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Abstract: The application of numerical models to understand the behavioural pattern of a flood is 

widely found in the literature. However, the selection of an appropriate hydraulic model is highly 

essential to conduct reliable predictions. Predicting flood discharges and inundation extents are the 

two most important outcomes of flood simulations to stakeholders. Precise topographical data and 

channel geometries along a suitable hydraulic model are required to accurately predict floods. One-

dimensional (1D) hydraulic models are now replaced by two-dimensional (2D) or combined 1D/2D 

models for higher performances. The Hydraulic Engineering Centre’s River Analysis System (HEC-

RAS) has been widely used in all three forms for predicting flood characteristics. However, com-

parison studies among the 1D, 2D to 1D/2D models are limited in the literature to identify the bet-

ter/best approach. Therefore, this research was carried out to identify the better approach using an 

example case study of the Kelani River basin in Sri Lanka. Two flood events (in 2016 and 2018) were 

separately simulated and tested for their accuracy using observed inundations and satellite-based 

inundations. It was found that the combined 1D/2D HEC-RAS hydraulic model outperforms other 

models for the prediction of flows and inundation for both flood events. Therefore, the combined 

model can be concluded as the better hydraulic model to predict flood characteristics of the Kelani 

River basin in Sri Lanka. With more flood studies, the conclusions can be more generalized. 

Keywords: 1D/2D model; 2D model; HEC-RAS; hydraulic simulations; Kelani River basin 

 

1. Introduction 

Among many other natural disasters, floods are very common throughout the world. 

They are dangerous and can impact a significant area. Annually, USD 662 billion of dam-

age is estimated from these floods over the world [1]. The adverse impacts of floods range 

from direct impacts such as the loss of human life, damage to property, destruction of 

crops, loss of livestock to indirect impacts such as the spread of waterborne diseases, de-

terioration in water quality, etc. Therefore, the ability to predict the nature and the extent 

of a flood is very important to local decision makers as this would enable them to plan for 

such adverse impacts and minimize the damage.  

It is essential to develop appropriate mitigation measures to minimize flood risk and 

flood damage. Structural and non-structural flood mitigation approaches are sometimes 
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coupled together for better solutions; however, each approach has its own merits and de-

merits. The construction of dykes, levees, dams, flood control reservoirs, diversions, 

flood-ways, etc., are a few examples of structural measures. However, these structural 

measures might be costly, and implementation can be time-consuming. On the other 

hand, flood forecasting and warning, watershed management, floodplain development 

guidelines, insurance, and awareness programs fall into non-structural measures [2,3]. 

The structural measures have a certain design capacity, and, in cases of unexpected ex-

treme flood events, failures are possible and, thus, the damage could be disastrous [4–7]. 

Therefore, non-structural approaches are very important to promote settlement and re-

duce property damage, ensuring the safety and well-being of the public. 

Recent studies revealed that there is an increasing trend of floods [8–11]. Rapid ur-

banization, unplanned and uncontrolled developments on floodplains, and the blockage 

of drainage paths associated with the increasing population can potentially increase the 

flood risk [12–15]. Impervious surfaces decrease the infiltration and thus increase the sur-

face runoff. Therefore, the usual shape of the hydrograph is changed and flash floods are 

frequent. In addition, the changing climate has increased the number of floods and their 

magnitude in some areas [16–19]. Therefore, more adverse impacts can be witnessed and 

expected in the future. Thus, as it was stated, non-structural solutions are much needed 

for society.  

The hydrodynamic simulations to forecast the inundation extent is considered as one 

of the widely used methods among non-structural measures. However, decision makers 

and researchers have diverse experiences regarding the selection of hydrodynamic mod-

els. A wide variety of numerical models developed by many researchers/decision makers 

to estimate/predict floods and flood-induced risk can be found in the literature. However, 

the selection based on the dimension of modelling (either one-dimensional (1D), two-di-

mensional (2D), or combined model (1D/2D)) are still problematic and questionable [20–

22]. 

The Hydraulic Engineering Centre’s River Analysis System (HEC-RAS) is a public 

domain software that is widely used in hydraulic-related applications throughout the 

world. Many researchers have conducted different studies on comparisons of HEC-RAS 

(i.e., 1D, 2D, or combined (1D/2D)) models with other open-source or perpetual licence 

hydrodynamic models such as TELEMAC-2D, LISFLOOD-FP, MIKE-11, MIKE-21, etc. 

[23,24]. Furthermore, it is reported that the prediction capability of models remains the 

same but performance varies with changes in the friction parameters. However, due to 

the limitations of 1D models in capturing the properties of the floodplain, coupled 1D/2D 

or 2D modelling approaches were suggested by some of the researchers [23,24]. 

Timbadiya et al. [25] suggested that the selection of numerical model type also plays 

a crucial role in the accuracy of hydraulic simulations similar to precise topography and 

channel geometry. In most cases, 1D models are now replaced by the 2D or combined 

1D/2D models for higher performances. Hydraulic simulations for complex flood plain 

scenarios were usually carried out using the combined 1D/2D models [20,21]. The main 

channel is modelled as a 1D case, while the flood plain is modelled as a 2D case under the 

combined 1D/2D simulations. The literature showcases many studies based on the com-

bined 1D/2D hydraulic modelling [20,26–28]. However, limited applications can be found 

for comparison studies of 1D to 2D and combined 1D/2D. Vozinaki et al. [21] attempted 

to compare 1D to combined 1D/2D hydraulic simulations; however, it was not that com-

prehensive. In addition, there is no literature on the selection of 1D, 2D, and combined 

1D/2D hydraulic models in the context of Sri Lanka, even though the country has major 

flood events annually.  

Therefore, this study, for the first time, presents a comprehensive comparison study 

of 1D to 2D and combined 1D/2D hydraulic models using a case study in Sri Lanka. The 

lower stretch of the Kelani River with the influence of tides and the use of high-resolution 

data were integrated for the modelling purposes of the HEC-RAS hydraulic model. The 
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calibration and validations were conducted for both flows and inundation extents with 

measured stages and satellite-observed inundation extents. 

2. Hydraulic Modelling of River Flow 

The schematic diagram of the river flow is expressed in Figure 1. The 2D flow condi-

tions can be seen from the plan view (Figure 1a) and the longitudinal view (Figure 1c).  

 
 

(a) (b) 

 
(c) 

Figure 1. Schematic diagram of river flow. (a) River schematic diagram—plan view, (b) cross section 

A′-A′, (c) elementary control volume. 

2.1. Governing Equations for 2D HEC-RAS Hydrodynamic Model  

The HEC-RAS 2D model is developed to model and simulate complex floodplains in 

situations where the 1D flow is no longer valid enough for expected outcomes. The 2D 

unsteady flow varies with time and along two spatial dimensions. The governing laws of 

2D unsteady flow are the conservation of mass (continuity) and conservation of momen-

tum. The two-dimensional unsteady continuity equation is mathematically expressed in 

Equation (1).  

��

��
+

�(ℎ�)

��
+

�(ℎ�)

��
= 0 (1)

where � is the water surface elevation (m), ℎ is the water depth (m), � and � are the 

depth-averaged velocities in the � and � direction (m/s).  

The conservation of momentum is calculated by Newton’s second law of motion, 

which states that the sum of forces acting on an element equals the rate of change of mo-

mentum, which is written by considering the gravitational force, eddy viscosity, friction, 

and Coriolis effect [29]. The Coriolis effect and the eddy viscosity terms are usually ne-

glected in the 2D model due to the size of the river basin and to maintain uniformity in 

the comparisons with the 1D flow and the unavailability of the required parameters for 

the calibration of the eddy viscosity coefficient [30,31]. Therefore, the modified full mo-

mentum equations can be written as Equations (2) and (3) for � and � directions. 
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Momentum balance in � direction 
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Momentum balance in � direction 
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where � is the gravitational acceleration (m/s2), � is the Manning’s coefficient, and � is 

the wetted perimeter (m).  

In order to reduce the computational time and the numerical instabilities, the HEC-

RAS 2D unsteady flow Saint-Venant equations (shallow water equation) are often simpli-

fied using diffusive wave approximation. However, those simplifications are only valid 

for certain flow conditions. Nevertheless, the rivers that are influenced by tides are ad-

vised to incorporate the full momentum equations [31]. The Kelani River, which was used 

as an example in this study, has tidal influences [32,33] and, therefore, comprehensive 

analysis is recommended.  

2.2. Governing Equations for 1D/2D HEC-RAS Hydrodynamic Model  

The main river stretch is modelled as a 1D model, while the flood plain is a model 

with a 2D modelling approach in the coupled 1D/2D HEC-RAS model. The HEC-RAS uses 

a tight coupling technique. In other terms, both the 1D domain and the 2D domain are 

coupled on a time step basis. A lateral structure is used in order to establish the connection 

between the 1D and 2D domains [34].  

The main river stretch solves the 1D Saint-Venant (shallow water) equation, which is 

comprised of continuity and momentum equations as shown in Equations (4) and (5).  

��

��
+ 

��

��
= 0 (4)

�

��
�

�

�
� +

�

��
�

��

��
� + �

��

��
+ ���� − ��� = 0 (5)

where, �, �, ��, and ��  are the cross section area (m2), the water flowrate (m3/s), the 

slope of the riverbed, and the energy slope, respectively. In addition, flow in the flood 

plain is calculated using 2D continuity equations and momentum equations as given in 

Equations (1)–(3).  

3. Case Study Application 

The Kelani River basin in Sri Lanka is the second-largest river basin based on the 

catchment area. River Kelani extends from the central hills of the country to Colombo, at 

a distance of about 145 km when measured along the channel centreline. The river basin 

is located between Northern latitude 6°47′ to 7°05′ and Eastern longitudes 79°52′ to 80°13′, 

with a basin area of nearly 2230 km2 as shown in Figure 2. Broadly, the river basin can be 

categorized into upper and lower basins. The upper basin features mountainous terrain, 

whereas the lower basin is generally flat terrain. The lower basin lies below the Hanwella 

River gauging station, which has an approximate area of 500 km2 (refer to Figure 2, light 

brown area). 
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Figure 2. Kelani River basin. 

The upper catchment is predominantly covered with vegetation, whereas the lower 

catchment is heavily urbanized. The river basin receives an average annual rainfall of 

nearly 2400 mm and carries a peak discharge of 800–1500 m3/s during the monsoonal pe-

riods (i.e., especially in the southwest monsoon period from May to September). During 

the southwest monsoon period, the lower reach of the basin is frequently flooded as rec-

orded from the flood gauge located at Nagalagam Street (refer to Figure 2). 

Recurring flood events happened in consecutive years, 2016, 2017, and 2018, at the 

Lower Kelani River basin. Out of them, the 2016 event was recorded as the most severe 

flood in almost 30 years (compared to the flood that happened in 1989). Rapid urbaniza-

tion, unplanned developments, and reduced drainage density were identified as the major 

causes for these flood events. According to (Sri Lanka post-disaster needs assessment: 

May 2016 floods and landslides, 2016) records, more than 60% of the total population in 

Colombo and Gampaha Districts were affected and significant damage to the infrastruc-

ture happened due to the 2016 event. 

4. Methodology 

4.1. Overall Methodology 

It is interesting to observe the flood events under 1D and 2D hydraulic models and 

then to compare their capabilities. Therefore, Hydraulic Engineering Centre’s River Sys-

tem (HEC-RAS) was used to analyse the extreme events that happened in 2016 and 2018 

using a combined one-dimensional and two-dimensional (1D/2D) model and two-dimen-

sional (2D) model. In addition, a high-resolution Digital Elevation Model (DEM) was used 

to map the inundations during the flood events along the river and floodplains. 
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4.2. HEC-RAS Model Inputs  

4.2.1. Elevation and Modification of River Bathymetry 

The Digital Elevation Model (DEM) developed using Light Detection and Ranging 

(LiDAR) was used to capture the topographic features. However, the LiDAR data are un-

able to detect the terrain features underneath the water [35]. Figure 3a explains this fea-

ture. Therefore, measured bathymetries (river cross sections) were fed using a conven-

tional manner. Perpendicular interpolations were conducted for the sections spaced ap-

proximately at a 1 km distance, which was also used by Nandalal [3]. These interpolations 

were important when the change in velocity head was too large to determine the energy 

gradient along the river. Furthermore, the inline structures (i.e., bridges and salinity bar-

rier) were neglected when modelling the river stretch.  

 
(a) 

 
(b) 

Figure 3. River bathymetry; (a) comparison of the measured cross-section with measured bathym-

try; (b) smoothening of the terrain. 

  



Hydrology 2022, 9, 39 7 of 19 
 

 

In developing the 1D/2D HEC-RAS model, the 2D area was connected to the main 

river stretch with lateral structures established next to the river over banks. A lateral struc-

ture has the same topographical features next to the river over banks. However, sudden 

variations in the elevation data can lead to model instabilities. As shown in Figure 3b, a 

smoothening was conducted to the elevations of the lateral structure by following “Sa-

vitzky–Golay” algorithm developed by Gorry [36]. However, some places were adjusted 

manually in order to have a good representation of the natural terrain (see Figure 3b).  

The models were developed on a personal computer (HP—Elite Book i5) with an 8 

core processor at a speed of 3.7 GHz and a RAM of 6 GB. The simulation times of 10 min 

and 45 s and 7 min and 32 s were taken for the combined 1D–2D model for 2016 and 2018, 

respectively. In addition, 17 min and 24 s and 6 min and 41 s were taken for the simula-

tions of HEC-RAS 2D model for the 2016 and 2018 years, respectively. 

4.2.2. Land Use Characteristics  

The upper basin is predominantly covered with heavy vegetation such as forests, 

grasslands, scrublands, and cultivations, whereas the lower basin is heavily urbanized 

[37]. The preliminary manning’s coefficients were assigned based on the suggestions of 

Chow [38,39]. 

4.2.3. Boundary Conditions  

An hourly flow hydrograph and a stage hydrograph were established as the upper 

and lower boundary conditions, respectively, for both models. These unsteady flow hy-

drographs are given in Figure 4 for years 2016 and 2018. Lower boundary conditions were 

established at the sea outfall by giving hourly tidal fluctuation (as stage). Therefore, the 

stage hydrograph at Nagalagam Street was able to replicate the tidal fluctuation including 

backwater effect [39]. Additionally, an energy slope for the distribution of flow along the 

boundary line was assigned after measuring an average slope from the DEM for the 2D 

model.  

 
(a) 
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(b) 

Figure 4. Inflow hydrographs as the boundary conditions for the model; (a) for 2016, (b) for 2018. 

4.2.4. Implicit Weighting Factor, Calculation Time Step, and Optimal Mesh Size 

As was already stated, the Kelani River is a tidally influenced river, and the bed ele-

vation at the outfall is usually lower than the mean sea level. Therefore, the backwater 

effect has a significant impact on the flows. As the tidal fluctuations are very dynamic, 

Brunner [40] suggested maintaining an implicit weighting factor around 0.6 in order to 

have an accurate system. Therefore, a trial and error procedure was applied to identify 

the optimum value for theta weighting factor. The optimal weighting factor was identified 

as 0.71 for the Kelani River. The weighting factor is capable of performing stable calcula-

tion.  

In addition, Courant number (�) was defined to ensure the model stability selection 

of time step and the mesh size. This Courant number is expressed in Equation 6.  

� =
� ∆�

∆�
< 1  (6)

where � is the flow velocity (m/s), ∆� is computational time step (s), and ∆� is the spatial 

step (m), i.e., cross section spacing in 1D models and cell size in 2D models. According to 

the Equation (6), the time step of 60 s was selected for the calculation. Minimum of 15 m 

fine cell resolution in the main channel and maximum of 30 m coarse cell resolution were 

used for the computational mesh for suitable locations of the river basin.  

4.3. Model Analysis and Results Comparison  

4.3.1. Water Level Comparison  

The better agreement between the simulated water level in Nagalagam Street gauge 

and the observed water level was ensured with the use of the Nash–Sutcliffe efficiency 

coefficient (NSE) [41]. The value 1 in the Nash–Sutcliffe efficiency coefficient denotes a 

perfect match. Equation (7) presents the Nash–Sutcliffe efficiency coefficient. 

��� = 1 −
����

� (�� − ��)
�

����
� ��� − ��

�  (7)

where �� is observed flow at ith time, �� is simulated flow at ith time, � is mean of ob-

served flow, � is mean of simulated flow, and � is the number of observations.  

In addition to this, Pearson coefficient of determination (R2) and Root Mean Square 

Error (RMSE) were calculated to ensure a good capture of the correlation and minimize 
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the error between simulated and observed water levels. These are given in Equations (8) 

and (9). 

�� =
�∑ ((�� − �) × (�� − �))�

��� �
�

∑ ��� − ��
��

��� × ��� − ��
�  (8)

���� = �
1

�
�(�� − ��)

�

�

���

 (9)

4.3.2. Inundation Extent Comparison  

A comprehensive evaluation with satellite-observed inundation extents and sur-

veyed inundations were carried out to evaluate the model’s performance. Flood Area In-

dex (���), accuracy, Bias score, Probability of Detection, false alarm ratio, Probability of 

False Detection, and Success Index were extracted from Bennett et al. [42], Falter et al. [43], 

and Khaing et al. [44] in order to compare the inundation extents. A self-explanatory skill 

matrix composed of Equations (10)–(16) was developed. 

��� =
����

���� + ���� + ����
  (10)

�������� =  
ℎ��� + ������� ���������

�����
  (11)

���� ����� =  
ℎ��� + ����� ������

ℎ��� + ������
  (12)

����������� �� ��������� (ℎ�� ����) =
ℎ���

ℎ��� + ������
  (13)

����� ����� ����� =  
����� ������

ℎ��� + ����� ������
  (14)

����������� �� ����� ��������� (����� ����� ����) =
����� ������

������� ��������� + ����� ������
  (15)

������� ����� =  
1

2
 �

ℎ���

ℎ��� + ������
+

������� ��������� 

������� ��������� + ����� ������
�  (16)

where ���� is the number of grid cells correctly predicted as flooded by the model (hits), 

���� is the number of cells flooded in the prediction but observed as dry in the observa-

tion (false alarm), ���� is the predicted dry area but observed wet area (misses), and the 

number of correct negatives are the cells predicted and observed as dry. 

4.3.3. Calibration and Validation  

The calibration of the hydrodynamic model was conducted by following a trial and 

error procedure while changing Manning’s coefficients. The initial guesses for Manning’s 

roughness coefficients were assigned based on the land use type along with visual obser-

vations. Suggestions of Chow (1959) were further used for the justification of the values 

applied for the model.  
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5. Results and Discussion 

5.1. Comparison of 2016 and 2018 Flood Stages 

The year 2016 flood was an extreme event and the stages recorded at Nagalagam 

Street was observed to be almost at 2.4 m, which was the highest recorded flood after 1989. 

Figure 5a showcases the stage heights comparison from the observed to simulated stages, 

while Figure 5b presents those in 2018. Usually, the 2D model overestimated the flood 

heights compared to the observed heights. However, on average, slight underestimations 

can be seen in the results of the 1D/2D model. Nevertheless, the 2D hydraulic model can 

be considered a better model by the visual observations from Figure 5a,b. 

 
(a) 

 
(b) 

Figure 5. Comparison of stages of Nagalagam Street Gauge. (a) For 2016, (b) for 2018. 
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The time to the peak is also well captured by the 2D model compared to the 1D/2D 

model. Nevertheless, overestimations, as discussed earlier, can be observed in the 2D 

model. The performance of the 1D/2D and 2D models with respect to the stages for years 

2016 and 2018 were evaluated with statistical parameters suggested by Moriasi et al. [45], 

as stated in the methodology section. The calculated statistical parameters comparing the 

simulated stages with the observed stages are given in Table 1. Based on the calculated 

statistical parameters, the overall model is capable of capturing the flow processes with 

both models showing a very good performance rating.  

Table 1. Performance of the models with respect to the stages. 

Statistical Parameters 
2016 Event 2018 Event 

2D 1D/2D 2D 1D/2D 

R2 0.98 0.95 0.97 0.95 

NSE 0.98 0.91 0.72 0.80 

RMSE 0.08 0.14 0.11 0.09 

According to the estimated statistical parameters for both the 1D/2D and 2D models, 

the 2D model shows a high prediction capability of stages (i.e., NSE = 0.98, R2 = 0.98, and 

RMSE = 0.08) compared to the 1D/2D model (i.e., NSE = 0.95, R2 = 0.91, and RMSE = 0.14). 

However, the 1D/2D model was comparatively able to capture the flow processes better 

than the 2D model for the 2018 event. Nevertheless, by comparing the visual characteris-

tics of the hydrograph and the statistical parameters, it can be stated that the 2D model 

outperforms the 1D/2D model.  

5.2. Inundation Extent Comparison 

The microwave images captured by Sentinel-1 during the floods of 2016 and 2018 

were processed and used to compare the simulated inundation extent. The comparisons 

were conducted by following a cell by cell approach of sub-regions suggested by De Silva 

et al. [46] and evaluated with the statistical parameters mentioned above. However, the 

inundation extents of some areas, especially the highly urbanized and mountainous areas, 

are partly constricted by the satellite images [43]. Figure 6 shows a comparison between 

the surveyed inundations with the Sentinel-1 satellite-observed inundation extent.  
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Figure 6. Comparison of Sentinel Satellite-observed flood with surveyed flood. 

Locations 1–3 were areas that actually experienced floods during the 2016 event, 

which are marked with the surveyed inundation and further justified with Google Earth 

pro high-resolution images. However, these were not captured by the Sentinel-1 satellite 

image. The incoming signals of Sentinel-1 could have been double bounced, causing the 

backscatter to be higher than normal due to the densely built-up areas and, therefore, the 

signal was unable to reach the ground. This scenario was stated by Solbø and Solheim 

[47]. This could be a possible reason for not capturing the three locations. Therefore, there 

can be some underestimations of flood cover in satellite images, even though they are 

considered one of the most reliable sources to make comparisons with the simulated ex-

tent [43].  

Figure 7 illustrates the inundated areas from the 2016 and 2018 floods for the river 

basin using satellite observations and hydrological models (1D/2D and 2D).  
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Figure 7. Comparisons of inundation areas. 

Based on the derived inundation maps for the 2016 and 2018 events, the predicted 

inundation areas from the 1D/2D model were 75.24 km2 and 34.47 km2 for the 2016 and 

2018 floods, respectively, whereas the predicted inundation areas from the 2D model were 

54.19 km2 and 22.86 km2, respectively. Therefore, the 1D/2D model predicts more inunda-

tion area compared to the 2D model. Moreover, the inundated areas calculated from the 

Sentinel-1 satellite images are lower than the inundation extents simulated from both 

models. These are approximately 14.28 km2 and 3.51 km2, respectively. Most of the flooded 

areas in the Colombo and Gampaha districts were not captured by the satellite images. 

However, high-resolution satellite images of Google Earth Engine (refer to Figure 6) 

showcase the flooded areas that were not captured by the Sentinel-1 satellite images.  

Furthermore, Figure 8a,b present the simulated inundation areas for both models for 

the 2016 and 2018 flood events along with the satellite-observed inundation extent and 

the recorded surveyed inundation for urban areas. 

 
(a) 



Hydrology 2022, 9, 39 14 of 19 
 

 

 
(b) 

Figure 8. Inundation extent comparison for developed models to satellite-observed and surveyed 

inundation for urban areas: (a) for 2016, (b) for 2018. 

The inundated area observed during the 2016 flood event is comparatively larger 

than in 2018, as it was an extreme event. Apparently, both models have many overlapping 

areas. In order to have a comprehensive assessment, sub-region-based cell by cell com-

parison was conducted for both models with the satellite-observed flood, which is sum-

marised in Table 2. 

Table 2. Calculated statistical matrixes for inundation areas. 

Statistical Parameter 
2016 2018 Average Average 

1D/2D 2D 1D/2D 2D 1D/2D 2D 

FAI 0.51 0.36 0.55 0.26 0.53 0.31 

Accuracy 0.88 0.86 0.94 0.89 0.91 0.88 

Bias Score 1.97 1.49 1.35 0.99 1.66 1.23 

Hit rate 0.97 0.68 0.83 0.41 0.90 0.55 

False Alarm Ratio 0.48 0.50 0.34 0.50 0.41 0.50 

False Alarm Rate  0.13 0.12 0.05 0.06 0.09 0.09 

Success Index 0.92 0.78 0.89 0.68 0.90 0.73 

For the event in 2016, the 1D/2D model showed a very good agreement with the sat-

ellite-observed flood, which is indicated with a probability of detection (hit rate) of 97% 

and an accuracy of 88%. However, the model tends to overestimate the inundation extent, 

which can be identified by the false alarm ratio of 48%, a false alarm rate of 13%, and a 

biased score of 1.97. Nevertheless, the 1D/2D model was able to successfully predict the 

inundation extent with a success index of 92% for the 2016 event. This is a significantly 

improved result when compared to past studies for the same basin [42,46].  

However, the 2D model was unable to predict the extent as it was in the 1D/2D model 

for 2016, which is illustrated with a hit rate of 68% and an accuracy of 86%. Furthermore, 

a similar overestimation was observed when compared to the 1D/2D model, which is 

quantified with a false alarm ratio of 50%, a false alarm rate of 12%, and a biased score of 
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1.49. Due to that, the occurrence or non-occurrence of the event was captured with a 78% 

success index. Therefore, the 2D model for the 2016 event was able to reasonably capture 

the inundation extent. 

However, the 1D/2D model predictions showed a slightly better performance for the 

2018 event compared to the 2016 flood event, which is denoted by an increased accuracy 

of 94%, a reduced bias score (1.35), a lower false alarm ratio (34%), and a lower false alarm 

rate (5%), but it has a lower hit rate (83%). As a result, the prediction ends up with a suc-

cess index of 89%, slightly lower when compared to the 2016 event.  

The 2D model for the 2018 event showcases similar behaviour as was shown for the 

2016 event. It indicated a hit rate of 41%, an accuracy of 89%, a false alarm ratio of 50%, 

and a false alarm rate of 6%. However, the 2D model underestimates the inundation ex-

tent, which is denoted with a bias score of 0.99. Therefore, the success index of the 2D 

model for the year 2018 is 73%.  

After combining the results for both events, the 1D/2D model was able to successfully 

predict the inundation extent with a high hit rate (90%) and a high accuracy (91%), to-

gether with an overestimation denoted by statistical parameters such as false alarm ratio 

(41%), false alarm rate (9%), and biased score (1.66). Based on the statistical results, the 2D 

model was unable to predict the inundations in the same way as the 1D/2D model. Even 

the predictions showed an underestimation when compared with satellite-observed inun-

dation extents.  

Even the statistical matrix showed a good agreement: in visual observations, the com-

bined 1D/2D model (refer to Figure 8a,b—pink outline highlighted with red coloured dot-

ted box) seems to be an overestimation. However, during the flood events, those areas 

were inundated. However, there was no valid proof in the scientific world other than the 

statements of local people. Therefore, to justify the statement, “during the flood events, 

those areas were inundated”, we conducted a comparison with the recorded maximum 

discharges at Hanwella Gauge, and the stages at Nagalagam Street with past studies con-

ducted by the Disaster Management Centre Sri Lanka (DMC) and the University of Ke-

laniya, Sri Lanka [48].  

The initial environmental examination conducted by the University of Kelaniya [48] 

showed some photographs captured during the 2010 flood and the recorded flood surface 

elevation (2.10 m above MSL), which justify that the area was inundated with the maxi-

mum recorded discharge of 907.8 m3/s at Hanwella gauge and a stage of 1.58 m at Nagala-

gam Street gauge (refer to Figure 9).  

  
(a) (b) 

Figure 9. Maximum recorded discharges and the stages of (a) Hanwella and (b) Nagalagam Street 

gauges. 

However, the recorded flood events in 2016 (1470 m3/s) and 2018 (1238 m3/s) had 

higher magnitudes compared to 2010 (964 m3/s). Based on that judgement, the statement 

can be justified. Therefore, the predicted flood inundations in the 1D/2D model are ac-

ceptable.  
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5.3. Travel Time Comparison 

Figure 10 showcases the travel time comparison for both the 1D/2D and 2D models 

for both flood events (2016 and 2018). The spatial distribution of the flood arrival time was 

calculated. Both models were solved using the same 2D equation in the floodplain and, 

therefore, the travel time was similar. However, the mean travel time for most of the areas 

either side of the river bank was approximately 1 day (24 h) from the beginning of the 

flood wave. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Travel time comparison. (a) Travel time combined 1D/2D model for 2016, (b) travel time 

2D model for 2016, (c) travel time combined 1D/2D model for 2018, (d) travel time 2D model for 

2016. 

6. Summary and Conclusions  

The present study was conducted with high-resolution spatial data by two hydraulic 

models, which are solved in the 1D and 2D environments (1D/2D model and 2D model). 

The comparisons are conducted with coupled 1D/2D and 2D models of HEC-RAS, which 

has not been comprehensively studied in terms of capturing the inundations with the 

flows in the Sri Lankan context. Therefore, the major objective of comparing both models 

was conducted without changing the topography, channel geometries, boundary condi-

tions, flows, and stages. The calibration was conducted by changing Manning’s coefficient 

and validated for similar flood scenarios that happened closer to the calibrated event. 

Based on the comparisons conducted, the following conclusions were made. 
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 The HEC-RAS 2D model was able to successfully capture the flow process when 

compared to the coupled 1D/2D HEC-RAS models during high flow conditions. 

 The 1D/2D HEC-RAS model was a better predictor of flows when it came to low flow 

situations. 

 Combining the prediction capability of flows during high flows and low flows, the 

HEC-RAS 1D/2D model is a better predictor than the 2D model.  

 The HEC-RAS coupled 1D/2D model is a better predictor when predicting inunda-

tion extents during high flow and low flow situations. 

 Overall, the HEC-RAS 1D/2D model is a better model compared to the 2D model in 

predicting inundation extents and the flows under high and low flow situations. 

The results would be interesting to the stakeholders such as the Disaster Manage-

ment Centre of Sri Lanka to forecast the future needs based on the capacity of the hydrau-

lic model. 
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