in the above 
dataset were taken using powerful tools like Automontage and Leica microscope so that all 
the images in the dataset have the same (high level) quality and also the dimensions of the 
images have been restricted to three views as frontal, lateral and dorsal. Larios et al. [32], 
proposes a methodology for the identification of stonefly larvae, an insect inhabiting water. 
To capture high-quality images of stonefly larvae a mechanical apparatus has been built 
where each specimen is manually inserted into acrylic and then pumped through a tube. 
During this process, an infrared detector positioned along the tube detects the passage of 
the specimen and a side fluid jet captures the specimen using a QImaging MicroPublisher 
5.0 RTV 5 megapixel colour digital camera attached to a Leica MZ9.5 high-performance 
stereo microscope at 0.63x magnification. Illumination has been provided by gooseneck 
light guides powered by Volpi V-Lux 1000 cold light sources and diffusers have also been 
installed in this apparatus to reduce glare, specular reflections and hard shadows. Gutierrez 
et al. [20], describes a pest detection and identification method for tomato plants where the 
dataset has been generated using both manually and automatically obtained images col-
lected in a specific environment (Mendelu’s cultivation chamber). In the manual procedure, 
all the images have been captured by AP-3200 t-PGE and monochrome camera DataCam 
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2016R using a standard display system connected to a PC. Different types of lenses and 
lighting systems have been also used when necessary. In the automated procedure, two 
GigE UI-5240CP cameras have been set up and using Raspberry Pi 3 microcontroller 
both the camera and the movement structure are controlled. The microcontroller is pro-
grammed to take pictures both with and without artificial lighting in different directions 
and angles. However, the above set-ups can be impractical for some real-world problems 
when dealing with images taken in a normal environment deprived of proper light intensity 
with background noise. Furthermore, the rarity of the species prevents access to a large 
number of images for each class. Therefore, machine learning models struggle to achieve 
accurate classifications results. Hence it is proven that class imbalance, availability of lim-
ited images with inter-class similarity and availability of different quality images with huge 
background noise are properties of a real-world scenario where computer vision models 
require to deal with [24].

1.1  Research contribution

The paper introduces a real-world tiger beetle image dataset that has been classified to gen-
era level. This dataset uses images from various sources ranging from high-definition cam-
eras to images scraped from the internet. The data set is created by an expert entomologist 
to test various machine learning models. Base-line machine learning models are used for 
experiments and are described as a benchmark for the dataset. Furthermore, this shows 
a path for future work required for a highly-specified machine learning model for ultra-
specific insect classification.

2  The Tiger beetle dataset1

The classification dataset of tiger beetles (Coleoptera, Carabidae, Cicindelinae) from Sri 
Lanka is comprised of a limited number of images. This dataset consists of images of tiger 
beetles belonging to six genera of tribes Cicindelini (ground-dwelling tiger beetles) and 
three genera of tribe Collyridini (arboreal tiger beetles) [1] (Fig. 2).

There are significant morphological differences between species of tribe Cicindelini 
(Fig. 3a) and tribe Collyridini (Fig. 3b) to distinguish each tribe using visuals (Table 1).

Sources: [10, 15, 43].
The different genera of tribe Cicindelini have distinctive elytral patterns that enable the 

identification of genera. Further, small variations of elytral patterns may also be seen in 
species within the same genera.

1 https:// github. com/ lakmi nia/ Tiger- beetle- image- datas et; https:// fos. cmb. ac. lk/ opend ata/ tiger beetl es/
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2.1  Tiger beetle genera used in the dataset

2.1.1  Tribe Cicindelini

Genus Callytron The dataset of the present study used images of only Callytron limosa 
of genus Callytron. Callytron limosa has a unique elytral maculae pattern. Maculae have 
reduced to a narrow white continuous lateral band that extends from the humeral angle to 
the apical spine (Fig. 4).

Fig. 2  Tiger beetle tribes and genera of the image dataset
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Genus Calomera The dataset utilized images of the species Calomera angulata and Cal-
omera cardoni of the genus Calomera. Both species have a complete humeral lunule on 

Fig. 3  (a) Lophyra catena of tribe Cicindelini, (b) Tricondyla of tribe Collyridini

Table 1  Morphological differences between tribe Cicindelini and tribe Collyridini

Ground dwelling tiger beetles (Cicindelini) Arboreal tiger beetles (Collyridini)

The body is not conical/ flask-shaped. The body is conical/ flask-shaped.
Short pronotum. Long, slender pronotum.
Elytra consist of different elytral patterns. No elytral patterns.
Episterna of the metasternum not very narrow and not strongly fur-

rowed.
Episterna of the metasternum very 

narrow and strongly furrowed.
Tarsal pads are present only in pro-thoracic legs of males. Tarsal pads present in all legs of 

both sexes (Collyris, Tricondyla).

Fig. 4  Callytron limosa 

3228 Multimedia Tools and Applications (2022) 81:3223–3251



1 3

elytra but can be differentiated using the middle band of elytra [3]. In C. angulata the mid-
dle band consists of a transverse portion that concaves anteriorly, while in Cybister cardoni 
the transverse portion of the middle band does not concave anteriorly. The terminal portion 
of the middle band of C. angulata is broadly connected to the transverse portion while it is 
separate or narrowly connected in C. cardoni [11]. Further, C. angulata has a dark bronze 
coloured head and pronotum, with greenish punctures and white markings. White colour in 
elytra extends from the shoulders to the apex, with an interruption before the apical lunate 
patch (Fig. 5a). The elytral surface of C. cardoni is dark brown or metallic brown with yel-
lowish-white discontinuous lateral lunules. The middle band terminates medially to form a 
separate spot (Fig. 5b) [52].

Genus Lophyra Lophyra catena and Lophyra cancellata of genus Lophyra are morpho-
logically very similar. However, in Lophyra catena the genae of the head are setose, while 
in Lophyra cancellata they are glabrous (smooth and without hairs) [22]. Humeral lunule, 

Fig. 5  (a) Calomera angulata; (b) Calomera cardoni 

Fig. 6  (a) Lophyra catena; (b) Lophyra cancellata 
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the middle band and apical lunule of both the species of this genera are clearly visible and 
similar to each other. They can be used to distinguish genus Lophyra from other genera of 
tribe Cicindelini (Fig. 6).

Genus Hypaetha Images of two species Hypaetha biramosa, Hypaetha quadrilineata 
were included in this genus. More than 90% of the elytral surface of Hypaetha biramosa is 
covered with dark brown/black maculae medially and a yellowish-white continuous band 
extends from humeral angle to the apex. This band invaginates around half of the length of 
the elytra to separate the dark brown/black maculae into two sections (Fig. 7a).

Hyla quadrilineata maculae exist as two longitudinal yellow-white bands on an elytron 
(Fig. 7b). The abdomen of H. quadrilineata is setose laterally, while it is glabrous in H. 
biramosa [22].

Genus Myriochila Myriochila distinguenda and Myriochila (Monelica) fastidiosa repre-
sent the genus Myriochila of Sri Lanka. Both species are characterized by the standard 
pattern of maculae on the elytra consisting of humeral lunule, middle band and apical 

Fig. 7.  (a) - Hypaetha biramosa; (b) - Hypaetha quadrilineata. 

Fig. 8  (a) Myriochila distinguenda; (b) Myriochila (Monelica) fastidiosa 
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lunule. In Myriochila distinguenda the basal portion of the elytral humeral lunule is sepa-
rated while in Myriochila (Monelica) fastidiosa it is joined to the apical end of the humeral 
lunule (Fig. 8).

Genus Cylindera The species belonging to this genera are characterized by yellowish-
white spots on elytra and do not have humeral, apical lunules or marginal/ middle bands. 
However, the position, number and shape of the elytral spots in each species of Cylindera 
may vary distinguishing the species from one another (Fig. 9) [3, 15].

2.1.2  Tribe Collyridini

The main differences between the genera of tribes Collyridini and Cicindelini are found 
related to the body size, body colour and characteristics of pronotum. In the present study, 
three genera of tribe Collyridini were considered, Tricondyla and Derocrania of sub-tribe 
Tricondylina, and Neocollyris of sub-tribe Collyridina.

Genus Derocrania Species of this genus are smaller and slender than species of genus Tri-
condyla of the same sub-tribe. Eyes are prominent and pronotum more elongate, slender 
and narrow at the top. Elytra is elongate and almost widened behind or sometimes in some 
species very strongly raised behind or almost flat, with very variable sculpture. Legs are 
long and slender (Fig. 10) [10, 15].

Genus Tricondyla Species of genus Tricondyla are characterized by a large head that is 
deeply excavated between the eyes. The neck behind the eyes is parallel-sided. Elytra nar-
rowed in front and dilated and very convex behind. The pronotum is almost parallel sid-
eded, broad, constricted in front and behind, sometimes a little convergent but without a 
collum in front (Fig. 11) [10, 15].

Genus Neocollyris Species of this genus are small and slender with bright blue elytra that 
are almost punctured. However, elytra vary in colour, size and sculpture and some spe-
cies have strongly rugose sculptures in the middle. Many species of this genus are hard to 

Fig. 9  (a) Cylindera (Ifasina) waterhousei; (b) Cylindera (Ifasina) labioaenea 
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Fig. 10  Derocrania schaumi 

Fig. 11  Tricondyla granulifera 
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identify from one another. However, differences are found in the shape of the pronotum 
which is generally flask-shaped (Fig. 12) [15, 39].

2.2  Image collection

The dataset comprises of images taken during field investigations, from wildlife and 
nature photographers using different camera types with different image quality, tiger 
beetle publications and websites. However, due to the rarity of certain species and ende-
micity, only a limited number of images were collected from each genus (Fig. 13).

Fig. 12  Neocollyris bonelli 
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Fig. 13  Image samples collected for each genus
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2.3  Features of the images

2.3.1  Image sources

Images were collected from different sources

• Mobile phone captures
• DSLR camera captures
• Images from websites/blogs (iNaturalist, Shnao, Project Noah, JungleDragon, Thailan-

dwildlife, My Shot Gallery of Bengkulu)

Therefore, the images have different quality (Fig. 14), views and angles (Fig. 15).

2.3.2  Image background

Furthermore, salient parts in each image have extremely large variations in size (Fig. 16). 
Subsequently, most of these images are with noisy backgrounds and inconsistency as most 
of these images were taken in the actual habitat environment of the species (Fig. 17).

2.3.3  Image diversity based on colour saturation

In order to understand certain features of the images and to obtain an overall idea about 
the colour intensity distribution, combined colour histograms of images for each genus 

Fig. 14  Images obtained from different sources (a) DSLR (macro lens) camera capture; (b) smartphone 
captures; (c) image taken from a website (genus- Derocrania) 

Fig. 15.  Images of species taken in different angles (genus-Derocrania)
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Fig. 16.  (a) Species occupying very little space; (b) species occupying a part of it; (c) species occupying 
most of the image (genus-Neocollyris)

Fig. 17.  Images with background noise
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of the dataset were plotted (Fig. 18). Each graph is plotted with pixel values (ranging 
from 0 to 255) on X-axis and the corresponding number of pixels in each image on 
Y-axis [17, 42]. The graphs depict variations in colour contrast, brightness, the inten-
sity distribution of images due to background noise of images resulting from their 
environment.

Fig. 18.  Sample images of each genus and corresponding colored histogram related to the specific image 
((a) Callytron; (b) Calomera; (c) Cylindera; (d) Derocrania; (e) Hypaetha; (f) Lophyra; (g) Myriochila; (h) 
Neocollyris; (i) Tricondyla)
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2.3.4  Image diversity based on image size

Since the images were collected from different sources the resolution and dimensions of 
the image collection varied from one image to another. Thus, the sizes of the images in 
the dataset ranged from (136 × 319 pixels) to (5184 × 3459 pixels) (Fig. 19).

Limitations in the dataset

• Imbalanced image count - The dataset is highly imbalanced, with certain genera 
having more images than others.

• Background noise in images.
• Availability of a limited number of images due to endemicity and rareness of spe-

cies.
• Different quality images.
• Images taken in different angles/ dimensions.

Fig. 19  Images with different sizes

3237Multimedia Tools and Applications (2022) 81:3223–3251



1 3

3  Classification algorithms

3.1  Classical machine learning classifiers

As the current task is related to supervise learning category where it is required to iden-
tify the dependencies between the target prediction output and the input features, and as 
the image dataset comprises of nine genera of subfamily Cicindelinae, multi-class clas-
sification should be done. Before passing images to multi-class classifications, feature 
extraction needs to be done as preprocessing steps to perform the classification task 
more effectively. When deciding about the features that could quantify these nine gen-
era of tiger beetles, variations in texture, colour patterns (Fig. 18) and shape were con-
sidered as global feature vectors, which describe the image as a whole to generalize 
the entire object. Texture defines the consistency of patterns and colours in an object/
image. Since tiger beetles can be identified to genus level from combinations of patterns 
and colour variations of elytra, texture can be selected as a promising feature to extract 
unique features of each class (which helps to identify class separately) in the present 
dataset. However, when considering the shape as a single vector for feature extraction, 
it is less likely to produce good results since classes of the current dataset have many 
attributes in common due to inter-class similarities (Fig.  1). Therefore we combined 
both colour and shape as a single feature descriptor in order to describe the image more 
effectively. Texture based feature extraction can be done based on different concepts 
such as Ant Lion Optimizer (ALO) [2, 55], Grey Level Co-occurrence Matrix (GLCM) 
[16]. For the current process, the texture was quantified using haralick texture features 
[23] which are calculated from Grey Level Co-occurrence Matrix, (GLCM), a matrix 
that counts the co-occurrence of neighbouring grey levels in an image. Further, colour 
variations and shape were quantified using colour histograms [4] and Hu Moment [25] 
respectively. After the feature selection process data were passed through eight super-
vised, multi-class classification algorithms [33] (Fig. 20).

Dataset

Colour + Shape 

based feature 

extraction

Texture based 

feature extraction

Classification 

algorithms

Fig. 20  Feature extraction and classification
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 I. Logistic Regression - As the current scenario is a multiclass classification problem 
a multinomial logistic regression approach was implemented by using Broyden–
Fletcher–Goldfarb–Shanno (bfgs) algorithm as the optimization algorithm.

 II. Linear Discriminant Analysis (LDA) - The objective of LDA is to project the dataset 
onto a lower-dimensional space with good class-separability to avoid overfitting and 
also reduce computational costs.

 III. KNeighborsClassifier - It is important to find the best K (neighbour) value to obtain 
the optimum accuracy from KNN for the dataset. Therefore, to get the best possible 
fit for the images set K = 1 was selected.

 IV. DecisionTree Classifier - Classification tree was selected for the current problem. 
This algorithm performs variable screening/feature selection implicitly which is an 
advantage for feature extraction. Tree-based learning algorithms are considered as 
the best and frequently used supervised learning methods as they assist predictive 
models with high accuracy, stability and affluence of interpretation. Unlike linear 
models, these algorithms are able to map non-linear relationships well.

 V. RandomForest Classifier - RandomForest is a classification algorithm that evolves 
from decis ion trees. It consists of a collection of a large number of individual deci-
sion trees. For the current problem, 25 decision trees were used in the forest. To 
classify a new instance, each decision tree provides a classification for input data and 
this classification algorithm collects the classifications and chooses the most voted 
prediction as the result [36].

 VI. GaussianNB - When Naïve Bayes is extended to real-valued attributes by assuming 
Gaussian distribution it is called Gaussian Naive Bayes.

 VII. SVM - Support Vector Machine algorithms are based on the idea of decision planes 
(hyperplane) which outline decision boundaries that help to classify the data points. 
SVM algorithms use a set of mathematical functions that are defined as the kernel. 
The purpose of the kernel is to take data as input and transform it into the required 
form. Different SVM algorithms use different types of kernel functions. RBF kernel 
function was used for this scenario [14].

 VIII. ExtraTreesClassifier - An ensemble learning technique. This is very similar to ran-
dom forest classifier and differs only from the manner of construction of the decision 
trees [51]. The number of decision trees used in the classifier was 10.

Fig. 21.  Entomological view against computer vision based descriptors. Genus: Lophyra
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Above mentioned traditional machine learning methodologies (classification algo-
rithms) use trivial structures to handle limited data and computing units. When the tar-
get objects have rich meanings with high background noise and inconsistency, the perfor-
mance and generalization ability of the above models are insufficient [14]. Therefore, it is 
important to move to deep learning methodologies which can attain higher accuracy. The 
ultimate goal of deep learning is to represent an image in a hierarchical manner by increas-
ing complexity per each layer as seen in natural world objects where combination of many 
compositional units increase the diversity of the resulting structure (Fig. 21).

3.2  Deep learning techniques

The pre-processing required for deep learning models are much lower when compared with 
traditional classification algorithms. Because these approaches work by extracting fea-
tures from images which eliminate the need of manual feature extraction. At the same time 
arrangement of these models play a major role in designing and creating new architectures 
for performance improvement. Therefore, model evaluations instigated from simple struc-
tures to complex form, since convolutional neural networks arguably considered a black 
box evaluation [6]. Based on strategy these models were evaluated in three stages.

• CNN models without using pre-trained weights.
• CNN models fine-tuned with transfer learning approach (using pre-trained weights).
• Extract features from pre-trained CNN models, and classify using SVM.

Further, as the target dataset mostly consists of images that were taken in normal habi-
tat environments which consist of a fair amount of background noise and inconsistency, 
tiger beetles dataset was evaluated on Faster Region-based Convolutional Network method 
(Faster R-CNN) [8].
I. CNN models without using pre-trained weights

• CNN model with 4 convolutional layers and 2 fully connected layers

This convolutional neural network model comprises 6 hidden layers including 4 con-
volutional layers and 2 fully connected layers. The first and second convolutional layers of 
the model contain 32 kernels of size 5 × 5, while the third convolutional layer contain 64 
kernels of size 3 × 3 and the final convolutional layer contain 96 kernels of 3 × 3 (Fig. 22).
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Fig. 22.  Architecture of CNN model with 4 convolutional layers with 2 fully connected layers
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• AlexNet model

This is a well-known CNN model which follows a standard neural network architec-
ture of stacked and connected layers. It comprises eight layers that need to be trained, 
five convolutional layers followed by three fully connected layers, as well as a max-
pooling layer [31, 49, 57].

• SqueezeNet model

This model features a great reduction in parameter space and computational com-
plexity through channel projection bottleneck (squeeze layers). Further, similar to resid-
ual networks, the model uses indemnity-mapping shortcut connections which allow for 
stable training of deep network models. This model is comprised of “fire modules”, 
where the input map is first fed through a bottlenecking channel-projection layer and 
then divided into two-channel sets. The first channel set is expanded through a 3 × 3 
convolution and the second one through channel projection. The final convolution map 
is globally average-pooled into a 512-vector and then fed to a fully connected layer with 
2048 units [19].

 II. CNN models that are fine-tuned with transfer learning strategy (using pre-
trained weights) and classified using softmax classifier

Transfer learning has become a conventional procedure (meaning that a classifier is 
already trained on a large-scale dataset like ImageNet dataset before the actual training 
begins). Here the classifier will only be fine-tuned to the specific classification problem by 
training a small number of high-level network layers proportional to the amount of avail-
able problem-specific training data [40]. Since the model has already learned certain fea-
tures from a large dataset this method is more suitable for these kinds of datasets which are 
with a limited number of data. Transfer learning (TL), is commonly used in the computer 
vision area which allows building more precise models efficiently [26, 46, 48].

Therefore as the initial phase, it is required to get pre-trained models with weights 
loaded. Eight deep learning networks were selected as target models.

• AlexNet
• InceptionV3
• ResNet
• SqueezeNet
• VGG16
• VGG19
• DenseNet121
• Inception-ResNet v2

For pre-trained weights, we used weights gained by training the above models on top of 
ImageNet dataset to extract general classification-supporting features like curves and edges 
from several front layers. As the proposed architecture, we removed the final fully con-
nected layer from each model and then used the remaining portion of the model as a feature 
extractor for the current dataset. These extracted features are called “Bottleneck features”.

Then the fully connected layers were developed according to the target dataset below 
and the extracted bottleneck features were used to get the classes as outputs for the 
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problem. Finally, results were classified using softmax (multi-nomial logistic regres-
sion) classifier.

 III. Extract features from pre-trained CNN models, and classify using SVM

Image features from different CNN architectures pre-trained on the ImageNet dataset 
were submitted to a linear support vector machine classifier, which is trained on the target 
problem. For this strategy, we selected the same Convolutional Neural Network models as 
target pre-trained deep learning models, which were used for earlier evaluation (AlexNet, 
InceptionV3, ResNet50, SqueezeNet, VGG16, VGG19, DenseNet121, Inception-ResNet 
v2). The main reason to select support vector machine algorithm as the classifier was that 
SVMs are more appropriate for small datasets where the number of dimensions are greater 
than the number of examples [53]. Further, SVMs are memory-efficient since they only use 
a subset of training points or support vectors and they generalize well to high dimensional 
spaces as well.

 IV. Faster-RCNN

The advancement of CNN models based on regional paradigm have able to address the 
object detection and classification process [45]. The main objective of the regional para-
digm was to improve the precision of object detection while improving overall model per-
formance. Since Faster-RCNN was identified as the most state-of-the-art version of RCNN 
models, it was selected to evaluate the current tiger beetle image dataset. In Faster R-CNN 
each input image is passed to a ConvNet which returns feature maps for the image. Then 
the region proposed network (RPN) is applied on the above feature maps to get object pro-
posals and the region of interest (ROI) pooling layer brings all the object proposals to a 
specific size. Finally, these proposals are passed through a fully connected layer to classify 
and predict the bounding boxes of each image [34]. The target dataset was evaluated on top 
of Faster-RCNN based on two base convolutional neural networks which are VGG16 and 
ResNet50 [8].

4  Results and discussion

4.1  Experimental setup

The original images set was divided into a training and test set where around 75% of the 
total images in each genus were put into a training set while the rest (25%) were placed 
into a test set. As deep artificial neural networks require a large corpus of training data to 
learn effectively and to avoid over-fitting, the image quantity was increased by expanded 
the dataset artificially by image augmentation [44, 47]. Image augmentation was conducted 
using a combination of multiple processing, such as random rotation, shifts, shear and flips, 
etc. For this, we used Augmentor [9], a Python package designed to aid the augmentation 
and artificial generation of image data for machine learning tasks (Fig. 23).

The augmentation procedures used to increase the amount of available training data are 
listed below.

• Horizontal flipping
• Vertical flipping
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• Zooming - Zoom in to an image at a random location within the image, while maintain-

ing its size. The amount by which the image is zoomed is a randomly chosen value.
• Rotate -  900,  450,1800

After data augmentation process the training image quantity increased up to 100 images 
per genus and test image quantity to 35 for each genus, which is still a low image quantity 
for a deep convolutional neural network. However, increasing image quantity to thousands 

(b)

(a)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 23  Image Augmentation (a) Original image. (b)Zoomed-in image. (c) Zoomed-out image. (d)  450 
rotated image to right (e)  900 rotated image to left (f) Vertically flipped and zoomed-in image (g) 180 0 
rotated image to right (h)  900 rotated image to right (i)  900 rotated and zoomed-out image (j)  900 rotated 
image to left

Table 2  Separation of images to train and test set and creation of 2 datasets as Approach I and Approach II

Approach I Approach II

Tribe Genus Original 
training image 
quantity

Original testing 
image quantity

Training image quan-
tity (after augmenta-
tion)

Testing image 
quantity after 
augmentation)

Callytron 29 6 100 35
Calomera 39 5 100 35

Cicindelini Lophyra 33 4 100 35
Hypaetha 37 4 100 35
Myriochila 37 4 100 35
Cylindera 20 7 100 35
Derocrania 37 21 100 35

Collyridini Tricondyla 35 7 100 35
Neocollyris 44 11 100 35
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using image augmentation is also unreasonable since it will again subject the model to 
over-fitting.

Finally, two approaches were initiated, one with original, imbalanced data (Approach I) 
and the other with augmented, balanced data (Approach II) (Table 2).

In order to perform a benchmark on the dataset, the previously mentioned classifica-
tion algorithms were trained on the datasets of Approach I (original, imbalanced data) and 
Approach II (augmented, balanced dataset) while deep learning models were trained on 
only the augmented, balanced dataset. All the classification algorithms were executed on 
lenovo ideapad 300 machine having inter® Core™ i7 -6500U CPU @ 2.50GHz-2.59Ghz, 
8  GB RAM with 64bit Operating System and deep learning models were executed on 
Google colaboratary using GPU on Jupiter notebook [18].

4.2  Test results and discussion

According to Table  3, classification algorithms using texture-based feature extraction is 
more suitable for the classification of the current dataset than classification algorithms 
using colour and shape. The highest test accuracy of 49.43% was gained from the linear 
discriminant analysis algorithm based on texture-based feature extraction. Further, higher 
validation accuracies were gained from all the classification algorithms which were trained 
on the original imbalanced images dataset than the augmented balanced images dataset. 
Therefore, it is possible to state that the orientation of the images supports the machine 
learning models for classifications and orientation is a key factor for image classification 
using a machine learning approach.

When considering deep learning models which were trained without using pre-trained 
weights on augmented balanced tiger beetle images set, SqueezeNet gave the highest vali-
dation accuracy of 63.81% (Table 4).

According to Table 5, the validation accuracies have increased when the complexity of 
the model decreases. Therefore, it can be assumed that model complexity is not always the 
solution for better accuracy. At the same time [27] it can be elaborated that CNN models 
with fewer parameters have several advantages such as require less communication across 
servers during distributed training and more feasible to deploy on FPGAs and other hard-
ware with limited memory.

When results depicted in Table 5 compared with Tables 6 and 7, it clearly emphasizes 
that deep learning models which were trained using the transfer learning approach have 
able to provide more promising results than the deep learning models which were trained 
without using pre-trained weights on augmented balanced tiger beetle images set. Since the 
models which were trained using transfer learning approach have already trained on some 
features using a larger dataset (ImageNet), the baseline performances of the deep learn-
ing architectures have improved. Further computation time taken to train the above models 
(Table 6, Table 7) has also become low due to knowledge transfer. However, transfer learn-
ing models classified using softmax classifier have provided slightly better validation accu-
racies than transfer learning models which were classified using SVM classifier.

Results depicted in Table  8 corroborates that although the Faster-RCNN model is 
an object detection network, which is also composed of a feature extraction network (a 
pre-trained CNN), the complex architecture is unable to provide better accuracy for the 
present real-world tiger beetle dataset. The main reason for Faster-RCNN models to per-
form inferiorly on top of the current scenario is mainly due to the data limitation. Due 
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Table 4  Test accuracies of Convolutional Neural Network models

Deep learning model Val top 1 accuracy Val top 2 accuracy Val top 3 accuracy

AlexNet 34.28% 39.68% 57.46%
CNN with 4 convolutional layers 

and 2 fully connected layers
42.1% 50.25% 61.28%

SqueezeNet 63.81% 69.21% 79.68%

Table 5  Model complexity with validation accuracies of different Convolutional Neural Network models

Deep learning model Number of trainable 
parameters

Computational time Val top 1 accuracy

AlexNet 28,067,625 1 h 32 min 34.28%
CNN with 4 convolutional layers 

and 2 fully connected layers
889,673 1 h 24 min 42.1%

SqueezeNet 543,387 1 h 05 min 63.81%

Table 6  Test accuracies of pre-trained CNN + SVM models

Pre-trained CNN + SVM Total number 
of parameters

Number of train-
able parameters

Computational time Val top 1 accuracy

VGG19 20,029,001 20,029,001 45 min 25 s 19.048%
InceptionV3 21,821,225 21,602,169 51 min 11 s 50.89%
AlexNet 16,008,457 9,449,481 38 min 20s 55.24%
DenseNet121 7,046,729 6,858,505 50 min 53 s 59.36%
SqueezeNet 727,113 727,113 49 min 02 s 60.20%
ResNet50 23,606,153 23,451,209 41 min 42 s 61.93%
Inception-ResNet v2 54,350,569 54,290,025 45 min 54 s 69.45%
VGG16 14,719,305 4617 47 min 01 s 69.52%

Table 7  Model complexity with validation accuracies of different transfer learning models using Softmax 
classifier

Deep learning model Number of trainable 
parameters

Computational time Val top 1 accuracy

VGG19 20,029,001 50 min 06 s 23.08%
InceptionV3 889,673 52 min 48 s 42.83%
DenseNet121 6,858,505 45 min 51 s 64.44%
SqueezeNet 727,113 50 min 34 s 64.44%
Inception-ResNet v2 54,290,025 49 min 43 s 69.03%
ResNet50 23,451,209 34 min 11 s 69.52%
AlexNet 16,002,633 41 min 48 s 71.75%
VGG16 4617 48 min 11 s 75.87%
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to limited data in the training set the models have been unable to identify exact feature 
vectors to locate the object precisely from the background area.

However, the highest test accuracy for the target tiger beetle dataset was gained from 
the transfer learning VGG16 model which was 75.87% (Table 7). In this model as an 
additional modification all layers above fully connected layers were not trained (freeze) 
and only the fully connected layers were considered as trainable parameters. When 
using weights of a pre-trained model on top of the current model, the complexity of 
the CNN model has not become a significant factor for the improvement of validation 
accuracies (Table 7). From the above approach, even the models with the least number 
of trainable parameters have gained the optimum accuracy for the highly diverse lim-
ited image tiger beetle dataset. The results depict that better accuracies for vision-based 
datasets with limited data can be gained from machine learning models with fewer train-
able parameters.

Validation accuracies gained for the tiger beetle image dataset from classification 
algorithms were significantly low. Although the image quantities were increased using 
image augmentation, there were no significant differences among validation accuracies 
before and after image augmentation. However, the accuracy gained from texture-based 
feature extraction was slightly higher than the colour and shape-based feature extrac-
tion method. Further, when considering the results gained from different deep learning 
models it clarifies that complex deep learning architectures such as Faster-RCNN which 
is also recognized as state-of-the-art deep learning-based object detection and classi-
fication method, have provided lower validation accuracy with high computation cost 
for the target dataset (Table 8). Therefore, when contemplated about computation cost 
along with validation accuracies it depicts that advanced architectures such as Faster-
RCNN models are incapable of providing promising results for a limited image dataset 
which have images of high background noise with diverse resolution. However, higher 
validation accuracies have been gained from transfer learning approaches using softmax 
classifier. This is mainly because the pre-trained models have trained over ImageNet 
dataset which contains images of tiger beetles as a single collection under the beetle 
hierarchy. Hence the models have learned some features from the larger dataset previ-
ously which has aided to identify features in the new dataset. Therefore, the baseline 
performance of the model also improves due to knowledge transfer. At the same time, 
due to transferring of knowledge from a larger data source (ImageNet) and also due 
to reduction of trainable parameters, the computation costs spent to train target dataset 
using deep learning CNN models with transfer learning approach has become low when 
compared to computation costs spent to train target dataset using other deep learning 
models [12]. For the current study highest accuracy was gained from VGG16 transfer 
learning model. However, due to reasons like inter-class similarity and availability of 
limited data, machine learning models have gained validation accuracies below 80%, 
which has plenty of room for further improvement. The above experiments were con-
ducted to provide a benchmark and the above validation accuracies depict the diversity 
of the tiger beetle image dataset.

Table 8  Test accuracies of 
Faster-RCNN models

Base model Computation time Validation accuracy

VGG16 34 h 24 min 42.5%
Resnet50 36 h 04 min 34.58%
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5  Conclusion

The present article reveals a highly precise and diverse dataset created for tiger beetles 
(Coleoptera, Cicindelinae) of Sri Lanka which contains images of beetles of nine genera 
of two tribes. Images were tested on different classification algorithms based on different 
feature extraction techniques (texture, colour, shape), and deep learning models with and 
without using pre-trained weights. Further, an augmented and balanced dataset was evalu-
ated by extracting features from pre-trained CNN models and classifying them using SVM 
classifier. Additionally, target image dataset was also evaluated on Faster-RCNN, a state-
of-the-art deep learning approach with more complex architecture. The study produced a 
dataset that was highly specific and challenging for renowned machine learning models 
and beneficial for automated zoological studies since this is a real-time dataset, consisting 
of features like high unevenness of data, a limited number of data with huge background 
noise and having lots of inter-class similarities in images. As benchmark results from the 
above models, optimum test accuracy was obtained from transfer learning models where 
the VGG16 transfer learning model gave the highest test accuracy of 75.87%. Attempt-
ing to improve accuracies for these types of datasets will assist to overcome limitations 
in image processing techniques and expand machine learning knowledge. Further, these 
attempts will be beneficial in expanding biodiversity monitoring systems on a global scale.

Acknowledgements We would like to acknowledge Dr. Agasthya Thotagamuwa of Charles Sturt Univer-
sity, Australia for providing set of Tiger Beetle images required for the study. This work was funded by the 
National Science Foundation of Sri Lanka [Grant number RG/2017/EB/01].

Data availability Tiger beetle dataset which used for the evaluation can access through following URL 
https:// github. com/ lakmi nia/ Tiger- beetle- image- datas et.

Code availability Sample machine learning models can access through following URL https:// github. com/ 
lakmi nia/ Tiger- beetle- image- datas et.

Declarations 

Conflict of interest The authors declare no conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

 1. Abeywardhana DL, Dangalle CD, Mallawarachchi YW (2019) Automated identification of Coleop-
tera, Cicindelinae in Sri Lanka by machine learning. In: Asia-Pacific conference 2019 Association for 
Tropical Biology and ConservationAt: Sri Lanka. Pp 78–79

 2. Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2020) Ant lion optimizer: a compre-
hensive survey of its variants and applications. Archives of Computational Methods in Engineering. 
https:// doi. org/ 10. 1007/ s11831- 020- 09420-6

 3. Acciavatti RE, Pearson DL (1989) The tiger beetle genus Cicindela (Coleoptera, Insecta) from the 
Indian subcontinent. Annals of the Carnegie Museum 58:77–353

3248 Multimedia Tools and Applications (2022) 81:3223–3251

https://github.com/lakminia/Tiger-beetle-image-dataset
https://github.com/lakminia/Tiger-beetle-image-dataset
https://github.com/lakminia/Tiger-beetle-image-dataset
https://doi.org/10.1007/s11831-020-09420-6


1 3

 4. Ali H, Lali MI, Nawaz MZ, Sharif M, Saleem BA (2017) Symptom based automated detection of 
citrus diseases using color histogram and textural descriptors. Comput Electron Agric 138:92–104. 
https:// doi. org/ 10. 1016/j. compag. 2017. 04. 008

 5. Alvarez AJ, Hernandez-Delgado EA, Toranzos GA (1993) Advantages and disadvantages of tradi-
tional and molecular techniques applied to the detection of pathogens in waters. Water Sci Technol 
27:253–256. https:// doi. org/ 10. 2166/ wst. 1993. 0354

 6. Bouvrie J (2006) Notes on convolutional neural networks. https:// doi. org/ 10. 1016/j. protcy. 2014. 09. 007
 7. Caramazza P, Boccolini A, Buschek D, Hullin M, Higham CF, Henderson R, Murray-Smith R, Faccio 

D (2018) Neural network identification of people hidden from view with a single-pixel, single-photon 
detector. Sci Rep. https:// doi. org/ 10. 1038/ s41598- 018- 30390-0

 8. Cheng B, Wei Y, Shi H, Feris R, Xiong J, Huang T (2018) Revisiting RCNN: on awakening the classi-
fication power of faster RCNN. In: lecture notes in computer science (including subseries lecture notes 
in artificial intelligence and lecture notes in bioinformatics)

 9. Bloice DM, Stocker C, Holzinger A (2017) Augmentor: An Image Augmentation Library for Machine 
Learning. The Journal of Open Source Software. https:// doi. org/ 10. 21105/ joss. 00432

 10. Dangalle CD (2018) The forgotten tigers: the arboreal tiger beetles of Sri Lanka. Journal of the 
National Science Foundation of Sri Lanka 46:241–252. https:// doi. org/ 10. 4038/ jnsfsr. v46i3. 8477

 11. Dangalle CD, Dangalle NK, Pallewatta N (2017) Historical and Curent records on the Tiger 
Beetle,Calomera angulata, Fabricius of Sri Lanka. Journal of Biology and Nature 7:91–99

 12. Deng J, Dong W, Socher R, Li L-J, Kai Li, Li Fei-Fei (2010) ImageNet: A large-scale hierarchical 
image database

 13. Englert B, Lam S (2011) The Caltech-UCSD Birds-200-2011 dataset. https:// doi. org/ 10. 3182/ 20090 
902-3- US- 2007. 0059

 14. Evgeniou T, Pontil M (2001) Support vector machines: Theory and applications. Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) 2049 LNAI:249–257. https:// doi. org/ 10. 1007/3- 540- 44673-7_ 12

 15. Fowler WW (1912) The Fauna of British India including Ceylon and Burma. Coleoptera. General 
Introduction and Cicindelidae and Paussidae. Taylor & Francis

 16. Gebejes A, Master EM, Samples A (2013) Texture characterization based on Grey-level co-occurrence 
matrix. In: Conference of Informatics and Management Sciences

 17. Gevers T, Smeulders AWM (1999) Color-based object recognition. Pattern Recogn 32:453–464. 
https:// doi. org/ 10. 1016/ S0031- 3203(98) 00036-3

 18. Google Colab (2020) Welcome to Colaboratory - Colaboratory. In: Getting Started - Introduction. 
https:// colab. resea rch. google. com/ noteb ooks/ intro. ipynb

 19. Grm K, Struc V, Artiges A, Caron M, Ekenel HK (2018) Strengths and weaknesses of deep learning 
models for face recognition against image degradations. IET Biometrics 7:81–89. https:// doi. org/ 10. 
1049/ iet- bmt. 2017. 0083

 20. Gutierrez A, Ansuategi A, Susperregi L, Tubío C, Rankić I, Lenža L (2019) A benchmarking of learn-
ing strategies for Pest detection and identification on tomato plants for autonomous scouting robots 
using internal databases. Journal of Sensors. https:// doi. org/ 10. 1155/ 2019/ 52194 71

 21. Hamsher SE, LeGresley MM, Martin JL, Saunders GW (2013) A comparison of morphological and 
molecular-based surveys to estimate the species richness of Chaetoceros and Thalassiosira (Bacillari-
ophyta), in the bay of Fundy. PLoS One 8:e73521. https:// doi. org/ 10. 1371/ journ al. pone. 00735 21

 22. Hansen OLP, Svenning JC, Olsen K, Dupont S, Garner BH, Iosifidis A, Price BW, Høye TT (2020) 
Species-level image classification with convolutional neural network enables insect identification from 
habitus images. Ecology and Evolution 10:737–747. https:// doi. org/ 10. 1002/ ece3. 5921

 23. Haralick RM, Dinstein I, Shanmugam K (1973) Textural features for image classification. IEEE Trans-
actions on Systems, Man and Cybernetics 6:610–621. https:// doi. org/ 10. 1109/ TSMC. 1973. 43093 14

 24. Horn G Van, Aodha O Mac, Song Y, Cui Y, Sun C, Shepard A, Adam H, Perona P, Belongie S (2018) 
The iNaturalist species classification and detection dataset. In: Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition. pp. 8769–8778

 25. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Transactions on Information 
Theory 8:179–187. https:// doi. org/ 10. 1109/ TIT. 1962. 10576 92

 26. Huh M, Agrawal P, Efros AA (2016) What makes ImageNet good for transfer learning? arXiv preprint 
arXiv:1608.0861

 27. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: 
AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint 
arXiv:160207360. https:// doi. org/ 10. 1007/ 978-3- 319- 24553-9

 28. Jangblad M (2018) Object detection in infrared images using deep convolutional neural networks. 
Uppasala University,Sweden

3249Multimedia Tools and Applications (2022) 81:3223–3251

https://doi.org/10.1016/j.compag.2017.04.008
https://doi.org/10.2166/wst.1993.0354
https://doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1038/s41598-018-30390-0
https://doi.org/10.21105/joss.00432
https://doi.org/10.4038/jnsfsr.v46i3.8477
https://doi.org/10.3182/20090902-3-US-2007.0059
https://doi.org/10.3182/20090902-3-US-2007.0059
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1016/S0031-3203(98)00036-3
https://colab.research.google.com/notebooks/intro.ipynb
https://doi.org/10.1049/iet-bmt.2017.0083
https://doi.org/10.1049/iet-bmt.2017.0083
https://doi.org/10.1155/2019/5219471
https://doi.org/10.1371/journal.pone.0073521
https://doi.org/10.1002/ece3.5921
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TIT.1962.1057692
https://doi.org/10.1007/978-3-319-24553-9


1 3

 29. Kamilaris A, Prenafeta-Boldú FX (2018) A review of the use of convolutional neural networks in 
agriculture. J Agric Sci 156:312–322. https:// doi. org/ 10. 1017/ S0021 85961 80004 36

 30. Khosla A, Jayadevaprakash N, Yao B, Li F-F (2011) Novel dataset for fine-grained image categori-
zation: Stanford dogs. In: Proceedings of the IEEE International Conference on Computer Vision

 31. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neu-
ral networks. In: Advances in Neural Information Processing Systems. pp. 1097–1105

 32. Larios N, Deng H, Zhang W, Sarpola M, Yuen J, Paasch R, Moldenke A, Lytle DA, Correa SR, 
Mortensen EN, Shapiro LG, Dietterich TG (2008) Automated insect identification through concat-
enated histograms of local appearance features: feature vector generation and region detection for 
deformable objects. Mach Vis Appl 19:105–123. https:// doi. org/ 10. 1007/ s00138- 007- 0086-y

 33. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https:// doi. org/ 10. 1038/ 
natur e14539

 34. Lokanath M, Kumar KS, Keerthi ES (2017) Accurate object classification and detection by faster-
RCNN. In: IOP conference series: materials science and engineering

 35. MacLeod N (2007) Automated taxon identification in systematics: theory, approaches and applica-
tions. Crc Press

 36. Mao W, Wang FY (2012) New advances in intelligence and security informatics. Zhejiang Univer-
sity Press, Oxford

 37. Marques ACR, Raimundo MM, Cavalheiro EMB, Salles LFP, Lyra C, Von Zuben FJ (2018) Ant 
genera identification using an ensemble of convolutional neural networks. PLoS One 13:e0192011. 
https:// doi. org/ 10. 1371/ journ al. pone. 01920 11

 38. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth 
and in the ocean? PLoS Biol 9:e1001127. https:// doi. org/ 10. 1371/ journ al. pbio. 10011 27

 39. Naviaux R (1991) Les Cicindèles de Thaïlande, étude faunistique (Coleoptera Cicindelidae). Publi-
cations de la Société Linnéenne de Lyon 60:209–287. https:// doi. org/ 10. 3406/ linly. 1991. 10944

 40. Olivas ES, Guerrero JDM, Martinez-Sober M, Magdalena-Benedito J, Lopez AJS (2009) Hand-
book of research on machine learning applications and trends. IGI Global

 41. Pang HW, Yang P, Chen X, Wang Y, Liu CL (2019) Insect recognition under natural scenes using 
R-FCN with anchor boxes estimation. In: lecture notes in computer science (including subseries 
lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 689–701

 42. Pass G, Zabih R (1999) Comparing images using joint histograms. Multimedia Systems 7:234–240. 
https:// doi. org/ 10. 1007/ s0053 00050 125

 43. Pearson DL (1988) Biology of tiger beetles. Annu Rev Entomol 33:123–147. https:// doi. org/ 10. 
1146/ annur ev. ento. 33.1. 123

 44. Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep 
learning. Convolutional Neural Networks Vis Recognit 11

 45. Rahmat T, Ismail A, Aliman S (2019) Chest X-ray image classification using faster R-Cnn. Malay-
sian Journal of Computing 4:225–236

 46. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep 
convolutional neural networks for computer-aided detection: CNN architectures, Dataset Character-
istics and Transfer Learning IEEE Transactions on Medical Imaging https:// doi. org/ 10. 1109/ TMI. 
2016. 25281 62

 47. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. Jour-
nal of Big Data 6:60. https:// doi. org/ 10. 1186/ s40537- 019- 0197-0

 48. Shu M (2019) Deep learning for image classification on very small datasets using transfer learning. 
Iowa State University, Ames, Iowa

 49. Sun J, Cai X, Sun F, Zhang J (2016) Scene image classification method based on Alex-net model. 
In: 2016 3rd international conference on informative and cybernetics for computational social sys-
tems. ICCSS 2016:363–367

 50. Suthaharan S (2016) Machine learning models and algorithms for big data classification. Springer
 51. Takefuji Y, Shoji K Effectiveness of ensemble machine learning over the conventional multivari-

able linear regression models
 52. Thotagamuwa A (2018) Using insects as indicators of environmental health: Applications with 

tiger beetles (Coleoptera, Cicindelidae) of Sri Lanka. Ph.D. Thesis, University of Colombo,Sri 
Lanka

 53. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999. 
https:// doi. org/ 10. 1109/ 72. 788640

 54. Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P (2013) Machine learning approaches: 
from theory to application in schizophrenia. Computational and Mathematical Methods in Medicine

3250 Multimedia Tools and Applications (2022) 81:3223–3251

https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1007/s00138-007-0086-y
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1371/journal.pone.0192011
https://doi.org/10.1371/journal.pbio.1001127
https://doi.org/10.3406/linly.1991.10944
https://doi.org/10.1007/s005300050125
https://doi.org/10.1146/annurev.ento.33.1.123
https://doi.org/10.1146/annurev.ento.33.1.123
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/72.788640


1 3

 55. Wang M, Wang L, Ye Z, Yang J (2019) Ant lion optimizer for texture classification: a moving convolu-
tional mask. IEEE Access 7:61697–61705. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29155 53

 56. Wu X, Zhan C, Lai YK, Cheng MM, Yang J (2019) IP102: a large-scale benchmark dataset for insect 
pest recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition. pp. 8787–8796

 57. Yuan Z-W, Zhang J (2016) Feature extraction and image retrieval based on AlexNet. In: Eighth Inter-
national Conference on Digital Image Processing (ICDIP 2016). Chengdu, China

 58. Zhu LQ, Ma MY, Zhang Z, Zhang PY, Wu W, Wang DD, Zhang DX, Wang X, Wang HY (2017) 
Hybrid deep learning for automated lepidopteran insect image classification. Orient Insects 51:79–91. 
https:// doi. org/ 10. 1080/ 00305 316. 2016. 12528 05

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

3251Multimedia Tools and Applications (2022) 81:3223–3251

https://doi.org/10.1109/ACCESS.2019.2915553
https://doi.org/10.1080/00305316.2016.1252805

	An ultra-specific image dataset for automated insect identification
	Abstract
	1 Introduction
	1.1 Research contribution

	2 The Tiger beetle dataset1
	2.1 Tiger beetle genera used in the dataset
	2.1.1 Tribe Cicindelini
	2.1.2 Tribe Collyridini

	2.2 Image collection
	2.3 Features of the images
	2.3.1 Image sources
	2.3.2 Image background
	2.3.3 Image diversity based on colour saturation
	2.3.4 Image diversity based on image size


	3 Classification algorithms
	3.1 Classical machine learning classifiers
	3.2 Deep learning techniques

	4 Results and discussion
	4.1 Experimental setup
	4.2 Test results and discussion

	5 Conclusion
	Acknowledgements 
	References


