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ABSTRACT

The combination of different machine learning models to a single prediction model usually improves
the performance of the data analysis. Stacking ensembles are one of such approaches to build a high-
performance classifier that can be applied to various contexts of data mining. This study proposes
an enhanced stacking ensemble by collating a few machine learning algorithms with two-layered
meta classifications to address the limitations of existing stacking architecture to utilize simulated
annealing algorithm to optimize the classifier configuration in order to reach the best prediction
accuracy. The proposed method significantly outperformed three general stacking ensembles of two
layers that have been executed using the meta classifiers utilized in the proposed architecture. These
assessments have been statistically proven at a 95% confidence level. The novel stacking ensemble has
also outperformed the existing ensembles named Adaboost algorithm, gradient boosting algorithm,
XGBoost classifier, and bagging classifiers as well.
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1. INTRODUCTION

Research trends in Machine Learning include investigations on the most promising algorithm for a
given data set. Most prediction tasks can be implemented using diverse set of algorithms. These can
be arranged based on their prescient tasks. Decision Tree algorithm, Random Forest algorithm, Naive
Bayes analyzer, Artificial Neural Network, Linear Regression, Logistic Regression, Support Vector
algorithm and K-Nearest Neighbor algorithm are a few of them to perform classification, clustering,
regression, association rule mining etc.. A substantial research effort has been exerted on these
algorithms to make better decisions related to the choice of algorithms (Li Congcong et. al, 2013).
In practice, researchers would analyze the presentation of the chosen algorithms on a test data set
and select the algorithm that actually outperforms the others in a significant manner (P.K. Douglas et.
al, 2016 and Ladds et. al, 2017). However, there is still the inherent uncertainty of whether a chosen
algorithm will be the most suitable for all real- world datasets. As expressed in the “No free lunch
theorem” the computational expense of finding an answer, arrived at the midpoint of overall issues
in the class, is the equivalent for any arrangement strategy (Wolpert David & Macready William,
1996). Classifier combination strategies such as, boosting and bagging have outperformed solitary
best classifiers on many real-world datasets (Syarif, Iwan et. al, 2012). Hence, when none of the
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classification algorithms fundamentally beats different techniques, it is pragmatic to choose a couple
of algorithms and to decide the best during runtime (Dietterich T.G, 2000).

From a mathematical perspective, a classification algorithm is a sophisticated fit to a non-linear
function, and a solitary machine learning model may fit well to a certain dataset. However it may
overfit or underfit to some different datasets. Thus, the prediction accuracy of a solitary model
may arrive at the upper limit even with ideal parameters. One potential technique to overcome the
limitation of a single algorithm is to join a few algorithms to break through the upper limit of a single
learning algorithm which is called as an ensemble. Bagging, Boosting and Stacking are three types
of ensembles. Stacking/ Stacked generalization is an ensemble strategy that utilizes a higher-level
model to join lower-level sub-models to accomplish higher prediction accuracy. Unlike bagging and
boosting approaches that consolidate classifiers of a similar kind, the stacked generalization can join
diverse algorithms through a meta- learning model to expand the accuracy (Ting, K. M, 1999). Itis an
ensemble learning approach where the ensemble model could yield superior predictive performance
than any of the constituent lower-level sub-models.

Stack generalization is of two types; named, stacking regression and stacking classification.
Stacking regression is consolidating various regression models through meta-regressor. The stacking
classification, collates individual classification models and the meta-classifier is fitting dependent
on the outcome of individual classification models in the ensemble (Y. Ren et. al, 2016). There have
been numerous studies on stacking ensembles that show that their accuracies are higher than the
individual algorithms in the prediction of prescient tasks (Ladds et. al., 2017). However, there exists
few limitations of this predominant methodology as well. The base learner parameters must be tweaked
intensely since they affect the accuracy of the final prediction model. Stack generalization follows
a “black box” algorithm, so the specific commitment of each covariate to the prediction cannot be
quantified (Naimi Al and Balzer LB, 2018). The prediction accuracy of the stacking ensemble is still
uncertain and enough exertion has not been made to build the robustness of the stacking ensemble
(Kuncheva, L.I, 2014).

In this study, each of these deficiencies of the stack generalization is evaluated by implementing a
priori-specified hyperparameterized stack ensemble machine learning approach. It consolidates several
algorithms as base classifiers; namely, K-Nearest Neighbor (KNN), Random Forest (RF), Naive Bayes
(NB), Support Vector Machine (SVM), Decision Tree (DT) and Artificial Neural Network (ANN)
into a single predictive model and returns the best prediction through the proposed approach (Brown
G, 2017). It consists of three (3) layers in the ensemble. The base learner models are chosen through
the best cross-validated Log Loss Error (CLLE). The individual modeling techniques of approach-
based sensitivity estimation were utilized. Hyperparameters, which influence the whole ensemble’s
performance structure and intricacy, are optimized (Wong Jenna et. al, 2019). Two (2) layers of Meta
learners are proposed to fit the outcomes of their previous layers. The proposed stacking ensemble
has been tested on fifteen datasets to demonstrate the evidence of its accuracy. It can be asserted
that this novel approach is an optimal classifier that infers a high performing predictive ensemble.

The rest of this paper is arranged as follows. In section 2, the background study is presented
including a discussion about the stacked generalization with the approaches followed by previous
studies and their deficiencies. In section 3, the methodology followed in proposing the novel stacking
ensemble is presented. In section 4, the evaluation procedure and the results are discussed. In section
5, a comprehensive discussion is presented. The section 6 presents research contribution and the
implications. Finally, a conclusion and future work is presented in section 6.
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2. BACKGROUND

2.1 Classifier Combination for Ensembles

It is impractical most of the time to identify apriori the most suitable algorithms for regression or
classification problems in data mining. This leads the data analyst to use many different algorithms
to develop different models and to evaluate their performances. Once the evaluation is performed,
which is often under different configurations, the best out of the all models is selected to predict the
target attributes and to make decisions (Sanvitha Kasthuriarachchi et. al, 2018). A single algorithm
may be unable to capture the complete underlying structure of the data to derive optimal predictions.
This is where the integration of multiple models gathered into a single meta — model has been found
to be effective (Vamathevan, J et. al, 2019). The main intuition behind the concept of assembling
is to address the point which “Why all the prediction models are not considered and select the best
model out of all for the machine learning problem”.

Ensembles are of three types named Bagging, Boosting and Stacking. Bagging and boosting
are two of the common ensemble techniques used in machine learning (Re Matteo & Valentini
Giorgio, 2012). Bagging generates multiple versions of predictors and form an aggregated predictor
by voting each version and getting the average of them (Breiman L, 1996). Bagging meta-estimator
and the random forest are considered as algorithms follow bagging approach. Boosting works in
a similar way to bagging by combining several poor performing base learners in an adaptive way.
Experimental work showed that bagging is effective for data sets with noisy values (T.G. Dietterich,
2000). In boosting, the learning algorithms are given different distribution or weighting according to
the errors of the base learners (Brown G., 2017) and (Pedregosa F et. al, 2011). AdaBoost, Gradient
Boosting (GBM), eXtream Gradient Boosting (XGBM), Light GBM, and CatBoost are considered
as Boosting techniques.

The third approach is stacking. It takes the output of selected classifiers on the training data and
applies another learning algorithm on them to predict the response values (Large, J et. al, 2019).
Usually, the stacked generalization architecture follows two layers. First, the base classification in
layer 1, which uses base classifiers to construct the ensemble by training the dataset. It generates the
input to the second layer. Second, the meta classification in layer 2, which combines the results of
the outcome of layer 1 using a meta- classifier to produce the final predictive model. Stacking combines
multiple learning algorithms L1, L2, ..., I.N on a single dataset S. In the layer 1, set of base classifiers
C1,C2,...,Cn are generated where Ci = Li(S). Base learner classifiers can be any of the machine
learning algorithm such as, KNN, RF, NB, SVM, ANN and DT. In the second layer, a meta-level
classider combines the outputs of the base-level classiders. Depend upon the prediction task, when
the prediction complies with classification Logistic Regression algorithm (LR) and when regression
is performed, the linear regression is used. In this layer, no learning takes place at the meta-level
when combining classiders by a voting mechanism. The voting scheme remains the same for all
different training sets and sets of learning algorithms (or base-level classiders). The simplest voting
scheme is the plurality vote. According to this voting scheme, each base-level classider casts a vote
for its prediction. The classifiers who achieved more votes are added to the meta layer.

The stacking concept was first introduced by researchers in a biological study (Yang et. al, 2010).
This is an application of stacked generalization to k- fold cross validation since all the analysis models
use the same k-fold splits of the data and a meta- model fits into the out-of-fold predictions of each
of the models. The traditional machine learning approaches build a single hypothesis based on the
training data but, the ensemble approach attempts to develop a set of hypotheses and combine them
to form a new hypothesis (Sherri Rose, 2013). Different studies have been carried out based on the
stacking concept. Once multiple prediction models are combined, more information could be captured
in the fundamental structure of the data (Clarke B, 2003). A researcher has highlighted the importance
of recognizing the uncertainty when selecting models, and the prospective role that assembling can
play when combining several models to create one that outperforms single models (Varian, Hal
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R, 2014). In a study about improving accuracy and reducing variance of behavior classification in
accelerometer done by a researcher has shown that stacked ensembles can be easily adapted to any
type of industry to achieve better accuracy in the predicted model (Ladds et. al., 2017). Also they
emphasized the importance of the human intervention and the computation time required to execute
the stacking ensemble for the machine learning tasks. The ensemble learning performs better than
the individual algorithms (DZeroski S. and Zenko B, 2004) and (Romesburg, H.C, 2014). In another
study, a researcher has pointed out that the high computational time and the memory requirement
for the smooth execution of stacking approach is significant and thereby, the stacking ensemble can
be potentially flawed too (Sherri Rose, 2013).

A study has proposed a Deep belief network that is a learning model to represent unknown data
efficiently. They utilized Adaptive Sparse Restricted Boltzmann machines (AS-RBM) and partial
least square (PLS) regression fine-tuning to increase the accuracy and the robustness of the learning
model. The researchers have tested their model on Mackey-Glass time-series prediction, 2-D function
approximation, and unknown system identification and obtained a better accuracy in faster learning
speed (Wang G. et. al, 2019). In another study, the researchers have claimed that the model they with
Sparse Deep Belief Network and Fuzzy Neural Network (SDBFNN) achieved superior performance
in terms of robustness and accuracy (Wang G. et. al, 2019). The researchers who have proposed a
wind power prediction using deep neural network base ensemble and transfer learning have shown
better robust modeling results. They utilized deep auto-encoders as the base-regressors and the Deep
Belief Network as the meta-regressor (Qureshi A.S, 2017)

2.2 Hyperparameter Optimization of Classifiers

Hyperparameter optimization is the process of identifying the best parameter values if the classifiers
which derives the ideal prediction model. This is known as hyperparameter tuning as well. There
are diverse hyperparameter optimization methods, namely; (1) Grid search (2) Random search
(3) Bayesian optimization (4) Simulated Annealing algorithm (5) Genetic algorithm (6) Particle
swarm optimization. Grid search, Random research and the Bayesian optimization are the frequent
hyperparameter optimization techniques. The Grid search is the most basic method. The prediction
model will be created for each possible combination of all the hyperparameter value and will evaluate
each model and select the architecture which produces the best result. Random search finds better
models by effectively searching a larger, less promising configuration space than grid search method
(Dietterich T.G, 2000). The next method, Bayesian optimization is also called the surrogate method
which keeps track of past evaluation results which are used to form a probabilistic model, maps the
hyperparameters to a probability of a score on the objective function that it uses. It could find a
better set of hyperparameters in less time because they study about the best set of hyperparameters
to evaluate, based on past trials (James Bergstra and Y Bengio, 2012). Most of the issues identified
in the above popular approaches can be overcome by using Simulated Annealing Algorithm. It finds
the optimal solution in a discrete search space with many possible hyperparameter combinations.
This is a probabilistic technique which is identified as a global optimum method. Genetic Algorithm
is also a metaheuristic algorithm based on the evolutionary concept. It finds the individuals with the
highest survival capability. One particular generation passes their capabilities to their next generation.
Then the next generation inherits that feature from the parents and make better individuals. The worst
individuals will gradually disappear. This concept will apply to the optimization of hyperparameters
of classifiers. The population, chromosomes and genes will initialize to search space, hyperparameters
and their values. The fitness value will calculate and measure the performance. The selection,
crossover and mutation will apply on chromosomes to produce a new generation and measure the
performance. These steps will repeatedly apply till optimal hyperparameters are derived (Yang
Li, Abdallah Shami, 2020). Particle swarm optimization is another evolutionary approach for the
optimization. The implementation of Particle swarm optimization is easier than Genetic algorithm.
It works by allowing the group of particles to travel the search space in a semi random manner. The
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optimal hyperparameters are identified by cooperating and sharing information among the individuals
in the particle groups. However, it requires additional population initialization with more execution
time and resources (Yang Li, Abdallah Shami, 2020).

Several studies have focused on the hyperparameter optimization in different forms (Wu J,
et. al, 2016). There was a study to find a method to accelerate the search process by transferring
information from previous trials to other datasets (Bardenet et. al, 2013). The key challenge they
faced was the accuracy measurement. It was a relatively difficult task to maintain the accuracy of
the model while maintaining the speed of the analysis through hyperparameter tuning (Yogatama D.,
2014). One study has introduced a systematic framework to build ensembles with optimal weights for
regression problems (Shahhosseini et. al, 2020). It was able to find the optimized ensemble weights
that minimize both bias and variance of the predictions while tuning the hyperparameters of the
base learners. A study about the use of Bayesian optimization to hyperparameter tuning in ensemble
learning has been used as the optimized strategy to exploit trained models and improved ensembles to
use as a classifier at the lower cost of regular hyperparameter optimization (Janez Demsar, 2006 and
Julien-Charles, 2016). It could be observed that the existing ensemble techniques consider the base
model construction and the weighted averaging to be independent steps and introduced a probabilistic
ensemble weighting approach on cross-validation for hyperparameter optimization (Press, W et. al,
1992). The authors of another study have provided an extensive survey on a comparison of different
hyperparameter optimization techniques (Yang Li, Abdallah Shami, 2020).

2.3 Hyperparameter Optimization Approach of Simulated Annealing Algorithm

The Simulated Annealing Algorithm is identified as a best approach for the hyperparameter
optimization problem. It is a meta-heuristic optimization algorithm to take care of the optimization
issue. It begins from an underlying arrangement, and afterward by a heterogeneous Markov chain
moves to the neighbor arrangements until the best arrangement is found. In this chain, the progress
probability from the current answer for the following arrangement relies upon an acknowledgment
work. The progress is with probability 1 when the following arrangement is superior to the current
arrangement. Else, it is finished with probability exp (AE/®), where AE is the contrast between
estimations of acknowledgment work identified with the following and the current arrangement, and
O is the temperature. The boundary @ is balanced from significant level of degrees from the outset
and it is diminished with a unique cooling (Daniel Delahaye, 2109) and (S. Kirkpatrick et. al, 1983).
These changes are done until ® gets to its most reduced temperature (S. Kirkpatrick et. al, 1983).
The cooling schedule is denoted by equation (1),

k = (log(T,,,,) —log(T)) / log(c0) M

The Simulated Annealing Algorithm follows few steps in optimizing the hyperparameters of
algorithms. They are; (1) the values for hyperparameters are selected randomly and consider it as
the current state. (2) evaluate the model using the selected hyperparameters. (3) randomly update the
value of a single hyperparameter of the current state and makes the neighboring state. This will be
repeatedly apply till a new hyperparameter combination generates. (4) evaluate the performance of
the neighboring state and accept it, if it’s performance is higher than the current state. The Simulated
Annealing Algorithm has demonstrated better performance in hyperparameter optimization (Press,
W et. al, 1992 and Purushotham, Sanjay, 2017).
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Figure 1. Architecture of the Proposed Ensemble

J— —

KNN
LR
RF
RF
NB / \
LR _—
— e
Eil SVM e
ANN \
SVM
DT
Data set Base Classification Meta Classification 1 Meta Classification 2
Layer 1 Layer 2 Layer 3

3. PROPOSED THREE LAYER STACKING ENSEMBLE

3.1 Architecture of the proposed Ensemble

In order to determine whether the stacking improves the accuracy of the prediction models, an extended
version of two layer stacking ensemble has suggested. The proposed stacked generalization consists of
three layers, named (1) layer 1: base classification, (2) layer 2: meta classification 1, and layer 3: meta
classification 2. The proposed stacking classifier used six (6) base classifiers and all of them were
trained using four (4) selected meta classifiers to obtain the layer 2 meta models. The four (4) meta
models derived by each meta classifier have passed to next layer and produced the final prediction
model using a single meta classifier. Architecture of the proposed ensemble is illustrated in figure 1.

The proposed extended stacking classifier uses KNN, RF, NB, SVM, ANN and DT algorithms
for the layer 1- base classification. Since these algorithms are frequently using in many studies to
derive prediction models, they have been selected as the base classifiers of the ensemble (Sanvitha
Kasthuriarachchi et. al, 2018). The individual classifiers develop the prediction models with different
accuracy levels. The output prediction models of layer 1 has been passed as the inputs of layer 2.
The layer 2 meta- classifiers are logistic regression classifier (LR), RF classifier, DT classifier and
SVM. The selection of meta- classifier should be possible to rely upon the prediction task and with
proof of writing, the meta learners have chosen to construct the layer 2 output (Clarke, B., 2003). LR
has utilized as the layer 3 meta classifier of this proposed procedure. The purpose of the selection
of different algorithms is that they are following significantly different approaches for the model
generation and focus on the data in different aspects to make a significant contribution to ensemble
implementation. Different learning algorithms L,L,..L,ona single dataset S, which consists
of examples s, =(x,, y,), i.€., pairs of feature vectors (x,) and their classidcations (y,). In the drst
layer, the base classiders C " Cz,...,CN is generated, where Ck = Lk(S). In the second layer, meta-level
classiders are learned to combines the outputs of base-level classiders. To generate a training set for
learning the meta-level classider, 10 fold cross validation procedure is applied (Romana Markovic,
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2017). Third layer also works in the same manner as second layer which combines the meta model
results into a single model.

3.2 Ranking the Classifiers

Since there are multiple base classifiers to form the layer 2 meta classification models, the specific
commitment of each covariate to prediction is indistinct. This limitation is addressed by using a
weighted scoring method of base classifier selection for the meta level classification of the ensemble.
The scoring is done by assigning different weights to the base classifiers through the likelihood
function known as the log loss. The Log loss is based on probabilities (Babalyan, K.,, 2018). Instead
of maximizing the accuracy of the model, the error will be minimized by this technique. The lower
the log loss, the higher the model accuracy. Therefore, the log loss is selected as the benchmark for
comparing multiple prediction models. The log loss of each model were recorded and random weight
esteem which is differing somewhere in the range of ‘0’ and ‘1’ is allocated to each base classifier
while the prediction models are created. After an examination of the weights, the optimal base learners
were chosen. The layer 2 meta models were trained and passed to the layer 3 meta classification layer
to acquire the final prediction result. The proposed architecture uses to derive the best combination
of base learners by measuring weighs through their log loss values and rate the models with weights.
Then one aggregates the models of non-zero weights together to form the input to the meta- learner,
which functions based on logistic regression. The log loss function of a machine learning model
could be given as in equation (2);

LogLoss = —1/nY_" [y,+log,(y,) + (1—y,)*log,(1—y,)] 2

Where, 7 is the number of instances in the dataset, y is the dependent variable in the dataset
which will be either 0 or 1, y, is the model probability of assigning label j to instance i. Based on the
weights of each model, a random weight number is assigned to every model. Then the best classifiers
are selected.

3.3 Optimizing the Hyperparameters of Classifiers

The hyperparameters of the classifiers are optimized to obtain better prediction results by the proposed
ensemble. This would increases the accuracy and the robustness of the ensemble. Although there are
plenty of stacking ensemble implementations, very few of them were able to illustrate a significant
accuracy level than the individual machine learning algorithms (Yogatama, D. and Mann, G. , 2014).
The existing stacking ensembles were having only one meta classifier. In case if classification problem
is addresses LR became the meta classifier and for regression type Linear regression was used as
the meta classifier. There were few studies that have looked beyond them and utilized other types of
classifiers and regressors such as Support Vector (SV), Ridge Regression (RR), Multivariate Linear
Regression (MLR) and so forth (Clarke B, 2003). The proposed extended stacking classifier has
evaluated for many base classifiers and the best out of them were applied to meta model construction
since they were ranked by the Log loss measurement. Therefore, the novelty of the proposed stacked
generalization is the combination of hyperparameter tuning with weighted scoring for three layer
stack with multi meta model optimization. The important hyperparameters are selected by evaluating
the performance of the prediction models.

The important hyperparameters of the classifiers are determined to boost the prediction models
through hyperparameter optimization. The KNN classifier has an important parameter, the number
of nearest neighbors considered for each sample (n_ neighbors). If it is too small, the model will
be underfitting, if the parameter is too large, the model will be overfitting. The RF forest has many
important parameters, number of trees (n_estimators), maximum depth of the tree (max_depth). The
deeper the tree, more splits and captures more information from the data, the criteria followed for
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splitting (criterion), and minimum number of data points in a node before the node is split (min_
samples_split). The only single hyperparameter of NB classifier that needs to tune is the smoothing
parameter (alpha). SVM classifier has an important variable for penalty of the error term (C) in
its objective function, Kernel type (Kernel) is another hyperparameter that has been considered as
important in SVM. Maximum depth (max_depth) of the tree is the important hyperparameter in DT
classifier. The higher the depth, more sub trees will be created with more accuracy. Finally, the ANN
algorithm consists of type of the activation function (activation), number of epochs (epochs), number
of hidden layers (n_hidden_layers), number of neurons in hidden layers (neurons_per_layer), the
solver or the optimizer and the loss function (loss) as the important hyperparameters. Lastly, the LR
classifier has two important hyperparameters, the penalty (penalty) and the coefficient (C). Penalty
determines the regularization method used for the penalization and C determines the regularization
strength of the model.

Next, the performance metrics and the evaluation methods are configured. Table 1 illustrates
the configuration space for the hyperparameters of the classifiers. The 10 fold cross validation is
performed to evaluate the hyperparameter optimization method. All the experiments are iterated ten
times. Initially, the hyperparameter optimization is performed using Simulated Annealing Algorithm
(SAA), Genetic algorithm (GA) and Particle Swamp Algorithm (PSA) to compare the performance.

Table 1. The configuration space for the hyperparameters of the classifiers.

Classifier Hyperparameter Search space
KNN n_ neighbors [10, 20]
RF n_estimators [10, 100]
max_depth [5, 50]
criterian [‘gini’, ‘entropy’]
min_samples_split [2,12]
NB alpha [-9.0]
SVM C [0.5, 50]
Kernel [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’]
DT max_depth [2, 50]
ANN activation [‘relu’,’tanh’]
epochs [20, 50]
n_hidden_layers [2,5]
neurons_per_layer [16, 32]
loss [‘binary_crossentropy’, ‘multiclass_
crossentropy’]
LR classifier__penalty [‘11°, 412°]
C [-4, 20]

The classifiers are evaluated using fifteen diverse datasets. The data gathered from questionnaires
or surveys were recorded electronically and corrected for errors, noises, inconsistencies and outliers.
Missing values in the online datasets were handled by median imputation and case deletion methods
(Low, F et. al, 2013 and Zhou G et. al, 2014). Four datasets are collected through surveys and
questionnaires. The remaining datasets are chosen from publicly available data repositories. A detailed
description about the datasets is available in the appendix section. A summary of the chosen datasets
are depicted in table 2.
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Table 2. A summary of the datasets used for the implementation of the proposed ensemble.

Dataset Number of Number of Number of probability of entropy
Features Instances Classes majority class of class
probability
distribution
LMSDataNew 11 799 2 89.26 49.2
ClassroomData 20 170 2 50.2 99.9
InClassSurveyData 20 171 2 51.3 99.9
InClassDBData 18 3795 2 65 93.49
xAPI-Edu-Data 14 481 2 69.57 88.6
BreastCancerData 9 286 2 63 95.06
ChronicKidneyDescies 25 400 2 54.55 99.4
WA_Fn-UseC_-Telco- 21 7043 2 73 83.47
Customer-Churn
liver-disease-lab-data 11 483 2 72 86
DiabetesData 20 769 2 65 93.31
HeartData 14 303 2 84 62.85
Android_traffic 17 7846 2 57.18 98.5
FakeData 12 697 2 50 100
brain_tumorData 19 1449 2 88 53.69
hepatitisData 19 155 2 61.46 96.17

4. EXPERIMENTAL RESULTS AND DISCUSSION

Initially, the performance of selected classifiers were inspected using the datasets mentioned in the
table 2. The datasets were segregated as 80:20 premise. This infers 80% of the data is in the training
set and 20% of the data is in the testing set. Fifteen models were built based on the training sets by
applying these base algorithms and the hold-out test sets were utilized to assess the model execution.

In the proposed approach, 10 fold cross validation is utilized to split the dataset into training
and testing sets by reducing the overfitting. In this experiment, each dataset is separated to 10 equal
parts and the first part is kept for testing purpose. The remaining 9 parts are used to train the model.
While repeating this process 10 times, the testing dataset is kept on changing. This experiment is
carried out by applying 3 fold cross validation and 5 fold cross validation as well. However, it could
be noticed that the highest prediction accuracy of the model could be generated when k becomes 10
in 10 fold cross validation. This observation was common for the majority of the benchmark datasets.
Therefore, the accuracies generated by 10 fold cross validation have been accepted.

4.1 Evaluating the Performance of Individual Classifiers

The performance of selected classifiers was measured using the chosen datasets as illustrated in table 3.

Some classifiers have indicated higher accuracy levels contrasted with the others. It can be
clearly seen that the datasets named, InClassSurveyData, ClassroomData, xAPI-Edu-Data, and
hepatitisData have involved in making lower predictive performance than the others. Be that as
it may, a chosen algorithm outperformed the others, there might be an extremely little variety of
the prediction accuracy of the rejected algorithms. Rejection of an algorithm for a prediction task
dependent on a little variety of the exactness would not be a superior way to deal with training. In
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Table 3. Prediction Performance of chosen individual Classifiers.

Dataset RF KNN NB SVM DT ANN
InClassSurveyData Accuracy 0.65 (+/- 0.63 (+/- 0.12) 0.40 (+/-0.15) 0.65 (+/-0.03) 0.68 (+/-0.11) 0.65 (+/-0.03)
0.1)
Precision | 0.64 0.6 0.35 0.65 0.66 0.69
Recall 0.71 0.66 0.12 0.62 0.69 0.64
InClassDBData Accuracy | 0.85 (+/- 0.62 (+/-0.11) 0.75 (+/-0.03) 0.72 (+/-0.03) 0.80 (+/-0.0) 0.75 (+/-0.12)
0.04)
Precision | 0.74 0.62 0.73 0.65 0.73 0.69
Recall 0.81 0.54 0.74 0.72 0.69 0.93
LMSDataNew Accuracy | 0.81 (+/- 0.75 (+/-0.14) 0.82 (+/-0.1) 0.79 (+/-0.09) 0.78 (+/-0.17) 0.81 (+/-0.0)
0.16)
Precision | 0.78 0.76 0.81 0.72 0.72 0.80
Recall 0.78 0.78 0.79 0.69 0.76 0.77
ClassroomData Accuracy | 0.70 (+/- 0.60 (+/- 0.12) 0.62 (+/-0.16) 0.68 (+/-0.13) 0.65 (+/- 0.1) 0.63 (+/-0.16)
0.13)
Precision | 0.77 0.76 0.73 0.65 0.77 0.69
Recall 0.82 0.82 0.74 0.69 0.69 0.89
XAPI-Edu-Data Accuracy | 0.69 (+/- 0.61 (+/-0.06) 0.59 (+/-0.07) 0.61 (0.04) 0.65 (+/-0.05) 0.53 (+/-0.01)
0.06)
Precision | 0.75 0.62 0.56 0.59 0.62 0.62
Recall 0.68 0.54 0.57 0.51 0.64 0.40
BreastCancerData Accuracy | 091 (+/- 0.86 (+/-0.04) 0.90 (+/-0.03) 0.89 (+/-0.03) 0.9 (+/- 0.03) 0.63 (+/-0.01)
0.02)
Precision | 0.93 0.87 0.89 0.87 0.92 0.88
Recall 0.95 0.95 0.95 0.97 0.92 0.95
ChronicKidneyDescies | Accuracy | 0.99 (+/- 0.80 (+/-0.04) 0.97 (+/-0.02) 0.68 (+/-0.07) 0.96 (+/-0.04) 0.57 (+/-0.06)
0.02)
Precision | 0.99 0.93 0.97 0.84 0.97 0.61
Recall 0.98 0.60 0.97 0.60 0.95 0.51
Accuracy | 0.79 (+/- 0.71 (+/-0.01) 0.77 (+/-0.02) 0.73 (+/-0.0) 0.76 (+/-0.01) 0.73 (+/-0.0)
WA_Fn-UseC_-Telco- oo
Customer-Churn Precision | 0.63 0.58 0.54 0.72 0.68 0.69
Recall 0.48 0.45 0.73 0.69 0.49 0.62
Liver-Disease-Lab- Accuracy | 0.70(+/-0.06) | 0.67 (+/-0.06) 0.59 (+/-0.07) 0.72 (+/-0.01) 0.61(+/-0.07) 0.72(+/-0.01)
Paa Precision | 0.74 0.75 0.58 0.75 0.75 0.75
Recall 0.87 0.74 0.44 0.84 0.73 0.83
Diabetes Accuracy | 0.76 (+/- 0.67 (+/-0.03) 0.75 (+/-0.06) 0.76 (+/-0.05) 0.71 (+/-0.02) 0.65 (+/-0.03)
Data 0.05)
Precision | 0.69 0.61 0.66 0.75 0.55 0.61
Recall 0.54 0.51 0.57 0.47 0.56 0.44
HeartData Accuracy | 0.81 (+/- 0.61 (+/-0.08) 0.83 (+/-0.06) 0.66 (+/-0.07) 0.78 (+/-0.06) 0.46 (+/-0.01)
0.07)
Precision | 0.80 0.68 0.83 0.65 0.81 0.59
Recall 0.84 0.72 0.87 0.81 0.76 0.56
continued on next page
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Table 3. Continued

Dataset RF KNN NB SVM DT ANN
Android_Traffic Accuracy | 0.91 (+/- 0.84 (+/-0.01) 0.43 (+/-0.01) 0.60 (+/-0.0) 0.81 (+/-0.02) 0.40 (+/-0.0)
0.01)
Precision | 091 0.86 0.75 0.60 0.90 0.69
Recall 0.93 0.86 0.06 0.9 0.89 0.63
FakeData Accuracy | 0.93 (+/- 0.86 (+/-0.04) 0.68 (+/-0.05) 0.53 (+/-0.02) 0.90 (+/-0.04) 0.50 (+/- 0.0)
0.04)
Precision | 0.94 0.88 0.61 051 0.88 0.61
Recall 0.93 0.91 0.97 0.48 0.89 0.54
Brain_TumorData Accuracy | 0.94 (+/- 0.92(+/-0.02) 0.89 (+/-0.02) 0.88(+/-0.0) 0.93(+/-0.01) 0.92 (+/-0.02)
0.02)
Precision | 0.96 0.94 0.95 0.93 0.96 0.94
Recall 0.98 0.92 0.92 0.96 0.96 0.98
HepatitisData Accuracy | 0.67 (+/- 0.62 (+/-0.12) 0.75 (+/-0.17) 0.62 (+/-0.14) 0.54 (+/-0.18) 0.44 (+/-0.03)
0.09)
Precision | 0.63 0.63 0.68 0.63 0.61 0.63
Recall 0.68 0.68 0.86 0.82 0.53 0.75

this way, a combined model methodology is proposed to actualize for making forecasts as opposed
to bounding to a single algorithm.

4.2 Evaluating the Proposed Ensemble

The hyperparameter optimization is performed in three approaches, as mentioned in section 3. The
SAA, GA and PSO are utilized to decide the best approach which returns the highest performance.
Table 4 illustrates the performance of the proposed ensemble under each approach. SAA approach
has resulted in the best accuracy. Therefore, SAA was selected as the optimization approach for the
proposed ensemble. The proposed stacking ensemble was implemented in Python language with the
sklearn package and the simulated_annealing.optimize package (Jones E et. al, 2001) and (Pedregosa,
Fet. al, 2011).

Table 5 illustrates the prediction performance of layer 2 meta classifiers and layer 3 meta
classifiers of the proposed ensemble. Figure 2 illustrates a comparison of the prediction behavior of
individual base classifiers and the final prediction result generated by the proposed stacking ensemble
in layer 3 meta classification. Datasets named; InClassSurveyData, ClassroomData, xAPI-Edu-Data,
liver-disease-lab-data and hepatitisData have shown a lower predictive performance than the others.
However, it is evident that the proposed novel stacking ensemble will always train a superior prediction
model than the best individual base classifier.

The accuracy of the stacking ensemble prediction models is higher than the accuracies of
four intermediate stacks derived in the layer 2 meta classification. In numerous datasets, the last
prediction accuracy was generally higher than the layer 2 meta classification and not many of them
have demonstrated comparative prediction accuracies to the most outperformed transitional stack
of layer 2. All the accuracy esteems are incorporated into table 6 are with their standard deviations.

The Figure 5a, Figure 5b and Figure Sc illustrate the Area Under Curve (AUC) of Receiver
Operating Characteristics (ROC) curve for all the datasets to get a visual understanding of how
much the model is capable in distinguishing between classes. These graphs illustrate the AUC value
comparison of each classifier with the proposed stacking ensemble for each benchmark dataset. As
per the illustration of these graphs, it can be clearly seen that the AUC value of the proposed stacking
ensemble is very closer to 1. This implies that the proposed ensemble is able to perfectly distinguish
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Table 4. Prediction performance of the proposed ensemble under different hyperparameter optimization approaches.

Dataset Prediction Accuracy
SAA GA PAO
InClassSurveyData 0.71(+/- 0.09) 0.68 (+/- 0.01) 0.65 (+/-0.09)
InClassDBData 1.0 (+/- 0.0) 0.96 (+/- 0.02) 0.97 (+/-0.02)
LMSDataNew 0.98 (+/- 0.02) 0.96 (+/- 0.01) 0.96 (+/-0.03)
ClassroomData 0.70 (+/- 0.01) 0.66 (+/- 0.01) 0.65 (+/-0.02)
xAPI-Edu-Data 0.67 (+/-0.02) 0.65(+/- 0.02) 0.66 (4+/-0.04)
BreastCancerData 0.95 (+/-0.02) 0.90 (+/- 0.02) 0.87 (+/-0.02)
ChronicKidneyDescies 0.99(+/-0.01) 0.90 (+/- 0.02) 0.90 (+/-0.01)
WA _Fn-UseC_-Telco-Customer-Churn 0.77 (+/-0.02) 0.70 (+/- 0.04) 0.72 (+/-0.02)
Liver-Disease-Lab-Data 0.72 (+/-0.01) 0.66 (+/- 0.01) 0.68 (4+/-0.09)

DiabetesData

0.75 (+/- 0.05)

0.72 (+/- 0.01)

0.73 (+/-0.01)

HeartData

0.82 (+/- 0.02)

0.79 (+/- 0.02)

0.79 (+/-0.04)

Android_Traffic

0.95 (+/-0.01)

0.91 (+/- 0.05)

0.90 (+/-0.02)

Fakedata

0.95 (+/-0.01)

0.92 (+/- 0.04)

0.93 (+/-0.03)

Brain_TumorData

0.95 (+/-0.01)

0.87(+/- 0.02)

0.85 (+/-0.01)

HepatitisData

0.72 (+/-0.09)

0.69 (+/- 0.03)

0.68 (+/-0.05)

Figure 2. Comparison of Prediction Performances of Base Classifiers and the Proposed Stacking Ensemble
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Table 5. Prediction Performance of Layer 2 Meta Classifiers and layer 3 Meta Classification

Dataset Performance of Layer 2 Meta Classification Layer 3
LR RF DT SVM Accuracy

InClassSurveyData Accuracy 0.69 (+/- 0.11) 0.68 (+/-0.1) 0.69 (+/-0.09) 0.65 (+/-0.1) 0.71 (+/- 0.09)

Precision 0.74 0.69 0.69 0.76 0.74

Recall 0.77 0.66 0.80 0.66 0.77
InClassDBData Accuracy | 0.97 (+/- 0.01) 0.96 (+/- 0.02) 0.98 (+/-0.01) 0.98 (+/-0.05) 1.0 (+/- 0.00)

Precision 0.92 0.90 0.95 0.97 1.0

Recall 0.86 0.90 0.92 0.96 1.0
LMSDataNew Accuracy 0.97 (+/- 0.02) 0.98 (+/- 0.02) 0.98 (+/-0.02) 0.97 (+/-0.02) 0.98 (+/- 0.02)

Precision 0.94 0.94 0.95 0.92 0.95

Recall 0.91 0.86 0.92 0.83 0.92
ClassroomData Accuracy 0.70 (+/- 0.1) 0.67 (+/- 0.1) 0.68 (+/-0.01) 0.67 (+/-0.01) 0.70 (+/- 0.01)

Precision 0.74 0.75 0.74 0.73 0.76

Recall 0.80 0.72 0.70 0.78 0.78
XAPI-Edu-Data Accuracy | 0.65 (+/- 0.01) 0.62 (+/- 0.02) 0.64 (+/-0.05) 0.63 (+/-0.05) 0.67 (+/- 0.02)

Precision 0.61 0.65 0.64 0.59 0.61

Recall 0.57 0.56 0.51 0.61 0.58
BreastCancerData Accuracy 0.95 (+/- 0.02) 0.92(+/- 0.03) 0.92 (+/-0.02) 0.94 (+/-0.02) 0.95 (+/- 0.02)

Precision 0.87 0.86 0.86 0.86 0.86

Recall 0.95 0.94 0.93 0.95 0.93
ChronicKidneyDescies | Accuracy 0.98 (+/- 0.01) 0.97 (+/- 0.05) 0.97 (+/-0.01) 0.95 (+/-0.02) 0.99 (+/- 0.01)

Precision 0.94 0.95 0.94 0.94 0.95

Recall 0.94 0.95 0.93 0.94 0.94
WA_Fn-UseC_- Accuracy 0.77 (+/- 0.01) 0.78 (0.05) 0.78 (+/-0.01) 0.77 (+/-0.05) 0.77 (+/- 0.02)
Telco-Customer-
Churn Precision 0.68 0.66 0.66 0.67 0.65

Recall 0.48 0.45 0.46 0.45 0.48
Liver-Disease-Lab- | Accuracy | 0.68 (+/-0.05) 0.68 (0.04) 0.68 (+/-0.02) 0.67 (+/-0.03) 0.72 (+/- 0.01)
baa Precision 0.58 0.62 0.59 0.66 0.69

Recall 0.49 0.64 0.62 0.59 0.85
DiabetesData Accuracy | 0.76 (+/- 0.21) 0.74 (0.09) 0.74 (+/-0.01) 0.75 (+/-0.03) 0.75 (+/- 0.05)

Precision 0.72 0.69 0.70 0.72 0.72

Recall 0.74 0.72 0.68 0.70 0.70
HeartData Accuracy 0.78 (+/- 0.03) 0.78 (0.09) 0.78 (+/-0.05) 0.79 (+/-0.02) 0.82 (+/- 0.02)

Precision 0.69 0.72 0.75 0.76 0.80

Recall 0.68 0.70 0.73 0.72 0.76
Android_Traffic Accuracy 0.92 (+/- 0.01) 0.90 (0.011) 0.92 (+/-0.02) 0.90 (+/-0.01) 0.95 (+/- 0.01)

Precision 0.82 0.90 0.84 0.80 0.85

Recall 0.76 0.84 0.80 0.76 0.86

continued on next page

13



International Journal of Artificial Intelligence and Machine Learning
Volume 11 ¢ Issue 2 « July-December 2021

Table 5. Continued

Dataset Performance of Layer 2 Meta Classification Layer 3
LR RF DT SVM Accuracy

Fakedata Accuracy | 0.90 (+/- 0.01) 0.93 (0.02) 0.93 (+/-0.05) 0.95 (+/-0.01) 0.95 (+/- 0.01)
Precision 0.90 0.86 0.90 0.85 0.90
Recall 0.75 0.80 0.91 0.90 0.92

Brain_TumorData | Accuracy | 0.93(+/-0.02) 0.95 (0.05) 0.95 (+/-0.02) 0.92 (+/-0.02) 0.95 (+/- 0.01)
Precision 0.89 0.92 0.90 0.92 0.92
Recall 0.86 0.97 0.92 0.85 0.92

HepatitisData Accuracy | 0.65 (+/- 0.10) 0.62 (+/-0.03) 0.64(+/- 0.05) 0.65 (+/- 0.01) 0.72 (+/- 0.09)
Precision 0.62 0.61 0.60 0.62 0.68
Recall 0.59 0.48 0.54 0.55 0.67

between all the positive and the negative class points correctly. Accordingly, the proposed stacking
ensemble outperforms the reset of the classifiers.

4.3 Validating the Performance of Proposed Ensemble

Statistical significance of the difference between individual base classifiers and the final prediction
model of the ensemble is evaluated using paired t-test approach with significance level of 95% using
10 fold cross validation (Kuncheva L.I., 2003), (P.K. Douglas et. al, 2011) and (Shee et. al, 2014).
The 1x10 t-test is performed since, the training and testing data sets are not overlapped. There are
many deficiencies in the other possibilities such as ten repeats of ten- fold cross validation (10x10)
and five two fold cross validation (5x2) approaches. In 10x10 t-test, the test sets and training sets
are overlapping which underestimate the true variance of the algorithms. Though 5x2 t-test does not
overlap the training and testing datasets, it’s not sensitive to the variations of the algorithms (Sherri
Rose, 2013). Accordingly, the stacking ensemble with the individual machine learning algorithms
and the stacking ensemble final prediction with the intermediate prediction at level 2 are evaluated
by hypotheses testing.

Statistical significance of the difference between the prediction accuracy of the proposed staking
ensemble and the individual algorithms are measured by forming null and the alternative hypothesis.
The null hypothesis (H,) assumed that both models perform the same and alternative (H,) assumed
that the models perform differently. The hypotheses made for the comparison of proposed stacking
ensemble and the Random Forest algorithm can be written as;

H,: There is no difference between the performance of the proposed stacking ensemble and the
Random Forest classifier.

H,: There is a difference between the performance of the proposed stacking ensemble and the
Random Forest classifier.

As this manner, the null and alternative hypotheses were built to all the algorithms for entire
datasets and they have been tested using the library supported by Python for paired t-test. According
to the table 5, it has been observed that except two datasets the other data sets own their p-value which
were below 0.05. This implies that the null hypothesis can be rejected and it has been statistically
convincing evidence that random forest and the proposed stacking ensemble perform differently.
Similarly, the hypothesis test is conducted for the remaining pairs. Next, the KNN and the proposed
stack is chosen for paired t-test. According to the results shown, except a single dataset, all the
others are confirmed with 95% of a confidence that there exists a significant difference between
the KNN algorithm performance and the novel stack. The Naive Bayes and stack pair works in the
same manner as a single dataset does not meet the criteria and the others’ p- values are below the
significant threshold value (0.05). Therefore, this proves that there exists a noticeable difference
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Table 6. Statistical Analysis of Performance of Base Classifiers and the Stacking Ensemble using P- Values

Dataset P- Value
RF vs KNN vs Stack | NB vs Stack | SVM vs Stack | DT vs Stack | ANN vs Stack
Stack
InClassSurveyData 0.023 0.0101 0.0042 0.023 0.0412 0.022
InClassDBData 0.0436 0.036 0.0082 0.0428 0.0154 0.0082
LMSDataNew 0.0132 0.022 0.0015 0.003 0.002 0.0132
ClassroomData 0.0640 0.022 0.0121 0.338 0.018 0.042
XAPI-Edu-Data 0.0429 0.011 0.025 0.0066 0.028 0.036
BreastCancerData 0.010 0.010 0.020 0.040 0.0221 0.000
ChronicKidneyDescies | 0.062 0.002 0.004 0.014 0.0393 0.021
WA_Fn-UseC_-Telco- | 0.003 0.045 0.06 0.029 0.0342 0.000
Customer-Churn
Liver-Disease-Lab- 0.001 0.079 0.002 0.033 0.001 0.033
Data
DiabetesData 0.038 0.046 0.05 0.038 0.011 0.0214
HeartData 0.032 0.002 0.01 0.047 0.031 0.028
Android_Traffic 0.002 0.030 0.045 0.022 0.009 0.036
Fakedata 0.004 0.0111 0.005 0.007 0.028 0.0008
Brain_TumorData 0.028 0.0448 0.0102 0.006 0.007 0. 0448
HepatitisData 0.007 0.021 0.004 0.021 0.022 0.034

between the selected algorithm pair in terms of their prediction accuracies. The p- values for SVM
and the proposed stacking ensemble were visited and all the datasets reached to 0.05 significant level.
Thereby, it can be concluded that the SVM and the stacking ensemble perform differently. The DT
and stacking ensemble are paired to initiate the t-test. The null hypothesis has rejected with 95% of a
confidence level and implies that these algorithms performed differently in prediction tasks. Finally,
the last two algorithm pair has taken for the p-value analysis. According to the results of paired t-test,
the null hypothesis could be rejected with 95% of a confidence and alternative hypothesis has been
accepted by proving that there exists a significant difference between the performances of them.

The statistical significance levels of the differences between the prediction accuracies of meta
models derived in layer 2 and layer 3 are illustrated in the table 7. The main purpose of this evaluation
is to see whether there exists a value of including an additional layer to the proposed stacking ensemble
as the main contribution of this study.

It can be clearly seen that the significance level of accuracy between layer 2 logistic regression
outcome and the layer 3 stack is below the threshold (< 0.05) for all the datasets. This implies that
there exists a noticeable difference between them and hence, the null hypothesis was rejected. The
significant level of layer 2 Random Forest Classifier outcome and the layer 3 stack is below the
threshold (< 0.05) for thirteen out of fifteen datasets, nearly 86% of datasets. Therefore, it can be
concluded as there exists a difference between the prediction accuracies of them. Again the null
hypothesis was rejected and alternative hypothesis was accepted. The significant values given by
paired t- test were below the threshold (0.05) for about 93% of datasets in testing the hypotheses for
layer 2 Support Vector Classifier outcome and the layer 3 stack. Thereby, the null hypothesis was
rejected and alternative hypothesis was accepted by concluding that there is a significant difference
between them. Finally, the last two pairs were also applied to the paired t-test and accordingly, the
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Figure 3. Comparison of Prediction Performances of Layer 2 Meta Classifiers and the Final Prediction given by Layer 3 Meta
Classifier of Proposed Stacking Ensemble
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null hypothesis was rejected and alternative hypothesis was accepted since the significant values are
below 0.05 for all the test datasets.

This statistical figures have proven that the enhancement of the stack generalization into three
layers could derive significant and noticeable accurate prediction outcome for any machine learning
application.

Further, this novel approach has been compared with selected bagging and boosting algorithms
to confirm the accuracy level. Accordingly, the Adaboosting algorithm, Gradient Boosting algorithm,
XGB algorithm and Bagging classifier algorithm are applied to the datasets used for the experiment.
Table 8 illustrates the outcome of the analysis.

The outcome of above evaluation is graphically shown in figure 4. As needs be, it is truly
evident that the proposed stacking ensemble claims an essentially better performance. It contends
with bagging and boosting algorithms and has demonstrated a higher or a similar accuracy measures
for the chose datasets.

The results obtained in this study have shown that the lower performance occurred for some
datasets due to the less number of instances with high number of dimensions. The BreastCancerData
dataset also has lesser instance count compare with the datasets which have high performance but, it
has less number of dimensions compared to the datasets of lower performance. This fact insight that
the number of dimensions in the dataset has a direct impact on the prediction performance. Generally,
the machine learning algorithms are applied on the preprocessed, error-free, noiseless, and non-
redundant data. Then the analysis commenced by performing feature selection/ feature engineering as
well. The number of dimensions of some datasets might reduce by the dimension reduction approach.
Generally, if the number of instances in the dataset is high, there is high robustness and reliability with
the accuracy of the prediction model in machine learning. In a situation where a dataset has 20000,
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Figure 4. lllustration of Prediction Performance of Adaboosting, Gradient Boosting, XGB and Bagging Classifier with Proposed
Stacking Ensemble.
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Table 7. Statistical Analysis of Performance of Layer 2 Meta Classifiers and the Layer 3 Meta Classification of Stacking
Ensemble using P- Values

Dataset P-Values of Stack Vs

LR Meta RF Meta SVM Meta DT Meta

Classifier Classifier Classifier Classifier
InClassSurveyData 0.0335 0.028 0.006 0.0045
InClassDBData 0.02 0.001 0.03 0.0410
LMSDataNew 0.0435 0.058 0.046 0.053
ClassroomData 0.012 0.006 0.047 0.0346
xAPI-Edu-Data 0.006 0.005 0.0013 0.042
BreastCancerData 0.003 0.0064 0.005 0.016
ChronicKidneyDescies 0.042 0.013 0.016 0.0242
‘WA _Fn-UseC_-Telco-Customer- 0.044 0.048 0.056 0.031
Churn
Liver-Disease-Lab-Data 0.007 0.0078 0.020 0.015
DiabetesData 0.004 0.001 0.016 0.001
HeartData 0.012 0.013 0.0059 0.042
Android_Traffic 0.002 0.012 0.016 0.03
Fakedata 0.009 0.002 0.006 0.043
Brain_TumorData 0.02 0.064 0.001 0.041
HepatitisData 0.012 0.013 0.0005 0.0043

Table 8. Comparison of Prediction Performance of Adaboosting, Gradient Boosting, XGB and Bagging Classifier with Proposed

Stacking Ensemble.

Accuracy
Dataset AdaBoost Gradiantboosting XGBoost Classifier Bagging Classifier

Algorithm algorithm
InClassSurveyData 0.64 (+/-0.07) 0.61 (+/-0.13) 0.65 (+/-0.14) 0.65 (+/-0.13)
InClassDBData 0.1(0) 0.1(0) 0.1(0) 0.1(0)
LMSDataNew 0.94 (+/-0.03) 0.95 (+/-0.03) 0.82 (+/-0.05) 0.97(0+/-0.01)
ClassroomData 0.7 (+/-0.4) 0.62 (+/-0.11) 0.65 (+/-0.14) 0.72 (+/- 0.07)
XAPI-Edu-Data 0.64 (+/-0.6) 0.64 (+/-0.06) 0.64 (+/-0.05) 0.72 (+/- 0.05)
BreastCancerData 0.93 (+/-0.02) 0.90 (+/- 0.02) 0.89 (+/-0.03) 0.91 (+/-0.02)
ChronicKidneyDescies 0.99 (+/- 0.01) 0.97 (+/- 0.02) 0.96(+/-0.03) 0.97 (+/- 0.02)
WA_Fn-UseC_-Telco- 0.8 (+/-0.007) 0.79 (+/- 0.01) 0.78 (+/-0.01) 0.78 (+/- 0.01)
Customer-Churn
Liver-Disease-Lab-Data 0.73 (+/-0.06) 0.67 (+/- 0.07) 0.72 (+/-0.08) 0.66 (+/- 0.07)
DiabetesData 0.74 (+/-0.37) 0.75 (+/- 0.04) 0.68 (+/-0.06) 0.75 (+/- 0.05)
HeartData 0.8 (+/- 0.09) 0.79 (+/- 0.07) 0.81 (+/-0.05) 0.78 (+/- 0.08)
Android_Traffic 0.76 (+/-0.012) 0.77 (+/-0.01) 0.76 (+/-0.01) 0.9 (4+/- 0.01)
Fakedata 0.92 (+/-0.03) 0.91 (+/- 0.03) 0.88(+/-0.35) 0.92 (+/- 0.03)

Brain_TumorData

0.93 (+/-0.017)

0.93 (+/- 0.01)

0.93(+/-0.01)

0.94 (+/- 0.02)

HepatitisData

0.57 (+/-0.11)

0.58 (+/- 0.11)

0.55(+/-0.17)

0.6 (+/- 0.11)
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50000, or more than that number of instances, even though there might not get a higher prediction
accuracy, the prediction result can be stronger than a dataset of a lesser number of instances. There
are some studies in which the researchers have obtained a better prediction result from a smaller
dataset than even with large data instances (Noem- DeCastro-Garc et. al, 2019).. From the accuracy
measures derived by the proposed ensemble have shown diverse values for various datasets. As per
that result, there was no relationship between the size of the dataset and their accuracies. However,
if the analysis performs with a dataset with images, having a huge set of images in the dataset will
be an advantage for a better result.

5. CONTRIBUTION AND IMPLICATIONS

This study contributes to data mining in two aspects. Firstly, proposed a novel architecture for the
existing stacked generalization. Secondly, the architecture is optimized using SAA hyperparameter
optimization approach to obtain the best prediction result for any classification problem.

The experiments were executed on an Intel Core (R) i5 in 8GB memory 72000 CPU @ 2.7GHz
machine with NVDIA TITAN GPU processor of which the prediction result was independent from the
execution environment. However, when the size of the dataset is getting increased, there was a delay in
producing the prediction result of the proposed ensemble than a small dataset. On average it required
12.87 milliseconds to complete the execution of datasets below 800 instances and 17.76 milliseconds
to complete the execution of datasets above 800 instances. This implies a considerable computation
time is taken by the proposed ensemble to derive the optimal prediction results. Hyperparameter
optimization of the classifiers may also be a reason for the increase of computational time of the
classifier. As previous studies have shown, the spatial and time complexity of a model are affected
by the size of the dataset (Noem- DeCastro-Garc et. al, 2019). Therefore, while increasing the size
of the dataset, the computational complexity will increase. Since diverse classifiers are involving
and as they behave in diverse methods to produce the prediction task in the proposed ensemble, the
complexity of this approach will be getting increased. However, while increasing the accuracy of
the ensemble, it increases the time and the special complexity. Therefore, this can be considered as
another limitation of this study. Nevertheless, the user could execute the proposed ensemble in a
computer which is suitable for data analysis tasks with a high performing processor and with more
memory capacity to overcome this limitation.

The proposed stacking ensemble has been evaluated with many classifiers in the layer 2 and
layer 3 meta classification to ascertain the best classifiers to obtain the optimal output. This was
a challenging task, as the evaluations had carried out with multiple benchmark datasets. In some
situations, the ensemble was slow to produce the output due to the computational complexity of the
ensemble environment. Each experiment was repeated with 3-fold, 5-fold and 10-fold cross validation
in order to select the best cross validation approach as well. However, the classifiers that generated
the most accurate results was utilized in each meta classification layer to finalize the ensemble.

6. CONCLUSIONS AND FUTURE WORK

In addressing several deficiencies identified in past researches, an innovative machine learning solution
has been proposed via a stacking ensemble by combining various individual classifiers. Rather than
selecting the algorithm which generates the prediction result with most outperforming accuracy, it
combines the results of every classifier to generate the best result through a weighed ranking method
and a hyperparameter optimization procedure. Past studies have shown that, though the stacking leads
to a better prediction accuracy than the individual classifiers, there exists some limitations. This
research aimed to address those shortcomings. First, the commitment of individual classifiers to the
prediction is unclear in stacking. This study has proposed a weighted scoring approach to select the
classifiers with the best prediction accuracies into the next level of the stack. Secondly, the parameters
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of the base learners may affect the final prediction accuracy. Therefore, the selection of the parameters
must be done very cautiously. This issue has been addressed by optimizing the hyperparameters of
base classifiers as well as meta-classifiers. Finally, the enhancement of the prediction accuracy has
been achieved by introducing a three layered stacked generalization framework. After a comparison
of the performance of novel stacking ensemble, it has shown that a noticeably a better result could
generate by the proposed method. The statistical tests are proven that the prediction models generates
by the novel ensemble does the prediction more significantly better than the individuals. Thereby,
the researchers were able to propose an optimal stacking ensemble learner with improved accuracy
and robustness. As future work, the authors’ intention is to research on optimizing the proposed
novel stacking ensemble to increase the prediction accuracy while minimizing the time and special
complexity. In order to do that the authors are expecting to apply big data technology such as Spark
on the proposed ensemble to manage the big collection of data and derive the optimal solution with
less complexity (Cai Z et. al., 2014, Ni Z., 2013 and Zaharia M, 2012) . Finally, the authors supposed
to propose an ensemble for regression tasks as well.

UCI machine learning repository. (n.d.). http://archive.ics.uci.edu/ml/datasets.html
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APPENDIX

This section provides a detailed description about the benchmark datasets of this study.

KNN, RF, NB, SVM, DT, ANN and Logistic Regression were executed utilizing Python Scikitlearn
library. Every one of these algorithms were applied to fifteen diverse datasets. The details of the
datasets are as follows.

(1) LMSData, which was gathered by getting to the MOODLE information of a course module
offered for thirteen weeks of an Information Technology degree program in a Sri Lankan college.
It contained 799 occasions and 11 highlights.

(2) ClassroomData, was accumulated by conveying an organized poll among the undergraduate
students who were taken a crack at an Information Technology degree program. There are 170
occasions and 20 factors in this dataset.

(3) InClassSurveyData, which was gathered through another open-ended questionnaire with
university students. There are 171 examples and 20 highlights in this dataset.

(4) InClassDBData was another dataset used to make the expectation and assess the precision of the
forecast. This has gathered through a blend of a study and getting to the undergraduates’ records
from the college database. It contained 3795 occurrences and 18 highlights.

Publicly available datasets were taken from various vaults. The insights concerning on the web
datasets utilized are as per the following.

(5) xAPI-Edu-Data contains 481 examples and 14 highlights.

(6) BreastCancerData dataset has taken from UCI machine learning repository which contains 9
attributes and 268 instances (UCI machine learning repository, 2020).

(7) ChronicKidneyDescies dataset has taken from UCI machine learning repository and it contains
25 attributes and 400 instances.

(8) WA_Fn-UseC_-Telco-Customer-Churn is one of the Keggle dataset with 21 attributes and 7043
instances (Kaggle datasets, 2020).

(9) liver-infection lab-information has gotten from UCI machine learning repository and it has 11
attributes and 483 instances.

(10) DiabetesData is again taken from UCI Al vault. It has 20 attributes and 769 instances.

(11) HeartData is taken from UCI machine learning repository which contains 303 records with 14
attributes.

(12) Android_traffic dataset is acquired from Keggle repository which has 17 attributes and 7846
instances.

(13) FakeData dataset was obtained from Keggle repository and it contains 12 attributes and 697
instances (Kaggle datasets, 2020).

(14) brain_tumorData is gotten from Figshare repository with 1449 instances and 19 attributes
(Figshare, 2020).

(15) hepatitisData is a dataset hosted at UCI machine learning repository and it has 19 attributes
and 155 instances.
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Figure 5A. AUC- ROC Curve Analysis of Individual Classifiers and Proposed Ensemble - Part 1
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Figure 5B. AUC- ROC Curve Analysis of Individual Classifiers and Proposed Ensemble — Part 2
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Figure 5C. AUC- ROC Curve Analysis of Individual Classifiers and Proposed Ensemble — Part 3
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