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Abstract: Hydropower stands as a crucial source of power in the current world, and there is a vast 1

range of benefits in forecasting power generation for the future. This study focus on the significance 2

of climate change on the future representation of the Samanalawewa Reservoir hydropower project 3

using an architecture of the Cascaded ANFIS algorithm. Moreover, this study aims to assess the 4

capacity of handling regression problems using the novel Cascaded ANFIS algorithm and compare 5

the results with the state-of-art regression models. The inputs to this system are the rainfall data of 6

selected weather stations inside the catchment. The future rainfalls were generated using Global 7

Climate Models at RCP4.5 and RCP8.5 and corrected for their biases. The Cascaded ANFIS algorithm 8

was selected to handle this regression problem by comparing the best algorithm among the state- 9

of-the-art regression models, such as RNN, LSTM and GRU. The Cascaded ANFIS could forecast 10

the power generation with a minimum error of 1.01, while the second-best algorithm, GRU, scored 11

a 6.5 error rate. The predictions were carried out in two aspects: near-future and mid-future and 12

compared against the previous work. The results clearly show the power generation variation against 13

the predicted rainfalls at the cost of a slight error rate. This research can be utilized in numerous 14

areas to develop hydropower production. 15

Keywords: Cascaded-ANFIS; GRU; Regression; LSTM; RNN; Sri Lanka; Hydropower; Forecasting 16

1. Introduction 17

The Sustainable Development Targets (SDGs) were announced in 2012, with 17 goals 18

recommended for completion by 2030. One of the essential aims at the list is to achieve clean 19

energy from power generation [1]. Global hydropower output has been peaked in 2020 with 20

38.2 exajoules, up from 37.7 exajoules the previous year, and climbed by 11.6 exajoules in the 21

two decades from 2000 to 2020 [2]. Thus, hydropower contributes to more than 16% of total 22

energy generation [3]. Many South Asian nations, including Sri Lanka, fulfill a considerable 23

portion of their electrical demand through hydropower facilities (approximately 40% of 24

total energy in Sri Lanka) [4]. Renewables are still regarded as being one of the most 25

environmentally friendly power producing systems in the world. As a result, a 75—100% 26

increase in production capacity is projected in the coming years [3]. In comparison to 27

wealthy countries, which have utilized 70% of their capacity, emerging nations have only 28

evaluated 23% of financially feasible hydropower plants [5]. As a result, many developing 29

nations are rapidly spending considerable resources in developing hydropower facilities 30

since it is seen as a safe and cost-effective source of renewable energy that minimizes carbon 31

emissions [6]. 32
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Along the lines, hydropower is one of the cleanest forms of energy sources; how- 33

ever, the inflow to dam reservoirs significantly impacts the pace of hydropower output. 34

Therefore, hydropower generation, on the other hand, is very unpredictable due to its 35

dependency on meteorological conditions and weather conditions. Furthermore, climate 36

change is likely to disrupt hydropower plant operations by unbalancing the water cycle, 37

increasing the frequency of rainfall events, and rising atmospheric temperatures. It is evi- 38

dent that the evaporation and other water cycle components are affected by the predicted 39

temperature change of 0.0164 °C annually [7]. Rainfall, on the other hand, is projected to 40

increase in some countries while decreasing in other countries, thus impacting hydropower 41

producing capacity [8]. 42

If electricity output is dramatically curtailed due to climate change’s negative conse- 43

quences of climate change, the hydropower sector might become one of the most vulnerable 44

businesses. In addition, water scarcity in the catchment and reduced hydropower gen- 45

eration inputs due to landslides or soil erosion might exacerbate the problem. On the 46

other hand, construction of hydroelectric infrastructure is prohibitively expensive, presents 47

substantial dangers to the aquatic ecology, and produces socioeconomic concerns [9]. 48

As a result, forecasting hydropower output is critical for maximizing renewable energy 49

consumption to meet growing demand and control hydroelectric power management. 50

This will help to achieve environmental sustainability. Despite this, estimating future 51

hydropower output is challenging due to the nonlinearities of the input functions and 52

regional and temporal fluctuations in meteorological data, including temperature and 53

rainfall. As a result, the prediction output of the model might have a substantial financial 54

benefit in regulating renewable energy infrastructure development like hydroelectric [10]. 55

2. Related Works 56

Several researchers have studied the impact of climatic fluctuation on hydroelectric 57

output, primarily utilizing Global/Regional Climate Models (GCMs/RCMs), predictive 58

modelling, and conventional statistical methodologies (e.g., [11–13]). 59

Several methods to predict the future of hydropower plants using machine learning 60

techniques can be found in the literature and ANN is one of the main algorithms that 61

can be used to carry out this task. A case study was carried out in Nigeria, as well as in 62

Jebba and Kainji, employing ANN impartial input data [14]. In Uzlu et al.[15], the artificial 63

bee colony method was used to forecast future hydropower output throughout Turkey 64

utilizing input factors including generation capacity, energy consumption, population, and 65

temperatures. According to the report, Power output of Turkey is not in accordance with 66

the country’s objective of producing 30% of its renewable electricity in 2023. Furthermore, 67

Patil [16] examined future streamflow for the Ranganadi River, which is located in India 68

up to 2040, to forecast hydropower output using three GCM models and ANN. When 69

using feed-forward back-propagation algorithms on the ANN architecture, input parameter 70

characteristics substantially influence forecasting future power generation [17]. 71

Furthermore, while projecting electricity output from various energy resources in the 72

United States, Khodaverdi [18] proposed an ANN-ARIMA hybrid model rather than ANN 73

to predict future renewable energy resources data (e.g., hydroelectricity, solar, and wind). 74

After examining 66 studies that used ANN to improve reservoir operations, the study by 75

Ajala et al. [19] further reinforced the idea of combining ANN with supervised or unsuper- 76

vised learning algorithms to improve reservoir outflow prediction. Furthermore, the study 77

by Shaktawat and Vadhera [5] advised performing further research on risk management in 78

hydropower utilizing a fuzzy model mixed with ANN and genetic algorithm. 79

Some scientists insist that ANNs are important in hydropower prediction. Anuar et al 80

have showcased that the hidden layer neurons had a more significant impact on the results 81

of the ANN structure when forecasting streamflow at The Malaysian hydroelectric dam 82

[20]. Furthermore, Sessa et al. [21] discovered that ANN models are the most accurate 83

in predicting short-term and long-term hydropower generation after having conducted 84
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research studies in run-of-the-river (ROR) hydroelectricity in France, Portugal, and Spain 85

using chronological weather information such as rainfall, snow, and temperature. 86

However, the related research in the context of Sri Lanka is minimum. In fact, as per 87

authors’ knowledge only one such research was available in Sri Lanka that used ANN to 88

anticipate electricity output. Furthermore, the research by Karunathilake and Nagaha [22] 89

estimated daily electricity consumption but did not forecast power generation. 90

Although numerous ANN-based machine learning algorithms have been found in the 91

literature for hydropower prediction, machine learning techniques that use Fuzzy Logic to 92

predict hydropower generation are handful. Some of the literature on Fuzzy Logic-based 93

predictions can be listed as follows. 94

The Grey wolf approach was combined with an adaptive neuro-fuzzy inference system 95

(ANFIS) in this work to anticipate hydroelectricity generation Dehghani et al. [23]. In 96

addition, hydropower output of Albania was analyzed by Konica and Staka [24] to establish 97

the best forecasting model for assessing hydro energy production for the years 2007- 98

2016. They have used the fuzzy time series approach to forecast Albania’s hydropower 99

generation. 100

Moreover, some studies have been conducted to forecast the rainfall using Fuzzy Logic 101

based algorithms. The rainfall forecast is done in this study in a study by Suprapty et al. [25] 102

in the East Kalimantan area, which has 13 watersheds with the potential to build a Micro 103

Hydro Power Plant. To simulate rainfall time series data, the Auto-Regressive (AR) Model 104

based on Fuzzy Inference System (FIS) is utilized. The research work done by Rahman 105

et al. [26] have showcased an improvement to forecast rainfall using a fuzzy rule-based 106

approach. Eight distinct equations have been created using temperature, wind velocity, 107

and precipitation. The minimum content of the induction component of temperature and 108

wind velocity fuzzifications is investigated, as are fuzzy levels and membership functions. 109

Mostly, time-series predictions are purely non-linear, and fuzzy logic is the best in 110

artificial intelligence to tackle problems in non-linear [27]. 111

The majority of the earlier works share the following flaws. 112

1. Generally, Artificial Neural Network-based algorithms are bulky in the complexity of 113

the calculations. 114

2. Difficult to use when the predictions depend on the uncertainty factors and non-linear 115

inputs. 116

3. It is not likely to generate the best possible prediction because the input factors vary 117

depending on the different environments. 118

4. Requires an enormous amount of computing power. 119

Therefore, while addressing the above-mentioned overall flaws, this study tries 120

presents a new algorithm called Cascaded Adaptive Neuro-Fuzzy Inference System (Cas- 121

caded ANFIS) to predict the hydropower generation [28]. The impact of this research can 122

be pointed out as follows. 123

1. This system uses fuzzy logic approach along with Neural Network to address the 124

uncertainty and the non-linearity of the inputs. 125

2. Since the base algorithm of this system is two-input one-output ANFIS, and the 126

computational power reduces dramatically. 127

3. It is possible to generate a near-zero error in the prediction by increasing the number 128

of levels in the Cascaded ANFIS algorithm. 129

4. This study presents future power generation up to the year 2099 in two different 130

climate models. 131

5. The comparative study presented in this work provides a solid understanding of the 132

potential regarding the Cascaded ANFIS algorithm upon the cutting-edge time series 133

prediction algorithms. 134
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Figure 1. Rainfall Gauges at Samanalawewa catchment

2.1. Hydropower in Sri Lanka 135

Sri Lanka has a hydroelectric power potential of 1,719 Megawatts (MW), and existing 136

hydropower growth pledges would contribute around 247 MW to the power grid mostly 137

in coming decades [4]. According to Gunasekara [29], the bulk of Sri Lanka’s hydroelectric 138

plants are more than 25 years old. Although hydropower plants have a lifespan of about 139

50 years, if any of the older hydroelectric dams fail to operate, whether due to climate or 140

mechanical fault, Sri Lanka will then meet the energy shortage problem because it will be 141

challenging to replace the defective hydroelectric dams in a brief period [30]. 142

As a result, in the Sri Lankan context, analyzing the power generating capabilities 143

of hydroelectric projects is crucial. To handle a developing country’s economic electrical 144

demands, followed by managing water supply infrastructural development amid climatic 145

factors. Several analyses in Sri Lanka, however, have looked at potential energy production 146

from current or planned hydroelectric dams. The study in Udayakumara et al. [31] looked 147

at ways to increase power output in hydroelectric dams by preventing land degradation 148

and reservoir floods in the Uma Oya valley, one of Sri Lanka’s most crucial significant 149

catchment areas. 150

The study in Chandrasekara et al. [2] studied inflows in the Kotmale reservoir until 151

2005 from 1960 using the El Nino Southern Oscillation (ENSO) phase indicator and discov- 152

ered that flow to the basin had decreased, impacting hydropower output and agricultural 153

plans. According to the research in Imbulana et al. [32], a rise in continuous rainfall events, 154

a decrease in continuous dry weather, and a gain in yearly rainfall series will improve the 155

future production capacity of the Mahaweli watershed’s hydropower plants. 156

In addition, Khaniya et al. [12] used a multiyear rainfall trend research to demonstrate 157

that changes in climate will have no effect here on Denawaka Ganga mini-hydropower 158

generating as in the Rathnapura area. The study released in Perera and Rathnayake [33] 159

additionally sought to analyze the effect of climate change on the Erathna mini-hydropower 160

station in the Rathnapura area. They concluded that electricity generation will decline in 161

the following years. 162

The study in Khaniya et al. [31] [34] undertook a similar evaluation on the recently 163

operational Uma Oya watershed, and the researchers found that there will be no sub- 164

stantial challenges to hydroelectric generation in the years ahead groundwater limits in 165

the watershed region. Nevertheless, as stated in the introduction, there seems to be no 166

comprehensive study on hydroelectric forecasts in Sri Lanka for the coming decades. 167



Version March 16, 2022 submitted to Sensors 5 of 19

Consequently, this study has a better possibility of attracting the attention of the Sri 168

Lankan authorities to enhance the management and forecasting procedures in hydroelectric 169

plants. 170

3. Study Area 171

The Samanalawewa Hydropower Project is located in the central portion of Sri Lanka, 172

in the Belihul Oya region of Rathnapura division, Sabaragamuwa province. The project 173

was completed in 1992, just downstream of the confluence of Belihul Oya to Walawe 174

River. The watershed region (359 km2) is midland, made of marble and quartz, and has 175

an average altitude of around 530 m [30]. The region is located inside the rainy region of 176

the country (wet zone), with a mean annual precipitation of around 2500 mm [35]. The 177

southwest monsoon provides the majority of the rainfall for the catchment, with minor 178

contributions from the northeast monsoon and inter-monsoon storms. The Samanalawewa 179

Hydroelectric power project includes a U-shaped rockfill dam which is around 110 m high 180

from its foundation. The power station is capable of producing 124 MW as per the design 181

guidelines. Figure 1 illustrates a detailed catchment map. 182

Samanalawewa hydroelectric is among Sri Lanka’s oldest and one of the largest 183

reservoir-type power stations and has long played an essential part in maintaining power 184

distribution stability during peak times. It accounts for 8.69% among all extensive hydro- 185

electric plants providing electricity for Sri Lanka’s electrical requirements. Since its start, 186

this project has aroused significant attention owing to the leakage problem discovered on 187

the lake’s right bank due to poor geological characteristics [36]. Moreover, several envi- 188

ronmental difficulties were noted during the design stage; however, little awareness was 189

taken because no stringent environmental restrictions necessitated substantial development 190

efforts [37]. 191

Although the Environmental Impact Assessment (EIA) framework was established in 192

Sri Lanka in 1988, EIA during the building of Samanalawewa was primarily centered on 193

vegetation revascularization and habitat conservation. 194

Due to the apparent leak, the phase-2 of the hydropower plant construction (120 195

MW capacity) was suspended; therefore, a mini-hydropower facility was constructed that 196

utilities the leaking water. Despite the Ceylon Electricity Board’s (CEB’s) valiant efforts to 197

halt the leak, stored water continues to flow at a pace of 2.1–2.8 m3/s [38]. 198

Irrigated water from the dam is vital for agricultural usage in downstream settlements 199

such as Kaltota, Madabadda, Welipotayaya, and Koongahamankada. Paddy yields of 200

downstream of the study area have been reduced by 11.5 percent due to a lack of water in 201

the reservoir [39]. Therefore, water management is highly important. 202

Because a portion of the confiscated water is immediately delivered for irrigation 203

without going through the power station, analyzing the prospective availability of water 204

in the Samanalawewa dam for energy production is crucial. Another fraction (the leaking 205

component) is supplied by mini-hydropower plants that produce far less energy. Further- 206

more, with the rising availability of water from downstream agricultural districts, water 207

management at the Samanalawewa reservoir must be more carefully managed. Further- 208

more, climate variability may have an influence on CEB’s watershed management goals 209

at the Samanalawewa hydroelectric station, either positively or negatively. As a result, 210

the following study will be of interest to the many stakeholders of the Samanalawewa 211

Hydropower Project. 212

To assess that, the monthly rainfall data were purchased from the Department of 213

Meteorology, Sri Lanka for the rainfall stations showcased in Figure 1. The data was 214

collected from 1992 to 2018 as per the availability. There was some missing data due 215

to various reasons, including instrumentation errors. Therefore, the data was screened 216

carefully before they were used. Balangoda, Alupola, Detanagalla, Belihuloya, Nonpareil 217

(Belehuloya), and Nagrak Estate are the six stations which were used in this study. 218
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4. Methodology 219

The overall explanation of the method used in this study is presented in this section. 220

The development process is several steps. Initially, futuristic climate data were extracted 221

and corrected their biases using the linear bias correction technique. Then the Cascaded 222

ANFIS algorithm is used to generate the outputs for each pair of inputs. This process is 223

explained in the algorithm usage subsection. 224

Furthermore, three state-of-the-art algorithms, namely GRU, RNN, and LSTM, are 225

used to distinguish the efficiency of the algorithms. 226

4.1. Climate data extraction for future 227

Global Climatic Models (GCMs) accommodate climatic data at vast ranges across 228

immensely different landscapes. In contrast, Regional Climatic Models (RCMs) are em- 229

ployed at more inadequate orders and can accommodate more specific data for adaptation 230

evaluation, and preparation [40]. As a projected instrument, GCMs forecast the climate 231

variance of the Earth in the future. They should, however, be investigated on a local or 232

even global scale to identify efficient correspondence procedures. 233

Future climatic data for various situations can be retrieved. Such scenarios are known 234

as Representative Concentration Pathways (RCP), in which weather data can be obtained. 235

RCPs can be expressed as trajectories on the Intergovernmental Panel on Climate Change’s 236

[41] greenhouse gas concentrations. RCP 2.6, 4.5, 6.0, and 8.5 are the four most generally 237

applied RCPs in the literature [41]. RCP4.5 is the intermediate emission scenario, in which 238

emissions begin to decline around 2045, where RCP8.5 is the leading emission situation, in 239

which discharges proceed to rise during the 21st century. 240

It is generally known that RCMs have variable degrees of methodical bias [42,43]. The 241

causes of such preferences could be due to methodical model mistakes produced through 242

poor conceptualizations, spatial averaging, and discretizations in grid cells. Some prejudice 243

improvement strategies are employed in the literature to address these biases [44]. Linear 244

scaling, local intensity scaling, power transformation, variance scaling, distribution transfer, 245

and delta change approach are some widely used techniques in removing biases in climatic 246

data. 247

The Linear Scaling (LS) approach [45] is employed extensively in various investigations 248

due to its simplicity and speed of application. LS can adjust all-climate elements to an 249

appropriate level; however, few examples of precipitation corrections can be found in 250

Gimire et al., Lafon et al., Luo et al., and Mahmood et al. [46–49]. The bias correction 251

method for linear scaling can be implemented employing the two equations provided 252

here (Equations (1) and (2)), where his, cor, sim, obs, d, and P stand for raw RCM data, 253

bias-corrected data, raw RCM corrected data, observed data, daily, and precipitation, 254

respectively, and m is the long-term cyclical average of rainfall data: 255

Pcor
his,d = Phis,d ∗

µm(Pobs,d)

µm(Phis,d)
(1)

Pcor
sim,d = Psim,d ∗

µm(Pobs,d)

µm(Psim,d)
(2)

LS technique was used to remove the biases in the RCP precipitation products as 256

shown in the Equations 1 and 2. The ground measured monthly rainfalls were used to 257

remove these biases. 258

4.1.1. Implementation of the Cascaded ANFIS algorithm 259

ANFIS is a hybrid algorithm that incorporates two different methods, such as Neural 260

Network (NN) and Fuzzy Logic (FL). As a result, in ML, ANFIS has both the benefits of 261

NN and FL [28]. ANFIS is a six-layer structure, with the first layer being the input and the 262

final layer being the output. The membership functions are constructed in the second layer 263

using FL. The third layer generates the cumulative product of the previously generated 264



Version March 16, 2022 submitted to Sensors 7 of 19

Figure 2. Flowchart of the Cascaded ANFIS

membership function. The following layer defuzzifies the outputs from the third and fourth 265

levels before feeding them to the final layer, which generates the output. 266

ANFIS, on the other hand, takes absolute values as inputs and transforms them into 267

fuzzy values. The fuzzy reasoning is then generated based on the membership functions 268

and rules. After that, the fuzzy values are transformed to crisp values[50]. The Cascaded 269

ANFIS algorithm is a repeatable ANFIS implementation with two primary inputs and 270

one output. Figure 2 depicts the creation of this algorithm. This approach can be used in 271

conjunction with ANFIS because iterations can route the answer to be more accurate than 272

the ANFIS algorithm with five layers. 273

The critical difference between the Cascaded ANFIS algorithm and the conventional 274

ANFIS algorithm is that the product of the standard ANFIS algorithm fits the input of 275

the conventional ANFIS method’s subsequent usage. However, fuzzy is applied as the 276

fuzzification process within the ANFIS model’s internal layers, just as in the traditional 277

ANFIS technique. The usage of membership functions, which change numerical values 278

into fuzzy members, is used to achieve fuzzification. The pair selection technique and the 279

training method are the two main components of the Cascaded ANFIS algorithm. 280

The Pair Selection module tackles the first significant issue with ANFIS. The usual 281

method is to decrease the input dimension before applying an algorithm. On the other 282

hand, the unique approach applies every feature to construct a sturdy model, which may 283

be helpful in noisy data sets. The revolutionary Cascaded ANFIS algorithm’s Training 284

Module deals with computational complexity. The combination Selection method employs 285

Sequential Feature Selection (SFS). This approach is unusual because it identifies the most 286

suitable match for individual input variables using a 2-input, 1-output ANFIS structure. 287

In the training method, the 2-input ANFIS structure is again employed. Because the 288

input variables are linked to the most suitable match from the former method, they can be 289

immediately fed into the ANFIS module, which will generate current outputs and RMSE 290

for specific data combinations. There is also a pre-determined goal error at this time, and 291

the RMSE is then compared to the anticipated error as a result. The procedure can be 292

terminated if the target error is fulfilled. If not, the algorithm moves on to the next iteration. 293

This document for implementation [28] has a detailed description of the Cascaded ANFIS 294

algorithm, including pseudo-code. 295

As mentioned in the above sections on dataset generation for future rainfall, four data 296

points are generated for every month in the range from the year 2021 to the year 2099 using 297

RCP 4.5 and RCP 8.5 climate models. Accordingly, these four data points were used as the 298

inputs to the Cascaded ANFIS algorithm. As shown in Figure 3, the X1, X2, X3, and X4 are 299

the inputs to the first level of the Cascaded ANFIS algorithm. Each input is coupled with 300

the best pair because the ANFIS structure is a two-input one-output configuration. The 301

process of the paring of each input is discussed in detail in the pair selection section of this 302

paper [28]. Ai,j is the two-input one-output ANFIS module, where i is the level number of 303

the Cascaded ANFIS (i = 1, 2, 3, ..., n) and j is the number of ANFIS modules in a certain 304

level (j = 1, 2, 3, 4). 305
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Figure 3. Hydropower Prediction Cascaded ANFIS structure

At the end of the 1st level, the outputs are generated for each ANFIS (O1,j). As pointed 306

out in the figure, there are four outputs from level one. Then, the second level will initialize 307

by applying those outputs as inputs to the second level. Again, the pair selection process is 308

performed to select the best pair for each ANFIS in the second level. This process continues 309

until the pre-defined maximum levels reach (n). In the end, the mean of the outputs is 310

calculated as the final solution f (equation 3). 311

f =
∑4

j=1 On,j

4
(3)

Table 1. Parameter Setting for each algorithm

Algorithm Parameters

MLP

Hidden layer size 50, 50, 50
Activation tanh
Solver adam
alpha 0.05
learning rate constant

KNN
Weights Uniform
n_neighbors 1

ANFIS

Iteration 100
Membership
Functions

3

Step Size 0.1
Decrease rate 0.9
Increase rate 1.1

ANFIS-PSO

Inertia Weight 1
Inertia weight
damping ratio

0.99

Personal Learning
Coefficient

1

Global Learning
Coefficient

2

ANFIS-GA

Crossover
Percentage

0.7

Mutation
Percentage

0.5

Mutation Rate 0.1
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Table 1. Parameter Setting for each algorithm

Algorithm Parameters
Selection
Pressure

8

Gamma 0.2

RNN / LSTM / GRU

Optimizer adam
Learning rate 0.0001
Activation relu
batch size 30
epochs 100

Cascaded ANFIS

Iteration 100
Membership
Functions

3

Step Size 0.1
Decrease rate 0.9
Increase rate 1.1

4.1.2. Parameter settings for each algorithms 312

This study is conducted to investigate the best prediction algorithm from the state-of- 313

the-art algorithms in hydropower forecasting. Hence, there are several algorithms used 314

and each algorithm is created with the optimum parameters. Following is the complete list 315

of algorithms used in this study. 316

1. Multilayer Perception (MLP) 317

2. K - Nearest Neighbors (KNN) 318

3. Adaptive Network-based Fuzzy Inference system (ANFIS) 319

4. Particle Swarm Optimization with ANFIS (ANFIS-PSO (Hybrid)) 320

5. Genetic Algorithms with ANFIS (ANFIS-GA (Hybrid)) 321

6. Linear Regression 322

7. Lasso Regression 323

8. Ridge Regression 324

9. Recurrent Neural Network (RNN) 325

10. Long Short-Term Memory (LSTM) 326

11. Gated Recurrent Unit (GRU) 327

12. Cascaded ANFIS 328

Here, two types of algorithms were used: general machine learning algorithms and regres- 329

sion machine learning algorithms. MLP, KNN, and ANFIS methods can be presented as the 330

general machine learning algorithms, while Linear, Lasso, Ridge, LSTM, GRU, and RNN 331

can be introduced as regression models. 332

Each algorithm is separately coded and run during the study to generate the outputs. 333

Most of the algorithm parameters are manually adjusted, while some of the algorithms were 334

adjusted under the consideration of literature studies. Each parameter for each algorithm 335

is shown in Table 1. 336

The experiment was carried out for the hydropower generation dataset. Nine different 337

algorithms were tested, and the best algorithm was chosen based upon the Root Mean 338

Square Error (RMSE) and the Coefficient of Determination (R2) of each algorithm. The 339

RMSE and R2 can be calculated as shown in Equation 4,5. 340

RMSE =

√√√√1
q

q

∑
t=1

(ū(t)− û(t))2 (4)

R2 = 1 − RSS
TSS

(5)



Version March 16, 2022 submitted to Sensors 10 of 19

Figure 4. Coefficient of Determination (R2) of Rain Fall Test dataset for (a) KNN, (b) MLP, (c) ANFIS
(d) PSO-ANFIS and (e) GA-ANFIS
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Figure 5. Coefficient of Determination (R2) of Rain Fall Test dataset for (a) Linear Regression, (b)
Lasso Regression, (c) Ridge regression (d) RNN, (e) LSTM and (f) GRU

Table 2. RMSE for training and testing

Algorithm RMSE (Train) RMSE (Test)
MLP 7.52 25.26
KNN 9.73 19.33
ANFIS 10.47 18.06
ANFIS-PSO 10.99 16.61
ANFIS-GA 11.88 16.87
Linear Regression 13.74 14.85
Lasso Regression 13.72 14.82
Ridge Regression 13.70 14.88
RNN 7.85 11.62
GRU 6.50 8.33
LSTM 6.03 6.88
Cascaded ANFIS 1.01 1.80
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Figure 6. Cascaded ANFIS behavior for different levels.(a) Level 1, (b)Level 10, (c) Level 20

Where, in Equation 4, ū(t) is introduced as the prediction and û(t) is the real output. 341

q is the size of the population. In Equation 5, the sum of the squares of the prediction is 342

RSS and the sum of squares of real values is TSS. 343

5. Results and Discussion 344

This section includes two main subsections. First, the algorithm comparison is intro- 345

duced since selecting the best algorithm is one of the main objectives of this study. Second, 346

the future power generation is explained along with the results with the best algorithm 347

selected here. 348

5.1. Comparison of the Algorithms 349

Table 2 presents the RMSE for each algorithm at the training and the testing phases. 350

The smallest error of 1.01 in the training and 1.80 in the testing was obtained by the 351

Cascaded ANFIS. As mentioned in the introduction of the Cascaded ANFIS, the error 352

reduces while propagating through levels. Hence, a higher level of structure generates 353

more accurate results at the cost of computational power. However, the results shown here 354

are for the Cascaded ANFIS at level 20. 355

Moreover, the second, third, and fourth best accuracies are LSTM, GRU, and RNN. 356

They have obtained 6.03, 6.50, and 7.85 errors at the training, sequentially. It is also worth 357

remarking that the other ANFIS algorithms, such as ANFIS, ANFIS-PSO, and ANFIS-GA, 358

present a higher error rate when compared with the other algorithms. 359

Furthermore, the Coefficient of Determination (R2) is calculated for each algorithm 360

as shown in Figures 4 and 5. Here, Figure 4 shows the performances of general machine 361

learning algorithms and Figure 5 shows regression machine learning algorithm perfor- 362

mances. R2 is used to examine how variations in one variable may be explained by changes 363

in another. 364
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Figure 7. Hydropower Predictions from Khaniya et al (2020) [12]

R2 calculates the percentage variance in y explained by x-variables. The measure runs 365

from 0 to 1. (the x-variables can explain, i.e. 0% to 100% of the variation in y). 366

The best R2 is given by the Cascaded ANFIS as 0.929. while GRU, LSTM, and RNN 367

calculate it as 0.711, 0.701, and 0.634, respectively. 368

The increase of R2 of the Cascaded ANFIS by level can be seen in Figure 6. At level 1, 369

R2 is 0.422 because only two variables are considered the input to ANFIS modules at the 370

first level. Then at level 10, the R2 value has increased by almost 50%. Finally, at level 20, 371

the value has reached almost 1 (0.929). Therefore this result explains that the Cascaded 372

ANFIS algorithm outperforms all other algorithms used here, including regression models. 373

Hence, the Cascaded ANFIS algorithm is used to forecast hydropower generation up to the 374

year 2099. 375

5.2. Forecasting of Hydropower Generation for future 376

Figure 8 showcases the projected power generation for the near future under the 377

RCP4.5 and RCP8.5 climate scenarios. It can be seen herein that both climate scenarios have 378

projected significant declination of power generations in the Samanalawewa Hydropower 379

plant. The declination is monotonic except for a couple of years’ slight inclinations. How- 380

ever, interestingly, the power generation in RCP4.5 is lower than that of in RCP8.5. Many 381

development projects are expected in Sri Lanka, and they require a significant amount of 382

power demand. It is projected around a 1000 MW power demand for Sri Lanka in the 383

future. In addition, Sri Lanka has proposed to generate more than 70% of its power demand 384

using renewable resources by the 2030s. However, the Samanalawewa power plant results 385

for the near future do not support both requirements in the near future. This is critical 386

as the power plant significantly contributes to Sri Lanka’s power demand as a renewable 387

resource. 388

Figure 9 presents the projected power generation for mid-future years from both RCP 389

scenarios. Unlike in the near future, the projected power generation patterns have zig-zag 390

patterns for both climatic scenarios, and however, they still showcase overall declining 391

trends. In addition, the significant differentiation in the projected power generation from 392

RCP4.5 and RCP8.5 for the near future cannot be seen in the mid-future, and instead, an 393

overlap of both climatic scenarios can be seen. 394

Nevertheless, the projected power generations under RCP4.5 and RCP8.5 climatic 395

scenarios showcase the impact of climate change on the hydropower generations in a 396

healthy hydropower plant in Sri Lanka. Even though Figures 8, 9 and 10 present the 397
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Figure 8. Power generation prediction from year 2021 to 2040

annual power generations, seasonal impacts can also be seen on the higher resolution scales 398

such as monthly power generations. Therefore, climate change is adversely impacting 399

the Samanalawewa hydropower plant in the near future and mid future, even though Sri 400

Lanka’s power demand is in escalating phase. Therefore, the findings of this research can 401

be used for critical discussions by the stakeholders and then enhance the countermeasures. 402

Clear differences can be seen for the power generation prediction from two different 403

techniques (Figure 7 and 8). Khaniya et al (2020) [12] have used frequently used ML 404

algorithm in ANNs. Significant reductions can be seen for RCP4.5 under this Cascaded 405

ANFIS algorithm. Therefore, the results have to be carefully assessed with time. The 406

analysis can be restructured in short term. 407

Figure 10 illustrates the projected power generation from 2071 to 2100. A similar 408

illustration to mid-future power generations can be seen in the far-future too. However, 409

the projections overall do not showcase declining or inclining trends even though they 410

have peaks and troughs. Nevertheless, as per the authors’ understanding, it is too early 411

to comment on power generation in the far future. RCP scenarios have projections for 412

the far future; however, the high variability of climate and its relationship to greenhouse 413

gas emissions might change the future patterns. In addition, the world’s green energy 414

concepts like electric vehicles would positively impact the changing climates in the long 415

run. Even though authors have found the projected power generations for the far future, 416

quick conclusions may not be feasible. 417

6. Conclusion 418

Hydropower generation for Samanalawewa hydropower plant was forecasted using 419

a novel Cascaded ANFIS algorithm under RCP4.5 and RCP8.5 for future years. The 420

accuracy of the newly utilized algorithms is higher compared to other frequently used 421

algorithms. It has shown lower RMSEs and higher R2. The authorities would be interested 422

in the prediction model due to it’s robustness for the practical applications. However, the 423

algorithm takes some significant time to train the forecasting model. The future projection 424

is interesting. The projection was considered for the near future and mid future cases 425

based on the design life of a hydropower station. Therefore, the suggestions for future 426

forecasting should align with the design life of the hydropower plant. Replacement of 427
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Figure 9. Power generation prediction from year 2041 to 2070

various important instrumentation like turbines can significantly influence the efficiency of 428

the power generation. Therefore, the results presented herein are based on the system which 429

is currently available. Based on these, the model can successfully be utilized to forecast 430

power generation for future years. Thus, the authorities and planners can learn the future 431

generation and then to matches the required demand. In addition, the authorities can make 432

decisions regarding replacements of various instrumentation to enhance the efficiency of the 433

Samanalawewa hydropower station. Nevertheless, the results are somewhat contrasting to 434

the results presented by Khaniya et al. (2020) [12]. Therefore, a detailed analysis should be 435

carried out with time to state sound conclusions. 436
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Figure 10. Power generation prediction from year 2071 to 2099

MDPI Multidisciplinary Digital Publishing Institute
ANFIS Adaptive Network Based Fuzzy Inference System
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
RCP Representative Concentration Pathway
SDG Sustainable Development Goals
GCMs/RCMs Global/Regional Climate Models
ANN Artificial Neural Network
ARIMA Auto Regressive Integrated Moving Average
FIS Fuzzy Infererence System
FL Fuzzy Logic
ML Machine Learning
PSO Particle Swarm Optimization
GA Genetic Algorithms
RMSE Root Mean Square Error
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