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Hybrid energy systems (HESs) are becoming popular for standalone applications due to global concern
regarding green house gas (GHG) emissions and depletion of fossil fuel resources. Research in the optimal
design of HESs is ongoing, with numerous optimization techniques giving special emphasis to Pareto
optimization, incorporating conflicting objectives. The subsequent decision-making process including
the non-dominant set of solutions has yet to be addressed.

This work focuses on combining multi-objective optimization with a multi-criterion decision making
(MCDM) technique to support decision makers in the process of designing HESs. Four different objectives,
i.e., levelized energy cost (LEC), unmet load fraction, wasted renewable energy (WRE) and fuel consump-
tion are used to obtain the Pareto front. A decision support tool based on Fuzzy TOPSIS and level diagrams
is proposed to analyze the Pareto front and support the subsequent decision-making activity. A case
study is used to illustrate the applicability of the proposed method. The study shows that the novel
method is useful when determining the relative weights of objectives, providing a detailed picture of
the objective space to the designer when coming up with the optimum system. The technique proposed
in this study can be further extended to analyze similar problems in energy system design where MCDM
is necessary after multi-objective optimization.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction optimum designs. Various factors including vulnerability (safety
Ever increasing energy demands and the limitations of fossil
fuel resources encourage energy system designers to come up with
and power security), environmental impact, sustainability issues
and resource limitations must be considered when designing en-
ergy systems, requiring the simultaneous optimization of several
factors [1]. As a result, the multi-objective optimization of energy
systems has become a rich area of study [2]. Pareto multi-objective
optimization has been used to optimize energy systems while
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Nomenclature

AA area of SPV panel
A� Fuzzy Negative Ideal Solution
A+ Fuzzy Positive Ideal Solution
AM air mass
CRF capital recovery factor
D� negative distance matrix
D+ positive distance matrix
ELD electricity load demand
f rate of return on investment
FC(t) fuel consumption hourly
FOM fixed OM
FOMPV present value of FOM
Gb hourly tilted solar irradiation
g rate of local market annual inflation
HES hybrid energy system
ICC0 initial capital cost
ICG internal combustion generator
J benefit function
J0 cost function
LCC life cycle cost
LEC levelized energy cost
LPS loss of power supply
MCDM multi-criterion decision making
NPV net present value
NSPV number of SPV panels
OM operation and maintenance cost
PBat-Max(t) maximum power of the battery bank

PC critical load
PD dispatch load
Pmin minimum ICG power
Pngen nominal power of ICG
Pr rated power of wind turbine
PSPV(t) SPV power output
Pw(t) wind power output
SOC state of charge
SOCmax maximum SOC
SOCmin minimum state of charge
SPV solar PV
TOPSIS technique for order performance by similarity to ideal

solution
Vci cut in wind speed
Vco cutoff wind speed
VOM variable OM
VOMPV present value of VOM
Vr rated wind speed
w weight matrix
WRE waste of renewable energy
X decision matrix
_x normalize decision matrix
Yw weighted decision matrix
gInv inverter efficiency
gpv SPV panels efficiency
hcell cell temperature
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considering aspects such as life cycle cost, energy/exergy efficiency
and system reliability which helps to find a non-dominant set of
solutions to be considered in the decision-making process [3,4].
However, a path that combines multi-objective optimization and
decision-making is essential. Sayyaadi et al. [5] has discussed com-
bining multi-objective optimization and decision-making using the
Bellmane–Zadeh approach, considering life-cycle cost, pollutant
emission and exergy efficiency as objective functions. However,
with the increased number of objectives and ambiguous relative
importance of those objectives, it is necessary to analyze the sen-
sitivity of changing the weight of each objective [6]. This study
focuses on combining multi-objective optimization and decision-
making with a detailed analysis of the objective space for the
design of a standalone hybrid energy system (HES).

HESs are becoming more popular worldwide every day for
numerous applications, including rural power supply [7–9], tele-
communications [10], desert agriculture [11], hotel industry
[12,13] and desalination plant operation [14]. Compared to inter-
nal combustion generator (ICG) systems, HESs are eco-friendly
and economical [15,16]. Nevertheless, designing an HES is a chal-
lenging endeavor, and a rigorous approach is required. Designing
an HES consists primarily of two phases, i.e., selecting the optimum
system configuration and determining the optimum system oper-
ating strategy [17]. Probabilistic, iterative and heuristic methods
have been proposed to minimize the life cycle cost [18,19]. Recent
reviews on the optimization of renewable energy systems show
that heuristic methods are becoming more popular, especially for
instances in which multi-criterion evaluation is required [2,4,20].

Several techno-economical factors must be considered in the
HES design process. Therefore, multi-criterion evaluation becomes
necessary, which can either be achieved through a weighted sum
approach or Pareto optimization. Although it is easy to optimize
a weighted objective function, it is difficult to understand the rel-
ative importance of each objective without knowing certain details
of the objective space [6]. Therefore, it is essential to compute the
non-dominant set of solutions through a Pareto multi-objective
optimization, which portrays a more informative picture of the
objective space. The multi-criterion decision making (MCDM) pro-
cess can then be applied.

The concept of multi-objective optimization was first used by
Dufo-López et al. [21] to optimize HESs considering the life cycle
cost of the system and pollutant emissions as objective func-
tions. Several works were published thereafter, studying differ-
ent objectives of the design, including power supply reliability
[22,23], pollutant emission [24] and utilization of renewable en-
ergy potential [18]. A recent study on the multi-objective opti-
mization of HESs suggests the importance of identifying
techno-economical parameters that match the local context
and including them in the optimization process, where detailed
analysis of alternative solutions is necessary [2]. This makes
multi-objective optimization a tool that can be used to analyze
the characteristics of HESs which was used by Bernal-Agustín
et al. [25] to analyze the cost and life cycle emissions of solar
PV–wind–ICG systems. Perera et al. [26] used multi-objective
optimization techniques to analyze the impact of the ICG capac-
ity in HESs, which discuss the role of dispatchable energy
sources to minimize LEC while increasing power supply reliabil-
ity. However, in regard to a particular application, it is necessary
to go beyond the Pareto optimization and come up with a final
system configuration. Therefore, it is necessary to combine mul-
ti-objective optimization and MCDM, and come up with a hybrid
technique as highlighted by Bhattacharyya [27] that can be
adapted to match with local context and application which is ta-
ken into consideration in this work.

Levelized energy cost (LEC), wasted renewable energy (WRE),
fuel consumption and unmet load fraction are used as the
evaluation parameters in this work, based on the recent research
in HESs. A multi-objective optimization is performed to find the
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non-dominant set of solutions using the above evaluation criteria.
A detailed description of the mathematical model and the compu-
tational algorithm are given in Sections 2 and 3. The MCDM tech-
nique is described in Section 4 and the analysis of the results are
presented in Section 5.
Fig. 2. Hourly variation of insolation at Hambantota.
2. Mathematical modeling and simulation of the HES

Mathematical modeling of the HES combine a set of individual
models in order to predict and analyze the overall performance
of the HES [18,28]. A concise description about the mathematical
model used for this study is presented in this section and a detailed
version can be found in Ref. [26].

A standalone HES consisting of solar PV (SPV) panels, wind tur-
bines, a battery bank and an ICG is modeled in this study in order
to simulate and formulate objective functions (Fig. 1). When ana-
lyzing such a system, it is necessary to model energy flow, which
can be used to derive objective functions such as power supply
reliability, WRE and fuel consumption.
2.1. Modeling the SPV energy component

The hourly horizontal solar irradiation at Hambantota, (Fig. 2)
where the HES is to be implemented, is modeled. The hourly tilted
solar irradiation (Gb) values are calculated using Klutcher [29] and
Climed-2 [30] models. Semi empirical formulae proposed by Dur-
isch et al. [31] is used to calculate the efficiency of SPV panels
(Eq. (1)).
gpv ¼ p q
Gb

Gb;o
þ Gb

Gb;o

� �m� �
: 1þ r

hcell

hcell;o
þ s

AM
AMo

þ AM
AM0

� �u� �
ð1Þ
Fig. 3. Hourly variation of wind speed at Hambanthota.
where AM denotes the air mass and hcell is the cell temperature. The
values of Gb0, hcell,0 and AM0 are taken as 1000 W m�2, 25 �C and 1.5,
respectively. Parameters p, q, r, s, m and u for different SPV technol-
ogies are taken from Ref. [32].

The hourly power output from the SPV panels (PSPV(t)) is calcu-
lated using Eq. (2) taking panel area (A), efficiency of the inverter
(gInv) and the number of SPV panels (NSPV). NSPV is optimized using
the optimization algorithm.
PSPVðtÞ ¼ GbgpvANSPVgInv ð2Þ
Fig. 1. HES configuration.
2.2. Modeling wind energy component

Hourly wind speed (anemometer height of 10 m) throughout
the year (Fig. 3) is measured at the same location. Based on that
information, wind speed at the hub level (V) is calculated using
the power law approximation to account for the atmospheric
boundary layer. Wind speed at the hub level is used to calculate
wind turbine power output, fPwðtÞ (kW/m2) according to Eq. (3)
[28,33].

fPwðtÞ ¼

fPwðtÞ ¼ 0; V < V cifPwðtÞ ¼ aV3 � bPr ; Vci < V < VrfPwðtÞ ¼ Pr; Vr < V < V cofPwðtÞ ¼ 0; Vco < V

8>>>>><>>>>>:
ð3Þ

where a and b are defined as: a ¼ Pr

V3
r �V3

ci
, b ¼ V3

ci

V3
r �V3

ci
and Vr, Vci, Vco and

Pr denote the rated wind speed, cut-in wind speed, cut-off wind
speed and rated power of the wind turbine, respectively (Table 1).
Table 1
Specifications of the wind turbines.

Vci (m/s) Vr (m/s) Vco (m/s) Pr (kW)

3 12 20 Refer Table 3
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Electric power from the wind turbines is calculated according to

PWðtÞ ¼ fPwðtÞAW NWgW�inv ð4Þ

where AW denotes the swept area of the wind turbine, NW denotes
the number of wind turbines that is optimized in the optimization
algorithm and gW-inv denotes the inverter efficiency.

2.3. Modeling the battery bank and the ICG

The battery bank and the ICG work as dispatchable energy com-
ponents, absorbing the fluctuations of the renewable energy poten-
tial. Therefore, the power requirement from the battery bank and
the ICG depends on the dispatch strategy, as discussed in Sec-
tion 2.4. Based on the power requirement, the load factor for the
ICG is determined which is used to calculate the hourly fuel con-
sumption (FC(t)), assuming that it varies linearly with the load fac-
tor [34,35], as shown in Fig. 4. The annual fuel consumption is
calculated using

FC ¼
Xt¼8760

t¼1

FCðtÞ ð5Þ

In regard to the battery bank, the state of charge (SOC) model
[36] is used to determine the charge level of the battery bank.
The rain flow algorithm, based on Downing’s algorithm [37], is
used to estimate the lifetime of the battery bank. The inverter effi-
ciencies are taken as 95%, assuming the variation of the load factor
to be negligible [34].

2.4. Combined dispatch strategy

The combined dispatch strategy, which is a combination of the
Battery-Charging strategy, the Frugal Discharge strategy, the SOC
Set-point strategy, the Load Following strategy and the Peak Shav-
ing strategy, is used in this model (Table 2) [35,38,39]. The operat-
ing state is mainly determined by the difference (PL(t)) between
the electricity load demand (ELD) (Fig. 5) and the renewable en-
ergy produced (according to Table 2). The basic parameters of
the dispatch strategy, such as the minimum state of charge
(SOCmin), the minimum ICG power (Pmin), the Critical load (PC),
the Dispatch load (PD) and the SOC set point (SOCset), were
optimized.

The reliability of the power supply critically depends on the dis-
patch strategy. With respect to HES operation, the unmet load frac-
tion has been used in several research studies to evaluate power
supply reliability [22,23]. In this study, the unmet load fraction is
used in the evaluation criteria of MCDM process and optimized
in the optimization algorithm. Eq. (6) is used to calculate the loss
of power supply (LPS).
Fig. 4. Variation of fuel consumption with ICG load factor.
LPSðtÞ ¼ PLðtÞ � Pngen � PBat-MaxðtÞ ð6Þ

where PBat-Max(t) denotes the maximum power of the battery bank
which depends on SOC(t). Finally, the unmet load fraction is com-
puted using

Unmet load fraction ¼
Xt¼8760

t¼1

LPSðtÞ
, Xt¼8760

t¼1

ELDðtÞ ð7Þ

With the fluctuation of renewable energy potential, it is possi-
ble to generate energy that cannot be stored in the battery bank,
resulting in poor energy efficiency. Therefore, it is essential to min-
imize WRE (Eq. (8)), which is also taken into consideration in the
MCDM process and hence optimized in the optimization algorithm.

WRE ¼
Xt¼8760

t¼1

PWðtÞ þ PSPVðtÞ � PELDðtÞ8t; s:t: PWðtÞ þ PSPVðtÞ

� PELDðtÞ and SOCðtÞ ¼ SOCmaxðtÞ ð8Þ
2.5. Modeling of the cost elements

The life cycle cost (LCC) of the system consists of two compo-
nents, i.e., the initial capital cost (ICC0) and the operation and
maintenance cost (O&M). The local market prices of system com-
ponents used to come up with ICC0 are tabulated in Table 3. The
O&M cost comprises the fixed O&M (FOM) and variable O&M
(VOM). The annual fuel consumption and maintenance costs of
the ICG, wind turbines and SPV panels are considered FOM
expenditures.

The present value of the entire FOM (FOMPV) is computed using
Eq. (9), where CRF denotes the capital recovery factor (Eq. (10)). In
Eq. (10), p denotes the annual real interest rate and n denotes the
lifetime of the project. The annual real interest rate, p, is calculated
using Eq. (11), where f and g denote the rate of return on invest-
ment and annual inflation rate of local market, respectively (refer
to Table 4).

FOMPV ¼ FOM� CRF ð9Þ

CRF ¼ ðpð1� pnÞÞ=ð1� pÞ ð10Þ

p ¼ ð1þ f Þ=ð1þ gÞ ð11Þ

The VOM includes the replacement cost of the battery bank, ICG
and inverters. It is assumed that both the SPV and wind turbines
have the same lifetime as that of the project. The net present value
of the total VOM (VOMPV) is calculated using

VOMPV ¼
Xk¼n

k¼1

pkVOMk ð12Þ

The net present value (NPV) of the cash flow comprises ICC0,
FOMPV and VOMPV (Eq. (13a)), which is used to calculate the LEC
according to Eq. (13b).

NPV ¼ FOMPV þ VOMPV þ ICC0 ð13aÞ

LEC ¼ LCC
Xk¼n

k¼1

Xt¼8760

t¼1

ELDt;k

,
ð13bÞ
3. Multi-objective optimization algorithm

It is necessary to perform a Pareto multi-objective optimization
to find the non-dominant set of solutions considering LEC, unmet
load fraction, WRE and fuel consumption. Steady e-state



Table 2
Concise description about dispatch strategy.

State Range of PL(t) Operation

State 1 Battery Charging PL(t) < 0 Renewable energy is directed to supply the ELD and additional energy produced is used to charge the battery bank
State 2 Frugal Discharge 0 < PL(t) < PD ELD is higher than renewable energy production, Battery Bank is used to provide the additional energy required
State 3 SOC Set Point PD < PL(t) < PC ICG supply the additional energy requirement and is operated at its nominal power (Pngen). Extra power produced is

used to charge the battery bank until SOC Set Point is achieved
State 4 Load Following PC < PL(t) < Pngen ICG supply the additional power requirement following the load instead of charging the battery bank while operating

at Pngen

State 5 Peak Shaving Pngen < PL(t) Both battery bank and ICG are used to supply the additional power requirement

Fig. 5. Hourly variation of ELD based on summer – weekly load of IEEE reliability
test system [60].

Table 3
Market prices of system components.

Component Description Cost (US
$)

Wind turbine
(20 year life

time)
3 kW (Pr) 16,000

5 kW (Pr) 20,000

Solar panels
(20 year life

time)
Mono-Crystalline (1.22 m2) 1113

Poly-Crystalline (0.79 m2) 1128
Amorphous(1.28 m2) 1404

ICG 0.5 kV A–7.5 kV A (single phase) (20,000
working hours)

335.5–
4195

Hourly O&M 0.16
Cost of fuel (Diesel 1 L) 0.8
Battery 12 V, 250 Ahs 580
Inverter Single phase 10 kW (4 years lifetime) 1300

Table 4
Parameter values of the cost model.

Parameter Percentage (%)

Rate of return on investment (f) 8
Annual fuel inflation rate 6
Local market annual inflation rate (g) 2
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evolutionary algorithm [40] based on the e-dominance method
[41] is used as the optimization algorithm. The simulated binary
crossover operator and the polynomial mutation operator are used
as the crossover and mutation operators [42]. The constraint of 20%
unmet load fraction is set to make the analysis trouble-free (refer
Table 5). Constraint tournament technique is incorporated into
the optimization algorithm [43] in order to support constraint
multi-objective optimization.

3.1. Decision space variables

Parameters related to both the system configuration and oper-
ation strategy are incorporated into the decision space. A vector
that includes the number and type of wind turbines, the number
and type of solar panels, the number of batteries in the battery
bank and the ICG capacity is used to insert variables into the opti-
mization algorithm (Table 5). Variables related to the operational
strategy, such as PC, PD, SOCSet, minimum depth of discharge
(SOCmin) and minimum generator power (Pmin), are selected as
shown in Table 5.

3.2. Optimization algorithm

The initial population is randomly generated in the optimiza-
tion algorithm and the objective function values are subsequently
evaluated. The non-dominant set of solutions is identified, and an
initial archive is formed based on the objective function values.
Members are selected randomly from the archive and population,
and reproduction of the population and archive is performed
through mutation and crossover operations. Subsequently, values
of the objective function are evaluated, and the population and ar-
chive are updated. This routine is followed until the termination
from the main loop, which take place when the desired generations
of the algorithm has been reached (Fig. 6). Parameters such as
crossover and mutation rates are taken according to Table 6.

4. Multi-criterion decision making technique

Decision-making plays an important role when designing en-
ergy systems that combine technical, financial, social and environ-
mental aspects. In most cases, alternative sets of solutions can be
obtained immediately, and the MCDM technique can be applied di-
rectly. However, in regard to HES design, a lengthy procedure is
necessary to arrive at the alternative set of solutions, including
modeling, simulation and multi-objective optimization (Fig. 7).
The objective functions need to be modeled and simulated on an
hourly basis to compute the objective function values. Further,
multi-objective optimization must be performed in order to find
the non-dominant set of solutions. Finally, MCDM technique can
be applied to find the final system design.

With respect to energy system design, many MCDM techniques
have been used, including the weighted sum method, the analyti-
cal hierarchical process (AHP) and the Fuzzy-TOPSIS (technique for
order performance by similarity to ideal solution) [44,45]. Com-
pared to other techniques, Fuzzy TOPSIS is capable of handling
the ambiguity associated with the relative importance of objective
functions (objective space) through the help of fuzzy set theory in



Table 5
Decision space variables, objective functions and constraint.

Decision space variables Objective functions Constraint

Variable Minimum Maximum Interval

SPV Type 0 3 1 LEC unmet fraction fuel consumption WRE Unmet fraction <20%
SPV Panels 0 220 1
Wind turbine type (3 kW, 5 kW) 0 2 1
Wind turbines 0 20 1
No of batteries 0 100 4
ICG Capacity 0 7.5 0.5
SOCmin 30% 50% Continuous
Pmin 30% 50% Continuous
SOCset_value 70% 100% Continuous
PD Pmin Pngen Continuous
PC PD Pngen Continuous

Fig. 6. Optimization algorithm.

Table 6
Parameter values of the evolutionary algorithm.

Crossover rate Mutation rate gc gm e Generations

0.90 0.1 1 100 0.002 200,000
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the decision-making process [46]. Therefore, it is used in wider
spectrum of applications including supply chain management
and logistics [47,48], manufacturing systems design [49], business
and marketing management [50] and energy system design
[51,52]. A detailed description about various applications of Fuzzy
TOPSIS can be found in recent review of Behzadian et al. [53] on
applications of Fuzzy TOPSIS.

4.1. Fuzzy TOPSIS

The Fuzzy TOPSIS method follows several steps in the decision-
making process, described in this section.
Step 1: Constructing the decision matrix
General problems related with MCDM involve m alternatives

evaluated with respect to n criteria, which can be concisely ex-
pressed through a (mxn) matrix, known as a decision matrix,
according to

X ¼

x11 x12 � � � x1n

x21 x22 � � � x2n

� � � � � � � � � � � �
xm1 xm2 � � � xmn

0BBB@
1CCCA ! Criteria
# Alternatives

ð14Þ

In the decision matrix, xij represents the significance of the ith alter-
native solution with respect to the jth criterion. Objective functions,
i.e., LEC, unmet load fraction, fuel consumption and WRE, are the
basis of the evaluation (described in Step: 3).

Step 2: Normalization of the decision matrix
The decision matrix is normalized to eliminate anomalies. In

this problem, all four objectives are to be minimized. Therefore, a
simple linear transformation, shown in Eq. (15), is used to derive
the normalized decision matrix, _x.

_xij ¼
xi;j � xmin;j

xmax;j � xmin;j
ð15Þ

where xmin,j and xmax;j denote the minimum and maximum values,
respectively, that can be obtained for the alternatives (Table 7) with
respect to the jth criterion.

Step 3: Constructing the fuzzy decision matrix
Alternatives are rated based on the normalized objective func-

tion values using triangular fuzzy numbers to construct the fuzzy
decision matrix. Weights are subsequently assigned to construct
the fuzzy decision matrix, as shown in Table 8. The specialty of this
work is that the rating is based on the normalized objective func-
tion value instead of by the decision makers.

Step 4: Constructing the weighting matrix
The weighting matrix is used to estimate the relative impor-

tance of each objective according to

W ¼ ðw1w2 . . . wnÞ1�n ð16Þ

Step 5: Constructing the weighted decision matrix
The weighted decision matrix (mxn), Yw, is computed using the

weighting matrix according to



Fig. 7. Complete design process from modeling to MCDM.

Table 7
Minimum and maximum objective function values used to normalize.

xmin,j xmax,j

LEC 0.3166 1.0391
Unmet fraction (%) 0 19.86
Fuel (L/yr) 0 6583.14
WRE (MW h/yr) 0.056 48.24

Table 8
Linguistic rating and weights assigned.

Normalized
objective
function value

Linguistic
rating

Triangular fuzzy
number for
rating

Triangular fuzzy
number for importance
weight

(0,0,0.3) Poor (0,0,3) (0,0,0.3)
(0.3,0.5,0.7) Average (3,5,7) (0.3,0.5,0.7)
(0.5,0.7,1.0) Good (5,7,10) (0.5,0.7,1.0)
(0.7,10,10) Very Good (7,10,10) (0.7,10,10)
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Yw ¼

m
^

11 m
^

12 � � � m
^

1n

m
^

21 m
^

22 � � � m
^

2n

� � � � � � � � � � � �
m
^

m1 m
^

m2 � � � m
^

mn

0BBBB@
1CCCCA ð17Þ

where m
^

i;j ¼ wi � _xij

Step 6: Determining the Fuzzy Positive Ideal Solution (A+) and the
Fuzzy Negative Ideal Solution (A�)

Eqs. (18) and (19) are used to determine A+ and A�.

Aþ ¼
maxi m

^

i;jj8j 2 J

mini m
^

i;jj8j 2 J0

(
ð18Þ

A� ¼
mini m

^

i;jj8j 2 J

maxi m
^

i;jj8j 2 J0

(
ð19Þ

where J and J0 represent benefit and cost functions, respectively. In
this problem, all objective functions are to be minimized and can be
treated as cost functions

Step 7: Deriving the distance matrix
The positive distance matrix, D+ (1 � n), and the negative dis-

tance matrix, D� (1 � n), are calculated using the Euclidian dis-
tance between A+ and A�, the elements of the weighted decision
matrix and Eqs. (20) and (21).

Dþi ¼
Xn

k¼1

ðAþk � VkiÞ2
( )0:5

ð20Þ

D�i ¼
Xn

k¼1

ðA�k � VkiÞ2
( )0:5

ð21Þ

Step 8: Deriving the coefficient of closeness
Relative closeness to the ideal solution is calculated using the

coefficient of closeness (CC), which is used to rank the alternatives.
CC (1 �m) is calculated by using

CCi ¼
D�i

D�i þ Dþi
ð22Þ
Table 9
Weight matrix for three cases.

Rank LEC Unmet fraction Fuel consumption WRE

Case 1 0.5 0.3 0.1 0.1
Case 2 0.5 0.3 0.12 0.08
Case 3 0.8 0.05 0.1 0.05
4.2. Level diagrams

Level diagrams [54] can be used to support decision makers
when estimating the weight matrix. A level diagram is based on
the classification of the Pareto front approximation according to
the proximity to the ideal point. Level diagrams have been used
for number of applications including system redundancy allocation
[55], design of nuclear systems [56], PI [57] and PID [58] control-
lers, data clustering [59], etc.
However, for this problem, the level diagrams need to be com-
bined with Fuzzy-TOPSIS. Therefore, CC was used instead of the 1-
norm or infinite norm.
5. Results and discussion

It is a challenging process to find the optimum system that
meets all the design requirements. LEC, power supply reliability,
WRE and fuel consumption are used as the evaluation criteria, cov-
ering techno-economical and environment factors related to the
design. Selecting the correct weight matrix for the set of objectives
is the most difficult consideration for the designer.
5.1. Sensitivity of the weight matrix

To analyze the impact of the weight matrix on the final design,
three cases with different weight matrices are compared, as shown
in Table 9. Level diagrams and best alternatives (groupings of six)
for each weight matrix are compared to support the analysis.
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The top six alternatives for Case 1 are tabulated in Table 10.
When comparing these solutions, slight changes can be observed
in the objective functions. More importantly, the first and the fifth
are the alternatives that have the minimum LEC among the six.
These two show the impact of other factors, such as unmet load
fraction, WRE and fuel consumption, when arriving at the final
design. When analyzing the decision space variables of the
alternatives, the first and third alternatives are having similar sys-
tem configurations. With respect to decision space variables, all of
the systems are having a 5 kV A capacity ICG. However, the varia-
tion of the SPV capacity is significant compared.

To evaluate the sensitivity of the weight matrix further, two
different weight matrices were taken, where Case 2 is marginally
different from Case 1. When comparing Case 2 (Table 11) with Case
1, it is observed that even a slight change in the weight matrix can
influence the final solution. For example, the weight of the LEC is
constant when moving from Case 1 to Case 2. However, changes
of the weights related to WRE and fuel consumption result in a
noticeable increase in LEC in the final solution. Even though the
weight of the unmet load fraction is kept constant, the unmet load
fraction of the final solution decreases from 0.063% to 0.057%. In
regard to the HES design, a small change in the number of SPV pan-
els and battery banks is observed. Therefore, it is clear that the sen-
sitivity of the weight matrix is notable for both objective functions
and the final system design.

With respect to Case 2 (Table 12), a significant change is intro-
duced to the weight matrix in Case 3, and resultant changes can be
Table 11
Top six alternatives for the weight matrix of Case 2.

Rank D�i Dþi CCi LEC ($) Unmet fraction (%) Fuel (L/yr) WRE (M

1 9.40 0.72 0.9289 0.4983 0.0566 1997 11.42
2 9.42 0.74 0.9272 0.4707 0.0626 2289 9.96
3 9.41 0.74 0.9271 0.4743 0.0487 2183 14.82
4 9.41 0.74 0.9271 0.4985 0.0411 2117 6.84
5 9.42 0.75 0.9263 0.4571 0.0704 2327 14.47
6 9.37 0.76 0.9250 0.5157 0.0313 1795 12.56

a SPV panels with Amorphous type.
b Wind turbine with 5 kW capacity.

Table 12
Top six alternatives for the weight matrix of Case 3.

Rank D�i Dþi CCi LEC ($) Unmet fraction (%) Fuel (L/yr) WRE (M

1 9.3 0.76 0.9245 0.439 7.07 2105.17 15.2
2 9.26 0.76 0.9242 0.458 5.98 2134.33 12.42
3 9.31 0.77 0.9236 0.4352 7.39 2202.24 10.95
4 9.3 0.77 0.9235 0.4383 7.35 2134.32 14.79
5 9.25 0.78 0.9222 0.4579 5.74 2015.03 17.04
6 9.25 0.78 0.9222 0.4579 6.4 2172.44 11.44

a SPV panels with Amorphous type.
b Wind turbine with 5 kW capacity.

Table 10
Top six alternatives for the weight matrix of Case 1.

Rank D�i Dþi CCi LEC ($) Unmet fraction (%) Fuel (L/yr) WRE (M

1 9.44 0.72 0.9291 0.4707 0.0626 2289 9.96
2 9.42 0.72 0.9290 0.4985 0.0411 2117 6.84
3 9.41 0.72 0.9289 0.4983 0.0566 1997 11.42
4 9.41 0.73 0.9280 0.4743 0.0487 2183 14.82
5 9.43 0.74 0.9272 0.4571 0.0704 2327 14.47
6 9.39 0.75 0.9260 0.5176 0.0442 2007 6.96

a SPV panels with Amorphous type.
b Wind turbine with 5 kW capacity.
observed in both objective function values and the system config-
uration. LEC decreases by a considerable amount while increasing
the unmet load fraction. In both Case 1 and Case 2, the unmet load
fraction is less than 0.07%, and in Case 3, the best alternative has an
unmet load fraction of 7.07%, an order of magnitude increase.
Moreover, both Case 1 and Case 2 have 5 kV A ICGs, which is re-
duced to 1.5 kV A in Case 3. Further, a significant drop in SPV
capacity is observed. These results, illustrates the impact of the
weight matrix on the final system configuration and the impor-
tance of matching it with the requirements of the application.

5.2. Level diagrams used to support decision making

Sensitivity of the weight matrix is significant in determining the
final system configuration. Therefore, it is further analyzed using
level diagrams. Level diagrams of Case 1 and Case 3 provide a
general idea about the impact of the weight matrix on the final de-
sign (Fig. 8). In the level diagram of the unmet load fraction for
Case 1, the global maximum (CC) is reached when the normalized
unmet load fraction is 0.003, and there is a local maximum in the
range of 0.2–0.3. These results indicate that a reduction in the
weight of the unmet load fraction could have a significant impact
on power supply reliability. When moving from Case 1 to Case 3,
the weight of the unmet fraction is reduced, and subsequently,
the global maximum and local maximum in the unmet load frac-
tion has interchanged as expected (refer to Fig. 8). The level dia-
gram of the LEC exhibits a gradual gradient. Therefore, the
W h/yr) SPVa panels Windb turbines ICG capacity (kV A) Battery banks

55 5 5 28
47 5 5 26
38 6 5 27
65 4 5 27
35 6 5 23
61 5 5 28

W h/yr) SPVa panels Wind turbinesb ICG capacity (kV A) Battery banks

25 6 1.5 19
43 5 1.5 16
35 5 1.5 16
23 6 1.5 21
34 6 1.5 16
39 5 1.5 21

W h/yr) SPVa panels Windb turbines ICG capacity (kV A) Battery banks

47 5 5 26
65 4 5 27
55 5 5 28
38 6 5 27
35 6 5 23
67 4 5 33



Fig. 8. Comparison of level diagrams for Case 1–Case 3.
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impact of the weight matrix on the LEC is trivial compared to that
on the unmet load fraction. For example, when moving from Case 1
to Case 3, N-LEC has reduced from 0.213 to 0.169, which is trivial
compared to the same value for the unmet load fraction. These re-
sults show that level diagrams provide a good overall picture about
the variation of CC with the normalized objective functions and
support the development of the weight matrix.

Nevertheless, there are certain limitations, even with level dia-
grams. Even though level diagrams provide a general idea of the
impact of the weight matrix, 1-D level diagrams cannot be used
to fine-tune the weight matrix. For example, when moving from
Case 1 to Case 2, it is difficult to find a notable change in the level
diagrams (Fig. 9). In such instances it is essential to move towards
2-D level diagrams which is discussed in detail in next section.

5.3. Decision-making process

According to the novel method proposed in this study, multi-
objective optimization of the HES is the initial step of the design
process. After deriving the non-dominant set of alternative solu-
tions, multi-criterion decision making becomes the second stage,
which comprises several steps (Fig. 10). At the beginning, decision
makers must deduce the upper boundaries of the objective space
while considering special design requirements. The initial weight-
ing matrix can be taken subsequently. An iterative process is intro-
duced in this study to fine-tune the weight matrix which is
discussed in detailed through a case study.

With respect to ranking alternatives, it is essential to identify
the upper limits related to objective functions, including design
requirements (Fig. 10). Contour plots of the Pareto front are gener-
ated to find the upper bounds of the objective functions (Figs. 11
and 12) as the initial stage. In this design, higher power supply reli-
ability is expected while minimizing LEC, which is taken as a spe-
cial design requirement. Finally, upper bounds were finalized
according to Table 13, which may vary with the application.

Initial weight matrix is taken according to Table 14 (Case 4) after
going through the contour plots. Subsequently, the CC of the alter-
natives is calculated. Then, level diagrams of the alternatives are
plotted (Fig. 13), and the best six alternatives are tabulated (Ta-
ble 15) using the MCDM process outlined in Fig. 10. The next step
is the analysis of the Pareto front. When analyzing the level diagram
of the unmet load fraction and fuel consumption, local maxima can
be observed (Fig. 13). These local maxima indicate that significant
reductions in unmet load fraction and fuel consumption can be
achieved by adjusting the weight matrix (Section 5.2).

Therefore the weight matrix is changed according to Case 5 (Ta-
ble 15) in order to increase the power supply reliability. As the
weight related to power supply reliability increases, a significant
increase in power supply is observed (Fig. 13). The best six alterna-
tives for Case 5 are shown in Table 16. When analyzing the best six
alternatives, it is clear that all of them are within the bounds set
initially.

However, further changes can be made to optimize the design,
which cannot be analyzed through 1-D level diagrams. Therefore,
contour plots are constructed to consider two objectives at a time,
along with CC (2D level curve). Since the LEC and the unmet load
fraction are higher priority factors, a contour plot of LEC, unmet
load fraction and CC is examined first. Maxima can be observed
in the contour plot in the areas of A and B in Fig. 14. When analyz-
ing the best set of alternatives in Table 16, it is clear that the global



Fig. 9. Comparison of level diagrams for Case 1 and Case 2.

Fig. 10. Block diagram of the MCDM process.
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maximum lies in A. Comparison of Case 4 to Case 5 shows that, the
global maximum moves from B to A as the weight for the unmet
load fraction increases.

Similar to the maxima of the unmet load fraction, the maxima
of the LEC, fuel consumption and CC contour plots can be found
in Fig. 15, areas C and D. By analyzing Table 16 it can be deduced
that the global maximum belongs to Section D. It can be concluded
Fig. 11. Contour plot of LEC, unmet load fraction and fuel consumption.



Fig. 12. Contour plot of LEC, unmet load fraction and WRE.

Table 13
Upper bounds of objective functions.

LEC ($) Unmet load fraction (%) Fuel consumption (l/yr) WRE (kW h

0.55 2 3000 15,000

Table 14
Weight matrix for case study.

Rank LEC Unmet fraction Fuel consumption WRE

Case 4 0.8 0.05 0.1 0.05
Case 5 0.5 0.2 0.2 0.1
Case 6 0.6 0.2 0.1 0.1

Fig. 13. Level diagrams fo

Table 15
Top six alternatives for the weight matrix of Case 4.

Rank N-LEC N-unmet fraction N-Fuel consumption N-WRE

1 0.169 0.356 0.320 0.307
2 0.196 0.301 0.324 0.249
3 0.164 0.372 0.335 0.218
4 0.168 0.370 0.324 0.299
5 0.196 0.289 0.306 0.346
6 0.196 0.322 0.330 0.228
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that a significant reduction in fuel consumption can be achieved
for a marginal increase in LEC with the shift of the global maximum
from D to C. However, it is essential to evaluate the impact of
reducing the fuel consumption on the other objectives. To that
end, a contour plot of unmet load fraction, fuel consumption and
CC is constructed (Fig. 16). Two local maxima (F and G) are identi-
fied with a global maximum (E). If the weight of fuel consumption
is increased, the global maximum of the cost-fuel consumption
contour plot moves from D to C, while the global maximum moves
from E to G in the unmet load fraction-fuel consumption contour
plot, indicating a significant reduction in power supply reliability.
Therefore, it is apparent that, although shifting the global maxi-
mum from A to D reduces the fuel consumption, according to
/yr) N-LEC N-unmet fraction N-Fuel consumption N-WRE

0.3230 0.1007 0.4557 0.3028

r Case 4 and Case 5.

LEC ($) Unmet fraction (%) Fuel (L/yr) WRE (MW h/yr)

0.439 7.07 2105 15,202
0.458 5.98 2134 12,424
0.435 7.39 2202 10,950
0.438 7.35 2134 14,791
0.458 5.74 2015 17,042
0.458 6.40 2172 11,442



Table 16
Top six alternatives for the weight matrix of Case 5.

Rank N-LEC N-unmet fraction N-Fuel consumption N-WRE LEC ($) Unmet fraction (%) Fuel (L/yr) WRE (MW h/yr)

1 0.251 0.003 0.303 0.228 0.498 0.057 1997 11,419
2 0.276 0.002 0.273 0.252 0.516 0.031 1796 12,558
3 0.252 0.002 0.322 0.132 0.498 0.041 2118 6840
4 0.278 0.002 0.305 0.134 0.518 0.044 2007 6956
5 0.298 0.002 0.280 0.154 0.532 0.040 1840 7912
6 0.218 0.002 0.332 0.299 0.474 0.049 2184 14,819

Fig. 14. Contour plot of N-LEC, N-unmet load fraction and CC for Case 5.

Fig. 15. Contour plot of N-LEC, N-fuel consumption and CC for Case 5.

Fig. 16. Contour plot of N-unmet load fraction, N-fuel consumption and CC for
Case 5.
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Fig. 16, it increases the unmet load fraction beyond the upper
bounds. However, depending on the application, priority can be gi-
ven to the objective, and appropriate adjustments can be made.
Under these conditions, it is not advisable to reduce fuel consump-
tion while further increasing unmet load fraction and LEC.

With respect to WRE, a gradual variation of CC can be observed,
without any local maxima (Fig. 14) where analysis become sim-
pler. The weight matrix and design are finalized (Case 6) after con-
sidering several alternative designs. The objective function values
and the best six alternatives according to the finalized weight ma-
trix are listed in Table 17.
6. Conclusions

When compared to the classical cost optimization, Pareto mul-
ti-objective optimization has the advantage of optimizing several
conflicting objectives in the design process to develop a non-dom-
inant set of alternative designs. However, it is essential to move be-
yond the Pareto set and come up with a final design using MCDM
where no previous literature exists. A novel technique is suggested
in this paper that combines Fuzzy-TOPSIS with Pareto multi-objec-
tive optimization in designing standalone energy systems.

The energy and cash flows of the system throughout the system
life cycle are modeled and subsequently simulated to develop the
objective functions. LEC, the unmet load fraction, fuel consumption
and WRE are chosen as the objective functions, and the Pareto
front is computed. Fuzzy TOPSIS is combined with 1-D and 2-D
level diagrams to obtain the weight matrix. It is found that 2D level
diagrams provide a detailed picture of the decision space, simplify-
ing the decision-making process. The novel technique suggested in
this study can even be used with different objective functions for
different applications. Furthermore, this technique can be ex-
tended to create optimum system designs when designing energy
systems with conflicting objectives. However, the uncertainty re-
lated to system parameters and input variables are not taken into
consideration, either in optimization or in decision making, which
is the focus of some current research to be reported at a later date.



Table 17
Top six alternatives for the weight matrix of Case 6.

Rank D�i Dþi CCi LEC ($) Unmet fraction (%) Fuel (L/yr) WRE (MW h/yr) SPVa panels Wind turbinesb ICG capacity (kV A) Battery banks

1 9.37 0.75 0.9257 0.471 0.063 2290 9958 47 5 5 26
2 9.37 0.76 0.9247 0.457 0.070 2327 14,469 35 6 5 23
3 9.32 0.77 0.9241 0.498 0.057 1997 11,419 55 5 5 28
4 9.34 0.77 0.9240 0.498 0.041 2118 6840 65 4 5 27
5 9.34 0.77 0.9240 0.474 0.049 2184 14,819 38 6 5 27
6 9.38 0.79 0.9226 0.459 0.055 2504 8805 41 5 5 27

a SPV panels with Amorphous type.
b Wind turbine with 5 kW capacity.
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