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Abstract In this paper, the effect of electric boundary condi-
tions on Mode I crack propagation in ferroelectric ceramics
is studied by using both linear and nonlinear piezoelectric
fracture mechanics. In linear analysis, impermeable cracks
under open circuit and short circuit are analyzed using the
Stroh formalism and a rescaling method. It is shown that
the energy release rate in short circuit is larger than that in
open circuit. In nonlinear analysis, permeable crack condi-
tions are used and the nonlinear effect of domain switching
near a crack tip is considered using an energy-based switch-
ing criterion proposed by Hwang et al. (Acta Metal. Mater.,
1995). In open circuit, a large depolarization field induced
by domain switching makes switching much more difficult
than that in short circuit. Analysis shows that the energy
release rate in short circuit is still larger than that in open cir-
cuit, and is also larger than the linear result. Consequently,
whether using linear or nonlinear fracture analysis, a crack
is found easier to propagate in short circuit than in open cir-
cuit, which is consistent with the experimental observations
of Kounga Njiwa et al. (Eng. Fract. Mech., 2006).

Keywords Ferroelectric ceramics · Crack propagation · En-
ergy release rate · Electric boundary conditions · Domain
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1 Introduction

Ferroelectric ceramics are increasingly used in modern in-
dustries for applications such as sensors, actuators, ultra-
sonic motors, etc, due to their peculiar electromechanical
coupling properties, ultrafast response and compact size.
However, these materials have two problems which hinder
their full potential in applications: One is the nonlinearity at
large electric fields or under high stress which results in do-
main switching; and the other is high brittleness with fracture
toughness around 1 MPa

√
m. In the past decades, both lin-

ear and nonlinear fracture mechanics of ferroelectric ceram-
ics have been extensively studied by scholars [1–6]. How-
ever, there still exist large discrepancies regarding the effect
of applied electric field on fracture of piezoelectric materi-
als [7–11]. Currently, the mechanism of crack propagation
under general electromechanical loading remains an open
question [12–14].

On the other hand, with the electromechanical coupling
effect, the properties of ferroelectric ceramics are strongly
dependent on electrical boundary conditions. It is well
known that the linear elastic constant in open circuit, S D

33,
and that in short circuit, S E

33, have the following relation-
ship [15]

S D
33 = S E

33(1 − K2
33), (1)

where K33 is the longitudinal electromechanical coupling co-

efficient, K33 = d33

/√
kσ33S E

33, where d33 is the longitudinal

piezoelectric coefficient, and kσ33 the free dielectric coeffi-
cient.

The material thus seems “harder” in open circuit
than in short circuit. The nonlinear properties have a sim-
ilar tendency as reported previously by Berlincourt and
Krueger [16] and recently by Li and Fang [17]. More re-
cently, Kounga Njiwa et al. [18] reported that a crack is eas-
ier to propagate in a short-circuit, compact tension (CT) PZT
specimen than that in an open-circuit sample. According to
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our knowledge, so far there are no theoretical studies spe-
cially addressing the effect of electric boundary conditions
on the fracture of piezoelectric/ferroelectric ceramics.

In this study, we theoretically examine the effect of
electric boundary conditions on the crack propagation in a
Mode I crack under pure mechanical loading. The mecha-
nism of crack propagation under general electromechanical
loading is not addressed here, as we think that problem can
not be solved by theoretical analysis alone. In the analysis,
we use both linear and nonlinear fracture mechanics for fer-
roelectric ceramics and take the energy release rate as the
driving force for crack propagation. In linear analysis, we
use the Stroh formalism [19, 20] and a rescaling method to
calculate the field solutions and then the energy release rate
(ERR). In nonlinear analysis, domain switching near a crack
tip is taken into account and the excess released potential en-
ergy after domain switching is added to the total ERR for
crack propagation. In both cases, it is found that the ERR in
short circuit is obviously larger than that in open circuit, and
crack propagation in the former is thus easier than that in the
latter, which qualitatively agrees well with the experimental
observations by Kounga Njiwa et al. [18].

2 Linear analysis for crack propagation

In linear analysis, we use the Stroh formalism [19, 20] to an-
alyze an impermeable crack embedded in an infinite ferro-
electric ceramics with the poling directions along axis-3, as
shown in Fig. 1. In the analysis, we consider two different
electric boundary conditions: One is the short circuit case
with zero applied electric field, another is the open circuit
case with zero applied electric displacement. Both the strain
ERR and total ERR are calculated to address the crack prop-
agation in short circuit and open circuit. Since there exist
slight discrepancies in the exact expressions for the strain
ERR and total ERR [8, 9, 21, 22] of plane problems, it is
necessary to check these solutions again. As the Stroh for-
mulism has been used by other researchers previously [2, 8],
we present only the major steps of the formulation and key
results in the following sections.

Fig. 1 Infinite piezoelectric plane containing a crack under remote
tension in short circuit and open circuit

2.1 Formulation

The constitutive equations for piezoelectric materials can be
written as [23]

σi j = ci jkluk,l + eli jφ,l, Di = eikluk,l − kilφ,l, (2)

where σi j, ui, Di, and φ are stresses, mechanical displace-
ments, electric displacements, electric potential, respec-
tively; and ci jkl, ei jk, ki j are elastic constants, piezoelectric
constants, and dielectric constants, respectively.

The strain, εi j, can be expressed by derivatives of me-
chanical displacements, ui; and the electric field, Ei, by gra-
dient of the electric potential, φ, as

εi j =
1
2

(ui, j + u j,i), Ei = −φ,i. (3)

For piezoelectric plan strain problems with the poling
axis along x3, assume field variables ui and φ are functions
of x1 and x3 only, i.e.,

uk = Ak f (z), φ = A4 f (z), k = 1, 2, 3, (4)

where z = x1 + px3.
Substituting Eq. (4) into Eqs. (2), we have

ci jklAk f, jl + eli jA4 f, jl = 0,

e jklAk f, jl − k jlA4 f, jl = 0,

i, k = 1, 2, 3, j, l = 1, 3.

(5)

The above system of four homogeneous equations must
be singular in order to yield nontrivial solutions for Ak (k =
1, 2, 3) and A4, i.e.,
∣∣∣∣∣∣∣
ci1k1 + (ci1k3 + ci3k1)p + ci3k3 p2 e1i1 + (e1i3 + e3i1)p + e3i3 p2

e1k1 + (e1k3 + e3k1)p + e3k3 p2 −[k11 + (k13 + k31)p + k33 p2]

∣∣∣∣∣∣∣

= 0. (6)

For piezoelectric materials with the poling axis along
x3, using the reduced electromechanical coefficients, we
have
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 + c44 p2 0 (c13 + c44)p (e15 + e31)p

0 c66 + c44 p2 0 0

sym 0 c44 + c33 p2 e15 + e33 p2

sym 0 sym −(k11 + k33 p2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (7)

Here the symbol “sym” in Eq. (7) denotes that the ma-
trix is symmetric.

As the orders of the elastic constants, ci j (∼ 1010 −
1011 Pa), piezoelectric constants, ei j (∼ 100−101 C/m2), and
dielectric constants, ki j (∼ 10−9 − 10−8 C/(V ·m)) differ too
much, we use a rescaling method [24] as follows to yield
more accurate solutions to Eq. (7).

We rescale the units of relevant variables: force (GN);
voltage (GV); stress, electric field and electric displacement
to σ (GPa), E (GV/m), D (C/m2), respectively; and the ma-
terials constants to ci j ∼ 101–102 GPa, ei j ∼ 100–101 C/m2,
ki j ∼ 100–101 C/(GV ·m).

By solving Eq. (7), we can obtain eight eigenvalues,
p′s, forming four conjugate pairs, i.e., pα, p̄α, α = 1, 2, 3, 4.
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Then the displacements and electric potential can be ex-
pressed in terms of the eight eigenvalues as

vm =

4∑

α=1

Amα fα(zα)+
4∑

α=1

Āmα f̄α(z̄α), m = 1, 2, 3, 4, (8)

where vvv =

⎧⎪⎪⎨⎪⎪⎩
uk

φ

⎫⎪⎪⎬⎪⎪⎭, AAA =

⎧⎪⎪⎨⎪⎪⎩
Akα

A4α

⎫⎪⎪⎬⎪⎪⎭, k = 1, 2, 3, α = 1, 2, 3, 4,

zα = x1 + pαx3, z̄α = x1 + p̄αx3.

Define new stress function χ and electric displacement
function κ as

σi1 = −χi,3, σi3 = χi,1, D1 = −κ,3, D3 = κ,1. (9)

Then one can obtain the following relationships

χi =
∑

α

Liα fα(zα) +
∑

α

L̄iα f̄α(z̄α),

κ =
∑

α

Wα fα(zα) +
∑

α

W̄α f̄α(z̄α),
(10)

where

Liα = (ci3k1 + pαci3k3)Akα + (e1i3 + pαe3i3)A4α, (11)

Wα = (e3k1 + pαe3k3)Akα − (k31 + pαk33)A4α. (12)

Then

Φm =
∑

α

Mmα fα(zα)+
∑

α

M̄mα f̄α(z̄α), m = 1, 2, 3, 4, (13)

whereΦΦΦ =

⎧⎪⎪⎨⎪⎪⎩
χi

κ

⎫⎪⎪⎬⎪⎪⎭, MMM =

⎧⎪⎪⎨⎪⎪⎩
Liα

Wα

⎫⎪⎪⎬⎪⎪⎭, i = 1, 2, 3, α = 1, 2, 3, 4.

The mechanical and electric surface conditions of an
impermeable crack are

σi jn j = 0, Dini = 0. (14)

Following the derivations by Park and Sun [8], the gen-
eral displacements can be obtained as

vm =
1
2

∑

α

{AmαNαn[(z2
α − 1)1/2 − zα]

+ĀmαN̄αn[(z2
α − 1)1/2 − z̄α]}Tn, (15)

where NNN is the inverse matrix of MMM and TTT is the remote load-
ing vector, i.e.,

TTT = [σ∞13, σ
∞
23, σ

∞
33, D∞3 ]T. (16)

The near tip field solutions can be obtained as follows
when polar coordinates with their origins located at the cen-
ter of the crack space (Fig. 1) are used. Then

zα = a + r(cos θ + pα sin θ), (17)

and

σk3 =

√
a
2r

Re

{∑

α

Mkα
1

√
cos θ + pα sin θ

NαnTn

}
,

k = 1, 2, 3, (18a)

D3 =

√
a
2r

Re

{∑

α

M4α
1

√
cos θ + pα sin θ

NαnTn

}
. (18b)

In previous studies, either the total energy release rate
(ERR) [25, 26] or the mechanical strain ERR [8, 9] has been
used as a fracture criterion for piezoelectric materials, both
can be calculated by the crack closure integral [6, 7] as:

Total ERR

Gtotal
I = J

= lim
δ→0

1
δ

∫ δ

0
(σi3(x)ui(δ − x) + Di(x)ϕ(δ − x))dx. (19)

Mechanical strain ERR

GM
I = lim

δ→0

1
δ

∫ δ

0
σi3(x)ui(δ − x)dx. (20)

2.2 Results

In this paper, PZT-4 piezoelectric ceramics is used for analy-
sis and also for comparison with existing results [8, 9, 28].
The materials constants are listed in Table 1 using the
rescaled units.

Table 1 Materials constants of PZT-4 ceramics using
the rescaled units

Properties Symbol Value

cE
11/GPa 139

cE
12/GPa 77.8

Elastic stiffness constants cE
13/GPa 74.3

cE
33/GPa 113

cE
44/GPa 25.6

e31/(C ·m−2) −6.98

Piezoelectric constants e33/(C ·m−2) 13.84

e15/(C ·m−2) 13.44

Dielectric constants
kε11/(C · (GV ·m)−1) 6.00

kε33/(C · (GV ·m)−1) 5.47

Note: c66 = (c11 − c12)/2

Using the above materials constants, the eigenvalues pα
are

pα = [1.191 0i − 0.274 4 + 1.087 1i 1.093 3i 0.274 4 + 1.087 1i],

α = 1, 2, 3, 4. (21)

The matrices AAA and NNN can then be obtained as
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AAA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.572 2 0.496 6 0 −0.496 6

0 0 −0.577 5− 0.816 4i 0

0.534i 0.206 3+ 0.416 5i 0 0.206 3− 0.416 5i

−0.622 4i −0.318 1 + 0.660 5i 0 −0.318 1 − 0.660 5i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

NNN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.030 1i −0.058 1− 0.000 4i 0 −0.058 1 + 0.000 4i

0 0 0.029 2 + 0.020 6i 0

0.053 1 −0.022 9− 0.064 7i 0 0.022 9− 0.064 7i

−0.078 8 0.026 5 − 0.005 3i 0 −0.026 5 − 0.005 3i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

The total and strain energy release rate are

Gtotal
I =

πa
2

[1.74 × 10−11(σ∞33)2 + 2 × 2.22 × 10−2σ∞33D∞3

−8.74 × 107(D∞3 )2], (24)

GM
I =
πa
2

[1.74 × 10−11(σ∞33)2 + 2.22 × 10−2σ∞33D∞3 ]. (25)

From Eqs. (24) and (25), it can be seen that in open cir-
cuit without applied electric displacement loading, the total
ERR and the strain ERR are the same, which is easy to under-
stand because in open circuit with merely applied stress, no
electric energy is involved during crack propagation at all. It
should be noted that the calculated strain ERR in Eq. (25) is
the same as the result in the corrigenda by Sun and Park [22].
However, as the total ERR is not presented, a direct compar-
ison is not possible.

As to the case of an applied electric field loading in
short circuit, a remote electric field loading E∞3 is equivalent
to a remote electric displacement loading D∞3 in open circuit
as far as the field solutions and energy release rate are con-
cerned (Fig. 2).

Fig. 2 Equivalent loading cases: a under remote applied electric
field and b applied electric displacement

Therefore

D∞3 = d33σ
∞
33 + kσ33E∞3 . (26)

And equivalent strain

ε∞33(short) = sE
33σ

∞
33 + d33E∞3 , (27)

ε∞33(open) = sD
33σ

∞
33 + g33D∞3

= (sD
33 + g33d33)σ∞33 + g33kσ33E∞3 . (28)

Based on Eqs. (27) and (28), we have

sE
33 = sD

33 + g33d33, d33 = g33kσ33. (29)

Note that Eq. (29) is obtained with slight approximation
and is valid only for one-dimensional piezoelectric ceramics
with its pole along axis-3.

By substituting Eq. (26) into Eqs. (24) and (25), us-
ing the materials constants, d33 = 240 pC/N, and kσ33 =

1 × 10−8 C/(V ·m) [8, 9], we get

Gtotal
I =

πa
2

(2.31 × 10−11(σ∞33)2 + 2.5 × 10−11σ∞33E∞3

−8.74 × 10−9(E∞3 )2), (30)

GM
I =
πa
2

(2.27 × 10−11(σ∞33)2 + 2.22 × 10−10σ∞33E∞3 ). (31)

It can be seen from Eqs. (30) and (31) that in short cir-
cuit without electric field loading, the total ERR is slightly
larger than the mechanical strain ERR. This is because dur-
ing crack propagation in short circuit under remote tension,
a small amount of electric energy is dissipated to thermal en-
ergies due to the piezoelectric effect. Also, it should be noted
that the calculated strain ERR is the same as that by Sun and
Park [22] and their accurate expression of the total ERR is
not available.

By comparing Eqs. (24), (25) with Eqs. (30), (31), it can
be seen that both the total ERR and the mechanical strain
ERR in short circuit are larger than those in open circuit.
Thus, for the linear piezoelectric fracture analysis, whether
using the total ERR or strain ERR as the fracture criterion,
a crack is easier to propagate in short circuit than in open
circuit.

3 Nonlinear analysis for crack propagation

In the above linear analysis, domain switching is neglected
during crack propagation. However in a real ferroelectric
material, the singular stress or electric field near a crack tip
may cause small-scale domain switching even when the re-
mote loading is far below the coercive field [4]. In this sec-
tion, we take into account domain switching near a crack tip
using an energy based domain switching criterion [29]. Un-
der pure mechanical loading, domain switching is caused by
the applied stress and we use the permeable crack condition
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to avoid electric field concentration near a crack tip. Fur-
thermore, to simplify the calculation, we further assume that
a ferroelectric material is both elastically and dielectrically
isotropic.

The stress intense factor (SIF) for a Mode-I crack in
infinite isotropic media is

KI = σ
∞
33

√
πa. (32)

Stress near the crack tip can be expressed as
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ11

σ22

σ12

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

KI√
2πr

cos(θ/2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − sin(θ/2) sin(3θ/2)

1 + sin(θ/2) sin(3θ/2)

sin(θ/2) cos(3θ/2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (33)

Under pure mechanical loading, only 90◦ domain
switching exists and the switching criterion of Hwang et
al. [29] is

EiΔPi + σi jΔγi j � W90. (34)

In this paper, different from Hwang et al. [29], we use
W90 =

√
2P0EC to activate 90◦ and 180◦ switching simulta-

neously [30, 31].
To study the effect of domain switching on crack prop-

agation, we consider the case of a domain with an original
horizontal polarization, such as Domain 1 or Domain 2 in
Fig. 3. Even in a vertically poled (along axis 3) ceramic
as shown in Fig. 3, a considerable amount of such domains
may still exist as a result of incomplete 90◦ domain switch-
ing [16, 31]. Let the volume fraction of the horizontal (or
nearly horizontal) domains be fhor, in a vertical poled ceram-
ics. It is acceptable to assume fhor ∼ 5% − 20%.

Fig. 3 Illustration of domain switching and switching zone under
remote tension in short circuit

3.1 Domain switching in short circuit

In short circuit, the crack-tip domains 1 and 2 may switch to
Domain 1′ and 2′, and no depolarization field is induced by
domain switching in this way. Using Eqs. (33) and (34), the
boundary of the 90◦ switching zone (Fig. 3) can be expressed
in polar radius r(θ) as [4]
√

r =
√

Rs sin θ sin(3θ/2), (35)

where Rs measure the size of the switching zone and can be
expressed by

Rs =

( KIγs

2
√
πP0EC

)2
, (36)

where γs is the magnitude of the spontaneous strain.
The area of the domain switching zone is

Ashort = 2
∫ 2π/3

0
dθ
∫ Rs sin2 θ sin2(3θ/2)

0
rdr

=

(729
√

3
8 960

+
3π
32

)
R2

s = 0.44R2
s . (37)

To simplify the formulations, we use a moderate ten-
sion loading σ∞33 = 15 MPa in the following derivations.
The materials constants for PZT-4 ceramics are γs = 0.02,
P0 = 0.75 C/m2, EC = 1.0 MV/m, d33 = 289 pC/N,
g33 = 26.1 mV·m/N, the isotropic Young’s modulus YE =

115 GPa, YD = 159 GPa, the isotropic dielectric constant
kσ = 11.5 nC/(V · m). The size of the switching zone is
thus calculated to be Rs = 0.04a, where a is half of the crack
length.

Under a constant applied stress loading, we assume that
the stress field is unaffected by domain switching, in a way
similar to that in the small scale yielding model in fracture
mechanics. Such an assumption is acceptable since during
domain switching strain (or displacement) along the load-
ing direction increases and thus the applied stress does some
positive work to the entire system. While in the case of
a constant applied displacement loading, the strain (or dis-
placement) along the loading direction is fixed during do-
main switching, and thus stress relaxes and the applied load-
ing does not do any work. Under such an assumption, the
excess released potential energy within the switching zone
after domain switching is calculated as

Wshort
ex = 2 fhor ·

∫ 2π/3

0
dθ
∫ Rs sin2 θ sin2(3θ/2)

0

[
sin θ sin(3θ/2)

× KIγs√
2πr
− √2P0EC

]
rdr

= 0.463P0EC fhor × Ashort. (38)

The density of the excess released potential energy[
sin θ sin(3θ/2)

KIγs√
2πr
− √2P0EC

]
is singular at the crack tip

and gradually reduces to zero at the boundary of the domain
switching zone. We assume that during crack propagation
isotropic elasticity and dielectricity assumptions can be used,
the total energy release rate consists of two parts, i.e.,

Gtotal
iso = Glinear

iso +Gnonlinear
iso = JE

I + dWshort
ex /da, (39)

where the crack tip closure J-integral relates to the SIF by

JE
I =

1
YE

K2
I . (40)

The excess potential energy release rate dWshort
ex /da is
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difficult to calculate, and here we use the upper limit to esti-
mate it as

dWshort
ex /da < 0.463P0EC fhor · lim

Δa→0
Ashaded/Δa

= 0.463P0EC fhor × 0.78Rs, (41)

where Ashaded denotes the shaded area shown in Fig. 4.

Fig. 4 Illustration of domain switching zone moving with crack
propagation

3.2 Domain switching in open circuit

In open circuit with a remote tension σ∞33, the zero electric
displacement loading is equivalent to a remote electric field
loading as

E∞3 = −g33σ
∞
33. (42)

With the existence of equivalent electric field loading
E∞3 , the switched Domains 1′ and 2′ tend to orient along the
direction of E∞3 , thus forming a large depolarization field in
the switched domains. In the case in which Domains 1 and 2
completely switch to Domains 1′ and 2′, the depolarization
field inside Domains 1′ and 2′ is

Ed = P0/kσ, (43)

where kσ is the isotropic dielectric constant.
For a typical ferroelectric ceramic, Ed is about 10–100

times of the coercive field, thus usually Domains 1 and 2 can,
not completely but partially, switch to Domains 1′ and 2′,
which is represented by a volume fraction of β (0 � β � 1).
The depolarization field is thus reduced to βEd and the do-
main switching criterion can be rewritten as

(E∞3 − βEd)P0 + sin θ sin(3θ/2)
KIγs√

2πr
=
√

2P0EC . (44)

The shape of the switching zone in open circuit is the
same as that in short circuit, but the size is different (see
Fig. 5). In open circuit, the switching zone is split into two
parts with the outer zone size R1 and the inner zone size R2

defined by

R1 =

( KIγs

2
√
πP0EC

)2(
1 − E3√

2EC

)−2

, (45)

Fig. 5 Illustrations of domain switching and switching zone under
remote tension in open circuit

R2 =

( KIγs

2
√
πP0EC

)2(
1 +

Ed − E3√
2EC

)−2

. (46)

In the inner zone
√

r �
√

R2 sin θ sin(3θ/2), 90◦ domain
switching can be completed as a result of the counterac-
tion of the large stress field and depolarization field, and
β = 1; In the outer zone

√
R2 sin θ sin(3θ/2) <

√
r �√

R1 sin θ sin(3θ/2), the 90◦ switching is not complete as the
stress decreases, and 0 � β < 1.

Under a typical loading of σ∞33 = 15 MPa, the equiv-
alent remote electric field loading E∞3 = −g33σ33 =

0.392 MV/m, Ed = 65.2 MV/m, R1 = 1.91Rs = 0.077a,

R2 ≈ 1
2 200

Rs.

The equivalent areas of the inner switching zone and
the total switching zone are

Ain
open = 2

∫ 2π/3

0
dθ
∫ R2 sin2 θ sin2(3θ/2)

0
rdr = 0.44R2

2, (47)

Atotal
open = Ain

open + 2β
∫ 2π/3

0
dθ
∫ R1 sin2 θ sin2(3θ/2)

R2 sin2 θ sin2(3θ/2)
rdr

= 0.02 × 0.44R2
s . (48)

From Eqs. (37) and (48), it can be seen that although
the total switching zone in open circuit is larger than that in
short circuit, the equivalent area of switching zone is much
smaller than that in short circuit as a result of the incomplete
90◦ switching in open circuit.

In the outer switching zone, all of the released potential
energy is dissipated during domain switching, i.e., no excess
released energy remains; while in the inner switching zone,
the excess released potential energy after domain switching
is

Wopen
ex = 2 fhor

∫ 2π/3

0
dθ
∫ R2 sin2 θ sin2(3θ/2)

0

[
sin θ sin(3θ/2)

× KIγs√
2πr
− P0(

√
2EC + Ed − E∞3 )

]
rdr

= 21.4P0EC fhor × Ain
open. (49)

Similar to that in short circuit, the upper limit of the excess
potential energy release rate is
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dWopen
ex /da < 21.4P0EC fhor × 0.78R2

= 9.7 × 10−3P0EC fhor × 0.78Rs. (50)

Then the total energy release rate is

Gtotal
iso = Glinear

iso +Gnonlinear
iso = JI + dWopen

ex /da, (51)

where JD
I =

1
YD

K2
I .

For a comparative study, Table 2 presents the compar-
ison of energy release rates in a center-cracked PZT-4 ce-
ramic subjected to typical remote tension loading of 15 MPa
in short circuit and open circuit using both linear and non-

linear analysis. It can be seen that both in short circuit and
in open circuit, the piezoelectric linear ERRs are about 30%
larger than the isotropic linear ERR, which indicates that the
isotropic assumption considerably underestimates the field
concentration near a crack tip. In nonlinear analysis, using
the typical fhor = 10%, the ERR caused by domain switching
is less than 20% of the linear ERR in short circuit and even
less than 0.5% of the linear ERR in open circuit. Thus, do-
main switching has little effect on crack propagation in open
circuit, while in short circuit it may significantly increase the
linear ERR.

Table 2 Comparison of energy release rates in a center-cracked PZT-4 ceramic subjected to 15 MPa remote tension loading (2a = 2 mm)

Energy release rate

Linear piezoelectric fracture analysis Isotropic, nonlinear analysis

Mechanical energy Total energy Linear part Nonlinear part

GM
I /(kPa ·mm) Gtotal

I /(kPa ·mm) Glinear
iso /(kPa ·mm) Gnonlinear

iso /(kPa ·mm)

Short circuit 8.02 8.16 6.14 < fhor · 10.8

Open circuit 6.15 6.15 4.44 < fhor · 0.23

4 Discussion

From the above analysis, it can be seen that whether linear
or nonlinear model is used, the ERR in short circuit is al-
ways larger than that in open circuit. Crack is thus easier to
propagate in short circuit than in open circuit. Although the
crack geometry studied in this study is different from what
was investigated by Kounga Njiwa et al. [18] recently (Note:
the crack geometry in their experiment is three dimensional,
thus difficult to analyze), we think these two cases are qual-
itatively similar and our theoretical results agree well with
their experimental observations.

Another note is that in our analysis, the “open circuit”
is an ideal open circuit which does not allow any charge leak-
age even under a rather high depolarization field. While in
practice, charge leakage is inevitable under high voltage even
in the case of a specimen immersed in a perfect insulating
oil [17]. If the open circuit is realized by exposing the spec-
imen to air and disconnecting the electrodes, charge leakage
will be very serious because of the lower dielectric strength
of the air. Unless the applied stress is very small (say 1 MPa),
as far as strain or crack propagation is concerned, such an
“open circuit” does not differ much from a short circuit [18].

It should also be reminded that in this work, interac-
tions between the domain switching zone and the outer zone
are neglected, just as in the small scale yielding model in
fracture mechanics. However, in our recent experimental
work [13, 14], it has been found that ferroelastic domain
switching in ferroelectrics is always constrained by neigh-
boring domains or grains, which is apt to break the sample.
A fracture model taking into account the constrained domain
switching is under consideration.

5 Conclusions

In summary, we studied Model I crack propagation in ferro-
electric ceramics in short circuit and open circuit using both
linear and nonlinear fracture mechanics. In linear analysis,
we use the impermeable crack and calculate both the me-
chanical strain ERR and the total ERR. It is found that the
two types of ERR are the same for pure stress loading in
open circuit, while in short circuit, the total ERR is slightly
larger because of the piezoelectric effect. In nonlinear anal-
ysis, we take into account the domain switching near a crack
tip. The total energy release rate, which includes the lin-
ear J-integral and the excess potential energy release rate af-
ter domain switching, is taken as the fracture criterion. It
shows that whether the linear or nonlinear analysis is used,
the ERR in short circuit is always larger than that in open
circuit. Crack is thus easier to propagate in short circuit than
in open circuit, which accords well with recent experimen-
tal observations [18]. Finally, it is suggested that when the
fracture of piezoelectric/ferroelectric materials is analyzed,
special attention should be paid to the electric boundary con-
ditions.
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