
Annual Technical Conference 2016 - IET- Sri Lanka Network

1

Androsafe: Online malware analysis with static and

dynamic methods
Krishnadeva Kesavan, Chethana Liyanapathirana , S.A.W.S Sampath , Y.M. Sureni

Koshila,Chamod Premarathne ,Sahan Wanigarathna, Chamira Priyamanthi Nawarathna,

Prabhath Lakmal Rupasinghe

ABSTRACT

With an estimated market share of 70% to 80%,

Android as becoming the most popular operating

system for smartphone and tablet. Cyber

criminals naturally expanded their various

activities towards Google’s mobile platform.An

additional incentive for mobile malware authors

to target Android instead of another mobile

platform is Android open design that allows

users to install the application from a variety of

sources. "Androsafe" is an online malware

analysis tool which can analyze malware in an

isolated environment without any damaging to

the mobile device by using both existing and new

anomaly based and behavioral analysis. Through

this combination, we can analyze a large number

of malware families because some malware

families may only perform signature base or

behavioral. Then the sandboxes based on

signature will not have analysis malware families

that only perform a behavior and the sandboxes

based on behavior will not analysis signature-

based malware families.“Androsafe” sandbox

will be hosted in the Honeynet Project’s cloud.

Dynamic Analysis will be queued and run in the

background, and an email which contains

malware analyzing report will be sent to the user

when the analysis is over. This method is very

efficient more than offline kernel and app base

sandbox.

1. INTRODUCTION

In the past couple of years, mobile devices have

become sophisticated computing environments with

increased computing power and network

connectivity.

Android is a modern mobile platform that was

designed to be open. Android applications make use

of advanced hardware and software, as well as local

and served data, exposed through the platform to

bring innovation and value to consumers. To protect

that value, the platform must offer an application

environment that guarantees the security of users,

data, applications, the device, and the network.

This open design easily allows attackers to perform

attacks, such as social engineering attacks to

mislead device users to install malware and attack

third-party applications on Android. So we need to

secure Android mobile device from this kind of

common attacks. Securing an open platform

requires strong security architecture.

When Android users download android applications

from App stores to the mobile device, the user

cannot test whether the application is secure or not.

There can be hidden malicious codes inside the

applications. To avoid such situations, we can test

downloaded applications using sandboxing

technology. Those sandboxes check applications for

malware in offline mode. There’s a risk behind that

because offline checking can be harm to the mobile

device. Attached malicious codes can breach the

boundaries of the sandbox while analyzing the

downloaded applications for malware.

 There are two kinds of malware analyzing

methods. One is a static method, and the other one

is a dynamic method. Sandboxes currently available

are based on either static or dynamic method. Then

the analyzing scope will be less or limited. To

overcome this limitation, we use both static and

dynamic techniques to analyze malware.

We allow users to analyze downloaded applications

by using the online tool “Androsafe.” This reduces

large impact over mobile devices by redirecting to

an isolated environment apart from the mobile

device to test downloaded applications, and there

won’t be any harm to the mobile device.

2. RESEARCH OBJECTIVE

The outcome of the research is an online Android

sandbox “Androsafe” which is used to test

suspicious programs that may contain a virus or

other malicious code, without allowing the

application to harm the mobile device.

We develop “Androsafe” to detect malware inside

the downloaded applications. This online android

Annual Technical Conference 2016 - IET- Sri Lanka Network

2

application sand box is capable of analyzing

malware based on both static and dynamic methods.

Among static and dynamic malware analyzing

tools, we decide to select Androguard as a static

analyzing tool and Droidbox as a dynamic

analyzing tool. Then we develop an Androguard

algorithm inside the Droidbox algorithm in order to

produce a combined module.

We first analyze the Androguard algorithm and find

the malware analyzing techniques. The existing

Androguard is able to detect only less number of

malware families, and most of the time Androguard

cannot detect the entire malware family. To address

that problem we will develop the existing algorithm

to detect those unknown malware families. Then the

“Androsafe” algorithm is developed by inheriting

the features from the “Droidbox” to the above-

mentioned modified “Androguard” algorithm.

Droidbox will do dynamic analysis, and this will

check for the behavior of malware. Droidbox is a

tool to analyze Android apps. However, it lacks

support to track native API calls. In fact, the current

dynamic analysis methods running out of a method

to track the native API calls during dynamic

analysis. So we introduce the native API calls

tracking mechanism to the current Droidbox

algorithm.

We provide an isolated workspace in “Androsafe”

to test any APK as an example chatting

applications, gaming applications, etc. based on

Android platform.

3. METHODOLOGY

Androguard is a python tool which is using static

analysis method to detect malware in Android

devices. Currently, Androguard detects several

malware families such as Obad, Geinimi,

DroidKungFu, Bracebridge. However, Androguard

is lagging behind in detecting all the malware

families such as FakeInstaller, etc. Our target is to

enhance the current androguard algorithm to

identify all malware families.

Androguard works with:

 Dex/Odex Dalvik virtual machine, .dex

disassemble DE compilation.

 APK Android application.

 Android is binary XML.

 Android Resources.

Androguard has the following features:

It Maps and manipulates DEX/APK format into full

Python objects.

 Disassemble/Decompilation/Modification

of DEX/APK format.

 Decompilation with the first native directly

from Dalvik byte codes to Java source

codes Dalvik decompiler.

 Access to the static analysis of the code

basic blocks, instructions, permissions and

create analysis tool.

 Analyze a bunch of Android apps.

 Diffing of Android applications.

 Check if an Android application is there in

a database.

 Open source database of Android Malware

 Reverse engineering of applications

 Transform Android's binary XML like

AndroidManifest.xml into classic XML.

Basically, in Androguard, reverse engineering

process is following the below steps.

1. Analyzing the Android-Manifest for permissions

and activities

2. Unpacking of the Android application (apk file)

to get all files and especially the classes.dex

3. Translating the Dalvik-Bytecode to Java-

Bytecode

4. Analyzing the generated code

However, the problem is when Androguard gets the

APK and try to unzip the APK, some malware

generates anti-debugging tricks to crash

Androguard. To overcome this problem we try to

develop an algorithm to detect this kind of malware

with anti-debugging tricks.

DroidBox consists of two parts, which can be

referred to as the Host and the Target. The Target

part launched on the emulator that is based on

Android to monitor the data in low level.

The Host part is a set of Python scripts that connect

with the emulator and receives all possible

information from the Target regarding the

application being analyzed and displays it in text or

graphic format. DroidBox will output its results as a

JSON file.

Annual Technical Conference 2016 - IET- Sri Lanka Network

3

Figure 1: DroidBox Architecture

Dynamic analysis can monitor an APK's behavior

utilizing following techniques in Droidbox.

 Taint tracking: Taint tracking tools are used in

the dynamic analysis to detect potential misuse

of users’ private information.

 Virtual machine introspection (VMI): This

intercepts events that occur within the emulated

environment. Dalvik VMI-based systems

monitor the execution of Android APIs through

modifications in the Dalvik VM. Qemu VMI-

based systems are implemented on the emulator

level to enable the analysis of native code.

 System calls monitoring: Frameworks can

collect an overview of executed system calls,

by using, for instance, VMI, “strace” or a

kernel module. This enables the tracing of

native code.

 Method tracing: Frameworks can trace Java

method invocations of an Apk in the Dalvik

VM. It looks for malware family samples

which are not detected by existing Droidbox.

According to the research done based on detecting

Android Malware on Network Level in 2011, they

found out several malware that are detected and not

detected.

Not Detected Malware:

 Flexispy – Trojan horse family

 lovetrap - Trojan horse family

 kungfu – DroidKungFu family

 droiddeluxe – Droiddeluxe family

 basebridge – Basebridge malware family

 ggtracker - ggtracker family

 netisend and droiddream.

 Spygold and zone executed,

Table I – Detected Malware

Name Identifying information

Crusewind crusewind.net, HTTP-

text, IMEI

walka incorporateapps.com,

Tonclank searchwebmobile.com,

http-json IMEI

Bgserv www.youlubg.com,

IMEI, phone number

Smspacem biofaction.no-ip.biz,

HTTP-soap phone

number

Lovetrap cooshare.com, http-text

positionrecorder.asmx,

IMSI

(DL/installer) api.go108.cn, http-xml

no-store no-cache, love

more and more

4. RESULT AND DISCUSSION

We are planned to get two sets of malware samples

from different malware families for dynamic and

static analysis separately. Then we analyze one

sample using Androguard, and another sample will

analyze using Droidbox. So far we have identified

several malware samples from different malware

families were not detected by Droidbox. We have

considered malware samples from Trojan horse

family, DroidKungFu family, Droiddeluxe family,

Basebridge malware family, ggtracker family,

netisend, and droiddream. Now we are planning to

move this samples to check whether Androguard

analyze them or not.

We use malware free Android applications from the

third party app store called “China App store” to

analyzing purpose. As well as we will maintain a

malware signature database for static analysis. New

Signature findings will send and store in the

signature database. We use “Santoku 0.5” virtual

machine in Linux Operating system.

We develop “Androsafe” over Linux platform and

nowadays we are developing “Androsafe” web

application which is used to submit the unverified

APK file by users. At the same time, we are

identifying useful and essential features that we can

add from Androguard to Droidbox and redirect

them to advance online malware analysis tool called

“Androsafe.”

Annual Technical Conference 2016 - IET- Sri Lanka Network

4

“Androsafe” generates a report including personal

or sensitive device information, Security

appropriate actions, and logs regarding the access to

hardware modules or sensors and communication

information. We analyze, does the app try to access

to the local address book, local calendar, stored

pictures, configured accounts, local SMS or MMS

messages, device identifiers and SIM card

identifiers as personal or sensitive information.

As well as check security relevant actions like does

the app use Crypto, load external libraries, try to

modify device settings or try to install additional

apps. We evaluate hardware modules or sensors

deeply whether the app tries to use the camera,

microphone, try to locate the device using the GPS

sensor or network triangulation and does the app

communicate with the Internet or the cloud services,

Does the app try to send SMS messages, try to start

a phone call, or try to open local ports.

5. CONCLUSION

Android is a free and open platform. This is also an

advantage for developers as well as users. However,

this will redirect many more security causes. This

openness is a blessing as well as a curse for Android

users. Anyone can put their Android applications in

Android Marketplace. We cannot trust these

applications are actually from developers or is there

any hidden malicious code behind these third-party

applications before install to our mobile devices.

Most existing malware analyzing mechanisms are

Kernel-based. In these mechanisms, the

downloaded applications are checked for malware

inside the mobile device, and it is very dangerous

because sometimes infected malware can be

activated inside the mobile device while analyzing

and it can corrupt the entire system.

In our research, we develop an online Android

application sandbox “Androsafe” by combining

enhanced Androguard and Droidbox inside

Droidbox to detect a significant amount of malware

within an isolated environment hosted on a server.

It is used to test unverified programs (APK) that

may contain a virus or other malicious code,

without allowing the application to damage the

mobile device. Finally “Androsafe” generates an

analyzing report including a summary of finding

malware inside the downloaded APK. “Androsafe”

is user-friendly, convenient, freely available online

malware analyzing tool that anyone can access

without any fear instead install downloaded

Android applications blindly to your mobile device.

6. FUTURE WORK

This research is mainly focused on Android

platform, but in the near future, it can be deployed

for other mobile platforms. Currently, we are

developing “Androsafe” web application, after that

in the second step; we are supposed to develop an

Android application. Our web application is

developed in a way that any audience can use it

with minimal effort. Also, we hope to develop this

kind of features inside the “Androsafe” mobile

application as well. We are aware of Malware and

will develop “Androsafe” to identify the malware

within the application. We are providing a user-

friendly environment to the users in order to report

any issues regarding the application like problems

regarding malware. We are going to maintain a

separate blacklist and whitelist. After we test the

reported applications of users, we are going to

group the applications separately. Applications with

malware and bugs are labelled as blacklist

applications, and the applications without any

unauthorized modifications are labelled as whitelist

applications. Users can download the application

from our whitelist in the future. This will reduce the

risk of downloading infected malware applications.

7. REFERENCES

[1] J. Bergeron, M. Debbabi, J. Desharnais, M. M.

Erhioui, Y. Lavoie, and N. Tawbi. Static

detection of malicious code in executable

programs. In Proceedings of the Symposium

on Requirements Engineering for Information

Security (SREIS’01), 2001.

[2] A. Moser, C. Kruegel, and E. Kirda. Limits of

static analysis for malware detection. In

Proceedings of the 23rd Annual Computer

Security Application Conference (ACSAC),

pages 421–430, 2007.

[9] C. Willems, T. Holz, and F. Freiling. Toward

automated dynamic malware analysis using

cwsandbox. IEEE Security and Privacy, 5(2[3]

P. Szor. Virus Research and Defense.

Addison-Wesley, 2005.

[4] A.-D. Schmidt, J. H. Clausen, S. A. Camtepe,

and S. Albayrak. Detecting Symbian os

malware through a static function call

analysis. In Proceedings of the 4th IEEE

International Conference on Malicious and

Unwanted Software (Malware 2009), pages

15–22. IEEE, 2009.

Annual Technical Conference 2016 - IET- Sri Lanka Network

5

[5] Thomas Bl¨asing, Leonid Batyuk, Aubrey-

Derrick Schmidt, Seyit Ahmet Camtepe, and

Sahin Albayrak “An Android Application

Sandbox System for Suspicious Software

Detection”, in Technische Universit¨at Berlin

2010

[6] A. Desnos and G. Gueguen, “Android: From

Reversing to Decompilation,” in Black Hat

Abu Dhabi, Dec. 2011.

[7] S. Forrest, S. Hofmeyr, and A. Somayaji. The

evolution of system-call monitoring. In

ACSAC ’08: Proceedings of the 2008 Annual

Computer Security Applications Conference,

pages 418–430. IEEE Computer Society,

2008.

[8] M. A. Bishop. The Art and Science of

Computer Security. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA,

USA, 2002.

[10] A. Dewald, T. Holz, and F. Freiling.

Moreover, sandbox: Sandboxing javascript to

fight malicious websites. In Symposium on

Applied Computing (SAC) 2010, Sierre,

Switzerland, March 2010.

[11] T. Raffetseder, C. Kruegel, and E. Kirda.

Detecting system emulators.

[12] M. Becher, F. Freiling, and B. Leider. On the

effort to create smartphone worms in windows

mobile. In Information Assurance and

Security Workshop, 2007. IAW ’07. IEEE

SMC, pages 199–206, 20-22 June 2007.

[13] Bundesamtf¨urSicherheitin

derInformationstechnik. Mobile endger¨ateund

mobile application:

Sicherheitsgef¨ahrdungenund

schutzmassnahmen, 2006.

[14] W. Enck, M. Ongtang, and P. McDaniel.

Understanding Android Security. IEEE

Security and Privacy, 7(1):50–57, 2009.

[15] S. Forrest, S. Hofmeyr, and A. Somayaji. The

evolution of system-call monitoring. In

ACSAC ’08: Proceedings of the 2008 Annual

Computer Security Applications Conference,

pages418–430. IEEE Computer Society, 2008.

[16] A. Rubini. Kernel system calls.

http://www.ar.linux.it/docs/ksys/ksys.html.

[Online; accessed 01-March-2010].

[17] GSM Association. IMEI allocation and

approval guidelines, 2010. Available online at

HTTP://

www.gsmworld.com/documents/DG06_v5.pd

f; visited on December 4th, 2011.

[18] Eric Chien. Motivations of recent Android

malware. Available online at http://www.

symantec.com/content/en/us/enterprise/

media/security_response/whitepapers/

motivations_of_recent_android_malware. pdf;

visited on December 4th, 2011.

[19] Gerry Eisenhaur, Michael N. Gagnon, Tufan

Demir, and Neil Daswani. Mobile malware

madness and how to cap the mad hatters,

2011. Available online at https://media.

blackhat.com/bh-us-11/Daswani/BH_US_

11_Daswani_Mobile_Malware_Slides.pdf;

visited on December 4th, 2011

[20] Google management discusses q3 2011

results, 2011. Available online at

http://seekingalpha.com/article/ 299518-

google-management-discusses q3-2011-

results-earnings-call-transcript; visited on

December 4th, 2011

[21] B. Stone-Gross, M. Cova, L. Cavallaro, B.

Gilbert, M. Szydlowski, R. Kemmerer, C.

Kruegel, and G. Vigna. IMEI allocation and

approval guidelines, 2009. Available online at

http://www.cs.ucsb.edu/~seclab/

projects/torpig/torpig.pdf; visited on

December 4th, 2011

