Energy 54 (2013) 220-230

Contents lists available at SciVerse ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission

A.T.D. Perera, R.A. Attalage*, K.K.C.K. Perera, V.P.C. Dassanayake

Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka

A R T I C L E I N F O

Article history: Received 17 September 2012 Received in revised form 12 January 2013 Accepted 5 March 2013 Available online 9 April 2013

Keywords: Hybrid energy systems Standalone applications Multi-objective optimization Life cycle cost GHG (Green House Gas) emission Initial investment

ABSTRACT

HES (hybrid energy system)s are becoming energy systems of choice for standalone applications due to ever increasing fuel costs and global concern on GHG (Green House Gas) emissions. However, it is difficult to justify the higher ICC (Initial Capital Cost) of renewable energy components, especially for rural electrification projects in developing countries. This paper illustrates the modeling and simulation of HESs, and multi-objective optimization carried out in order to support decision-making in such instances. LEC (Levelized Energy Cost), ICC and GHG emission were taken as objective functions in the optimization and the sensitivity of market prices and power supply reliability was further evaluated. Results depict that Pareto front of LEC, ICC and GHG emission can be simplified as a combination of ICC –LEC and LEC–GHG emission Pareto fronts making the decision-making process simpler. Gradual integration of renewable energy sources in a number of design stages is proposed for instances where it is difficult to be ar the higher ICC. Finally, importance of planning integration of renewable energy sources at early design stages of the project is highlighted in order to overcome the difficulties that need to be faced when coming up with the optimum design.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

HES (hybrid energy system)s are becoming popular for off grid electrification as many applications around the world are reported [1–6]. HESs are economical, consume less fossil fuels, and produce less GHG (Green House Gases) [3,7]. Due to these advantages modeling, simulation, and optimization of off grid HESs have become an area of interest during the last few years [8,9].

Determining optimum system configuration and operation strategy becomes important at the early design stages of HESs [10]. This is a challenging process due to the complexity of decision space variables and objective functions. Several optimizing algorithms based on, numerical [11,12], probabilistic [13] and heuristic [14–16] techniques have been proposed to derive the optimum design. Furthermore, conflicting objectives such as cost, unmet load fraction, pollutant emission and utilization efficiency of renewable energy have been taken into consideration through multi-objective optimization [17–21]. Previous literature on multi-objective optimization of HESs have been reviewed by Fadaee and Radzi [22] and highlighted the importance of adapting the optimization process in order to match with the local context.

HESs are currently used in Sri Lanka to supply the power requirement of telecommunication towers and proposed for rural electrification projects far away from the existing power grid. Higher ICC (Initial Capital Cost), fuel transportation and maintenance of the ICG (Internal Combustion Generator) can be taken as the main challenges that need to be overcome when designing standalone HESs in developing countries [7,23]. At the same time, it is important to evaluate the sensitivity of fuel prices and the cost of renewable energy components (i.e. wind turbines and solar panels) on optimum design due to present market volatility. Reliability of power supply needs to be assured which plays a major role when developing the final design. Therefore, it is important to identify the best practices that can be adopted while evaluating all the above aspects through multi-objective optimization, which is taken into discussion in this work for a rural electrification project.

Designers try to minimize the ICC and the LEC (Levelized Energy Cost) at early design stages of HESs considering financial limitations. At the same time, it is expected to minimize the fuel consumption and the GHG emission considering environmental impact and fuel transpiration. However, it is essential to bear a higher ICC when it comes to renewable energy sources although the operational and maintenance costs are low. On the other hand, the ICC required for the ICG is quite small compared to the operational and maintenance cost. When it comes to life cycle cost, it has been shown that optimum selection of renewable energy sources along with dispatchable energy sources can reduce the life cycle cost of HESs when

0360-5442/\$ – see front matter Crown Copyright @ 2013 Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.energy.2013.03.028

^{*} Corresponding author. Tel.: +94 714964961; fax: +94 112650621. *E-mail addresses*: dinu@mech.mrt.ac.lk, raattalage@gmail.com (R.A. Attalage).

compared to ICG systems [3,7]. Therefore, the LEC and the ICC become conflicting objectives resulting in a Pareto front. Similarly, the LEC and the GHG emission (or fuel consumption) produce a Pareto front as they also conflict with each other [18,20,24]. Therefore, it is important to analyze the Pareto front of ICC–LEC–GHG emission considering the impact of power supply reliability and current market changes in fuel price and renewable energy sources. Finally, it is important to develop innovative methods to overcome techno-economical challenges when designing HESs. A concise description on the modeling and simulation techniques used in this work is given in Sections 2 and 3 respectively. Section 4 illustrates the optimization technique used, decision space variables and objective functions. Finally, the results are analyzed in Section 5.

2. Mathematical model developed

A HES consisting of wind turbines, SPV (Solar PV) panels, ICG, AC (alternative current)–DC (direct current), DC–AC converters, battery bank and a battery charger is taken into consideration in this work (Fig. 1).

2.1. Energy flow through SPV panels

Hourly solar irradiation on the tilted SPV panel and the energy conversion efficiency of the modules need to be modeled in order to estimate the power output from SPV panels. Hourly horizontal solar irradiation data is used to compute hourly tilted solar irradiation (G_{β}) values using Klucher [25] and Climed-2 models [26]. The semiempirical formula proposed by Durisch et al. [27] is used to compute the efficiency of SPV panels (η_{pv}) according to Eq. (1). Table 1

Parameters for	the SPV	efficiency	model for	different	solar	panel	type	s.
							~ .	

	р	q	r	S	т	и
Monocrystalline	23.62	-0.2983	-0.09307	-0.9795	0.1912	0.9865
Polycrystalline	15.39	-0.1770	-0.09736	-0.8998	0.0794	0.9324
Amorphous	36.02	-0.7576	-0.02863	-1.1432	0.6601	1.0322

$$\eta_{\rm pv} = p \left[q \frac{G_{\beta}}{G_{\beta,0}} + \left(\frac{G_{\beta}}{G_{\beta,0}} \right)^m \right] \cdot \left[1 + r \frac{\theta_{\rm cell}}{\theta_{\rm cell,0}} + s \frac{\rm AM}{\rm AM_0} + \left(\frac{\rm AM}{\rm AM_0} \right)^u \right]$$
(1)

In Eq. (1), AM denotes the air mass value [28] and θ_{cell} is the cell temperature. The following values are used: $G_{\beta,0} = 1000 \text{ W m}^{-2}$, $\theta_{cell,0} = 25 \text{ °C}$ and AM₀ = 1.5. Parameters *p*, *q*, *r*, *s*, *m*, *u* for different SPV technologies are taken from Table 1 [27,29].

Hourly power output from the SPV panels ($P_{SPV}(t)$) is calculated using Eq. (2). Minor losses taken place in the energy conversion, including efficiency drop at the inverter, dust accumulation on SPV panels etc are taken into account through η_{C-SPV} .

$$P_{\rm SPV}(t) = G_{\beta}(t)\eta_{\rm pv}(t) A N_{\rm SPV}\eta_{\rm C-SPV}$$
⁽²⁾

2.2. Energy flow through wind turbines

Power law approximation (Eq. (3)) is used to compute wind speed at wind turbine hub level, based on wind speed data collected at an anemometer height of 12 m.

$$V_{\rm hub}(t)/V_{\rm ane}(t) = (Z_{\rm hub}/Z_{\rm ane})^{\gamma}$$
(3)

In Eq. (3), $V_{hub}(t)$ and $V_{ane}(t)$ are wind speeds at hub level (Z_{hub}) and anemometer height (Z_{ane}), γ denotes the power law exponent taken as 0.14.

Several mathematical models have been introduced to model the power output from wind turbines. These models can be divided into two major categories, i.e. mathematical models based on power available in wind and conceptual power curve of wind turbines. The latter can be further sub-divided to mathematical models based on presumed shape of power curve and actual power curve of wind turbine [30]. Thapar et al. [30] show that a mathematical model based on the actual power curve of a wind turbine provides a much more accurate result compared to other techniques. Therefore, cubic spline interpolation technique [31,32], which is a method based on the actual power curve of the wind turbine is used in this work, to model the power output of turbines. The power curve provided by the manufacturer of a locally available wind turbine is used and the power curve of the wind turbine is modeled by using n_s number of cubic spline interpolation functions, considering $n_s + 1$ points from the power curve given by the manufacturer (Eq. (4)).

In Eq. (4), a_i , b_i , c_i , and d_i represent coefficients of the polynomial function which vary with the power curve of the wind turbine. Further, V_r , V_{ci} , a, V_{co} and P_r denote the rated wind speed, cut-in wind speed, cut-off wind speed and rated power of the wind turbine respectively.

Finally, the electric power from the wind turbines is calculated according to Eq. (5)

$$P_{\mathbf{w}}(t) = P_{\mathbf{w}}(t) N_{\mathbf{w}} \eta_{\mathbf{w}-\mathbf{inv}}$$
(5)

where $N_{\rm w}$ denotes the number of wind turbines and $\eta_{\rm w-inv}$ denotes inverter efficiency.

2.3. Mathematical model for the battery bank

SOC (State of Charge) model [33] was used to compute the charge level of the battery bank. Rain Flow Algorithm based on Downing's Algorithm [34,35] was used to compute the lifetime of the battery bank.

2.4. Fuel consumption of the ICG

The hourly power requirement from the ICG is determined through the Combined Dispatch Strategy (illustrated in Section 3). Load factor of the ICG is determined based on the Dispatch Strategy, and used to calculate FC(t) (hourly fuel consumption) from ICG. In most of the instances, the fuel consumption was assumed to vary linearly with the load factor [36,37]. The fuel consumption is taken as a polynomial function of the load factor in this work, considering the nonlinear components of the fuel curve (Fig. 2). A detailed description about the energy flow model can be found in Ref. [38].

2.5. Life cycle cost model

Several life cycle cost models have been proposed to analyze the cash flow of HESs [39–42]. A simple life cycle cost model is developed in this work based on previous publications of Kaldellis et al. [41] and Diaf et al. [39], which is illustrated in detail in this section.

LCC (life cycle cost) of the system consists of two components i.e. ICC and OM cost (Operation and Maintenance). ICC of system components comprises the AC (acquisition costs) and the installation costs. Installation cost of system components is taken as a fraction of AC (α) (Table 2) (Eq. (6)).

$$ICC = (1 + \alpha)AC \tag{6}$$

Fig. 2. Variation of fuel consumption with load factor.

ICC of the system (ICC₀) is calculated considering the initial expenditure on ICG (ICC_{Gen}), wind turbines (ICC_W), SPV panels (ICC_{SPV}), battery bank (ICC_B) and inverters (ICC_{Inv}) according to Eq. (7).

$$ICC_0 = ICC_{Gen} + ICC_W + ICC_{SPV} + ICC_B + ICC_{Inv}$$
(7)

When it comes to OM, it comprises FOM (Fixed OM) and VOM (Variable OM) cash flows. The annual fuel consumption cost, and the maintenance cost for the ICG, wind turbines and SPV panels are taken into consider under FOM expenditure.

Eq. (8) is used to compute the PV (Present Value) of entire FOM cash flows (FOM_{PV}), where CRF denotes the Capital Recovery Factor, which is computed using Eq. (9). In Eq. (9), p denotes the annual real interest rate, and n denotes the lifetime of the project in years. Annual real interest rate p is finally calculated using Eq. (10) where f and g denote return on investment and local market annual inflation rate (Table 2).

$$FOM_{PV} = FOM.CRF$$
(8)

$$CRF = (p(1-p^{n}))/(1-p)$$
(9)

$$p = (1+f)/(1+g)$$
(10)

VOM includes replacement cost of battery bank, ICG and inverters, which depends on operating conditions, number of operating hours and life expectancy. It is assumed that both SPV panels and wind turbines are having the exact lifetime of the project. Finally, the Present Value of the entire VOM cash flows (VOM_{PV}) is calculated using Eq. (11) considering the Present Value of VOM of each year.

$$VOM_{PV} = \sum_{k=1}^{k=n} p^k VOM_k$$
(11)

The NPV (Net Present Value) of the LCC comprises ICC_0 , FOM_{PV} and VOM_{PV} , which is used to calculate the LEC according to Eq. (12) where ELD (Electricity Load Demand) denotes the hourly electricity load demand.

$$LEC = LCC / \sum_{k=1}^{k=n} \sum_{t=1}^{t=8760} ELD_{t,k}$$
(12)

Local market prices of the system components are given in Tables 2 and 3.

2.6. Mathematical model for pollutant emission

Combustion of fossil fuels in ICGs release a number of noxious gases including CO, NO_x , SO_x and PM (Particulate Matter) etc. Hourly emission rates of various exhaust gases depend upon dynamic load factor of the ICG, engine technology and manufacturer [43]. However, total amount of CO_2 produced has been used along with fuel consumption or energy produced through the ICG in previous publications, neglecting the sensitivity of load factor of the

Table 2			
Parameters	of the	cost	model.

Parameter	Percentage (%)
SPV panel & wind turbines	
Installation cost as a fraction of acquisition cost	20
Annual O&M as a fraction of acquisition cost	5
ICG installation cost as a fraction of acquisition cost	5
Local market annual inflation rate	2

Table 3Present local market prices system components.

Component	Description	Cost (\$)
Wind turbine	1 kW	2081
	5 kW	9588
Solar panels including inverters	Monocrystalline 1.22 m ²)	888
and ground mounting structure	Polycrystalline (0.79 m ²)	945
	Amorphous (1.28 m ²)	877
Single phase ICG (20,000	0.5 kVA-7.5 kVA	335.5-4195
working hours)	Hourly O&M	0.11
Cost of fuel	(Diesel 1 L)	1.03
Battery Bank	12 V, 250 Ahs $ imes$ 4	500 imes 4

ICG on emission [18,20,24]. As a result, impact of dispatch strategy on the GHG emission has not been depicted in the emission model. Moreover, impact of pollutants such as CO, NO_x , SO_x and PM (Particulate Matter) etc. has not been evaluated. In order to rectify the above issues, dynamic emission model based on the load factor of the ICG is introduced in the present study. Emission rates of CO, NO_x , SO_x and PM were taken for different load factors of the ICG [44] (i.e. 10%, 25%, 75% and 100% given in Table 4), and Lagrangian interpolation is used to calculate the hourly exhaust emissions. Finally, the Eq. CO_2 model introduced by Lora & Salomon [45] is used to compute the ecological and environmental impact of noxious gasses (taken as GHG emission).

3. Simulation of HES

The simulation combines hourly varying meteorological data and the ELD according to the operation strategy designed by the system designer known as the dispatch strategy. Time series of hourly wind speed and solar irradiation data are taken and the renewable energy output is computed by using the mathematical model illustrated in Section 2. When the renewable energy potential is not sufficient to provide the power requirement, dispatchable energy sources are used. Detailed description about the control strategy and brief description about the time series of hourly wind speed, solar irradiation and ELD are illustrated in this section.

3.1. Meteorological data and ELD (Electricity Load Demand)

Hourly average wind speed and solar irradiation values of 1995, 1997 and 1998 at Hambanthota, a southeast location of Sri Lanka $(06^{\circ}07' \text{ N } 81^{\circ}07' \text{ E})$ are taken in this study. When it comes to ELD, it is highly specific to the application. In this study, the ELD is considered to vary with the summer-weekly load variation proposed by IEEE (Institute of Electrical and Electronics Engineers) system reliability committee [46] (Fig. 3).

3.2. Dispatch Strategy

Combined Dispatch Strategy, which is a combination of Battery Charging Strategy, Frugal Discharge Strategy, SOC Set Point Strategy, Load Following Strategy, and Peak Shaving Strategies used in

 Table 4

 Average emission rates of various exhaust gases under different generator load conditions.

Generator load percentage	THC g/kWh	CO g/kWh	NO _x g/kWh	PM g/kWh	CO ₂ g/kWh
10	5.6	32	43	1.1	1487.94
25	6.8	23	38	1.2	970.44
50	2.5	15	37	1.9	793.17
75	13	10	29	2.6	736.67
100	15	09	26	2.1	727.22

Fig. 3. Hourly variation of ELD.

this work [10,36,37] (Fig. 4). Detail description about the Dispatch Strategy is illustrated in this section.

3.2.1. State 1: Battery Charging Strategy

When electricity production through renewable energy sources, $P_{\rm R}(t) (P_{\rm w}(t) + P_{\rm SPV})$ is higher than the ELD, additional energy produced is used to charge the battery bank. However, when the battery bank reaches its maximum SOC, additional energy produced will be wasted, which is known as the WRE (Wasted Renewable Energy). The Battery Charging Strategy is quite easy to understand since it does not take any support from the dispatchable energy sources to supply the power requirement.

3.2.2. State 2: Frugal Discharge Strategy

Dispatchable energy sources are used to supply the additional power requirement when the power output from the renewable energy sources is inadequate. When the requirement of the dispatchable energy i.e. difference between ELD and $P_R(t)$ (P_a) is small, it is not advisable to use the ICG to provide the additional power requirement which will result in poor efficiency and higher OM cost. Therefore, the battery bank is used in such instances to supply the additional power until it reaches P_D (dispatch load), which is optimized in the optimization algorithm.

3.2.3. State 3: SOC Set Point Strategy

When the additional power requirement goes beyond P_D (dispatch load) the system will shift to SOC Set Point Strategy where the ICG is driven at its maximum power (P_{ngen}) and the additional power produced is used to charge the battery bank till it gets into set point SOC (SOC_{set point}) which is optimized using optimization algorithm.

3.2.4. State 4: Load Following Strategy

Additional conversion losses will take place when the battery bank is charged using the ICG. At the same time, this will minimize the renewable energy storage capacity. Therefore, when P_a is greater than (critical load) the system will shift to Load Following Strategy where the ICG is driven to supply P_a and battery will not take place. P_C is also optimized in the optimization algorithm.

3.2.5. State 5: Peak Shaving Strategy

When the additional power required goes beyond P_{ngen} , Peak Shaving Strategy is used where the battery bank will be used to along with the ICG.

Fig. 4. Dispatch strategy.

3.3. Breakdown of power supply

The power supply breakdowns when $P_{a}(t)$ is greater than the addition of P_{ngen} and the maximum power output of the battery bank ($P_{Bat-Max}$). Loss of Power Supply (LPS(t)) can be calculated using Eq. (13)

$$LPS(t) = P_{a}(t) - P_{ngen} - P_{Bat-Max}$$
(13)

Finally, the unmet load fraction is calculated using Eq. (14) which is taken as the measure of power supply reliability.

Unmet load fraction =
$$\sum_{t=1}^{t=8760} LPS(t) / \sum_{t=1}^{t=8760} ELD(t)$$
 (14)

4. Multi-objective optimization of HES

It is a challenging process to come-up with the optimum system configuration and the operation strategy when designing HESs. Objective functions related to the problem are neither linear nor analytical. At the same time, some of the decision space variables are continuous while some are discrete. Therefore, enumerative and heuristic methods become more appropriate compared to classical gradient based techniques. A number of enumerative algorithms have been developed in order to optimize HESs during the last few years [12,47–49]. Furthermore, software based on enumerative techniques such as HOMER has been used extensively in order to come-up with the optimum system design [1,3,50,51]. However, when compared to heuristic methods, computational time required to obtain the optimum solution is much higher when it comes to enumerative techniques [50]. As a result of this, recent reviews on HES optimization highlight the importance of using heuristic techniques in order to optimize HESs [22,52]. A number of heuristic techniques including Genetic Algorithm [14,36,53], Simulated Annealing [16], Particle Swarm method [15,54] etc. were used to develop algorithms to optimize HESs. Furthermore, evolutionary algorithms were used to carry out multi-objective optimizations considering conflicting objectives.

4.1. Optimization algorithm

Considering these perspectives, Steady ε -State Evolutionary Algorithm [55], based on the ε -dominance technique [56], is used in

this study to come-up with Pareto fronts considering conflicting objectives. Initial population is randomly generated in the optimization algorithm and objective function values are computed after the life cycle simulation (Fig. 5). Based on objective function values,

Fig. 5. Optimization algorithm.

Table 5Range of decision space variables.

nuous

a non-dominant set of alternative solutions are selected which produces the initial archive. After coming up with the initial archive and the population, both crossover and mutation operators are used along with the constraint tournament method to reproduce the population and archive. This routine takes place until the termination of main loop, which occurs when desired generations were achieved.

4.2. Operators used in the optimization algorithm

Some of the decision space variables of the optimization problem are continues while some are discrete. Hence, real parameter operators; Simulated Binary Crossover Operator [57] and Polynomial Mutation Operator [58] were used in this study instead of binary coded operators.

4.3. Decision space variables and objective functions

System configuration parameters that relate with the dispatchable, non- dispatchable energy sources and the storage were optimized using the optimization algorithm. The upper and lower bounds of these variables are selected according to Table 5. Similarly, the variables related with the operation strategy were optimized. Operation of the ICG is controlled through three main parameters, P_D , P_C and P_{min} (illustrated in Section 3.3). The upper and lower bounds of these variables were selected according to Table 5. Other parameters related with the dispatch strategy such as SOC_{min} and SOC_{set-value} were optimized simultaneously (Table 5). Objective functions derived in Sections 2 and 3 were used in the optimization algorithm. A detailed description about the objective functions and constraints used for different optimization problems is given in Table 6.

Table 6

Objective functions and constraint used in different optimization problem	าร
---	----

No of objectives	Objectives	Constraint unmet load fraction (%)	Sensitivity
3	LEC, ICC ₀ ,	2, 5, 10	Unmet fraction
	emission equivalent		(2%, 5%, 10%)
2	LEC-ICC ₀	2	Fuel cost (present price,
			+5%, +10%, +15%)
2	LEC-ICC0	2	Wind turbine and SPV
			panel cost (present price,
			-5%, -10%)
2	LEC-emission	2	Fuel cost (present price,
	equivalent		+5%, +10%)
2	LEC-emission	2	Wind turbine and SPV
	equivalent		panel cost (present price.
			-5% -10%)
			5/0, 10/0)

Fig. 6. Pareto front of ICC, LEC and GHG emission with unmet load fraction of 2%.

5. Results and discussion

Obtained results from the multi-objective optimization considering several sets of objectives are taken into discussion in this section.

5.1. Pareto optimization of ICC, LEC and GHG emission

Pareto front of ICC–LEC–GHG emission (or fuel consumption) portrays a better picture of the alternative design solutions that need to be evaluated when coming up with the final design. GHG emission is taken to represent both fuel consumption and GHG emission instead of taking these aspects as two separate objectives. Finally, Pareto fronts were taken for three different unmet load fractions i.e. 2%, 5% and 10% (Figs. 6–8).

When analyzing these three Pareto fronts, it was observed that the LEC reduces with the increase of ICC initially, and reaches to a minimum (Region A in Fig. 9). In Region A, both GHG emission and LEC become non-conflicting objectives since both of these functions decrease with the increase of ICC. Therefore, the solutions of this region do not appear in LEC–GHG emission Pareto

Fig. 7. Pareto front of ICC, LEC and GHG emission with unmet load fraction of 5%.

Fig. 8. Pareto front of ICC, LEC and GHG emission with unmet load fraction of 5%.

front. With further reduction of GHG emission beyond the minimum LEC, both ICC and LEC vary parallel to each other (becomes non-conflicting) and get increase with the reduction of GHG emission (Region B). Therefore, Region B comes into the picture when taking LEC–GHG emission Pareto front. This makes it important to come-up with the system design which minimizes the LEC initially, and based on that, it can be determined whether to use LEC–GHG emission or LEC–ICC Pareto front while analyzing limitations of ICC, fuel transportation, GHG emission, maintenance of ICG etc.

5.2. Sensitivity of power supply reliability and market prices

Power supply reliability is having a notable impact on the design. Based on the Pareto fronts obtained, it can be interpreted that both GHG emission and ICC have increased with the increase of power supply reliability (Fig. 10). However, the sensitivity of unmet load fraction is insignificant when comparing 2%–5% unmet load fractions.

Due to highly volatile market conditions, sensitivity of market prices needs to be studied at early design stages. When it comes to

Fig. 10. Impact of power supply on ICC, LEC and GHG emission Pareto front.

SPV panels, notable price reduction can be observed during recent past [60]. At the same time, Bolinger and Wiser [59] reveal that there is a reduction in wind turbine prices in present U.S. market. In order to estimate the impact of price reduction in SPV panels and wind turbines, LEC–ICC Pareto fronts were taken with 5% and 10% reduction of present market prices (Fig. 11). Further, sensitivity analysis was conducted for LEC–HG emission Pareto front (Fig. 12). When analyzing the Pareto fronts, it was observed that the impact of cost reduction in renewable energy components is not significant in ICC–LEC Pareto front, especially with lower ICCs. Dominant role of ICG can be taken as the reason behind this observation. However, the cost reduction makes a notable impact on LEC–GHG emission Pareto front with the increase of renewable energy fraction.

Escalation of fuel prices and its impact on the Pareto fronts are evaluated by taking into account 5%, 10% and 15% increase of the present market price of fuel. Although the sensitivity of fuel cost is insignificant on the ICC, notable increase in the LEC was observed with the increase of fuel prices, especially when LEC is above 0.30 \$ (Fig. 13). When analyzing the Pareto front of LEC–GHG emission, it

Fig. 9. Two main regions of ICC, LEC and GHG emission Pareto font with unmet load fraction of 2%.

Fig. 11. ICC-LEC Pareto front with cumulative price reduction of SPV panels and wind turbines.

Fig. 12. Solutions of LEC-emission Pareto front with price reduction of renewable energy components.

was observed that the sensitivity of fuel escalation is insignificant (Fig. 14). When evaluating the sensitivity of both fuel prices and renewable energy sources, it is prudent that incorporating renewable energy sources beyond the minimum LEC (system designs in Region B) will help to overcome the vulnerability of the future fuel price escalation while taking advantage of cost reduction in renewable energy sources. Therefore, gradual integration of renewable energy sources in several stages needs to be encouraged when it is difficult to bear higher ICC.

5.3. Gradual integration of renewable energy sources

It is essential to come-up with an appropriate initial design for a project, which is to be extended later. The set of optimum design solutions of the Pareto front with unmet load fraction of 2% is taken into discussion in order to analyze the sequential process of adding renewable energy sources.

It is a challenging task to consider the entire Pareto front at once. Therefore, objective space is divided into six sections based

Fig. 13. ICC-LEC Pareto front with increase of fuel price.

Fig. 14. ICC with LEC of solutions in LEC-emission Pareto front with increase of fuel prices.

on the ICC, and several design solutions from each section are extracted and tabulated in Table 7. When analyzing these design solutions, it was observed that the LEC gradually reduces when moving from Section 1 to Section 5, and subsequently gets increased when moving to Section 6. Therefore, LEC-ICC Pareto front can be used to analyze the integration of renewable energy sources within Section 1 to Section 5. Pareto front of LEC-ICC-GHG emission needs to be taken when analyzing the cases that go up to Section 6. When considering the designs with lowest ICC (Section 1), ICG plays a dominant role, contributing almost 70% of the total power generation (Table 8). As a result of it, both fuel consumption and GHG emissions are quite high. When moving from Section 1 to Section 5, contribution of ICG gradually reduces while minimizing the fuel consumption and GHG emission (Tables 7 and 8). Gradual increase of battery bank is the other important feature that can be observed.

Selection of renewable energy sources in each step, is not that straight forward. When selecting 1-B as the initial design, renewable energy integration becomes quite simple. However, there are several limitations when selecting 1-A and 1-C as the initial design.

Table 7		
Selected set of solutions from ICC-LEC-GHG emission	Pareto	front.

Section- case	- LEC (\$)	ICC (\$)	Emission (kg CO ₂ eq.)	Number of SPV panels ^a	Number of wind turbines	Number of battery banks	ICG capacity (kVA)
1-A	0.3639	15,475	52,436	0	3 ^b	2	6
1-B	0.3393	17,311	46,991	0	1 ^c	1	5.5
1-C	0.3237	20,363	45,006	1	1 ^c	2	5.5
2-C	0.2947	26,167	39,099	1	7 ^b	2	5
2-B	0.2708	30,640	34,070	0	2 ^c	2	5
3-A	0.2455	41,253	28,030	0	12 ^b	4	4.5
3-B	0.2344	41,794	25,850	0	3 ^c	2	4.5
4-B	0.2113	55,794	20,536	0	3 ^c	9	4.5
4-C1	0.2051	58,001	18,087	1	4 ^c	4	4
5-B	0.1956	77,336	13,721	0	5 ^c	8	5.5
5-C1	0.1946	81,094	13,185	1	5 ^c	9	7.5
5-C2	0.1991	116,706	8376	3	6 ^c	20	7.5
6-C1	0.2100	133,369	5927	6	7 ^c	21	7.5
6-C2	0.2273	156,382	3546	6	9 ^c	21	7.5

SPV panels with 'Amorphous' type.

b Wind turbine with 1 kW capacity.

^c Wind turbine with 5 kW capacity.

Table 8

Tuble 0				
Fuel consumption	and energy	production	of selected	designs.

_		-				-		
	Section- case	Annual fuel consumption (l/yr)	Annual solar energy output (kWh/yr)	Annual wind energy output (kWh/yr)	Annual ICG energy output (kWh/yr)	Solar energy output (%)	Wind energy output (%)	ICG energy output (%)
	1-A	12,145	0	9046	40,146	0	18	82
	1-B	10,941	0	15,077	35,699	0	30	70
	1-C	10,424	348	15,077	34,458	1	30	69
	2-A	9056	348	21,108	29,935	1	41	58
	2-B	7891	0	30,154	26,085	0	54	46
	3-A	6492	0	36,185	21,460	0	63	37
	3-B1	5987	0	45,231	19,791	0	70	30
	4-A1	4757	0	45,231	15,722	0	74	26
	4-B1	4189	348	60,308	13,847	0	81	19
	5-B1	3178	0	75,385	10,504	0	88	12
	5-C1	3054	348	75,385	10,095	0	88	12
	5-C2	1940	1043	90,462	6413	1	92	7
	6-C1	1373	2086	105,539	4538	2	94	4
	6-C3	821	2086	135,693	2715	1	97	2

Since there are no design solutions with SPV panels with in Section 3, higher ICC is required when moving from Section 2 to Section 4 when starting with 1-C. At the same time, there is certain mismatch in wind turbine capacity when starting with 1-A. These two examples clearly depict that it is essential to plan the addition of renewable energy sources at each stage.

A possible path, that can be taken in the renewable energy integration process is taken into analysis in Fig. 15. This starts from 1-B and goes through 2-B, 3-B, 4-B1, 5-C1, up to 6-C2. Initial design comes up with a low ICC. Renewable energy sources are added gradually which reduces both fuel consumption and the

LEC in each step. When analyzing the sequential process, it was observed that fuel consumption gets reduced in each step at least by 20% and the LEC gets reduced at least by 8% (when considering the life cycle cost) in each step compared to the previous designs except in the final stage. In the final stage, the LEC gets increased by 14.4% compared to the previous stage although there is a significant reduction in the fuel consumption. Therefore, this design may not be economical in present context. However, with the reduction of costs in renewable energy components and escalating market prices of fossil fuels such systems may have financial feasibility in near future.

Rural electrification is been taken as the prime concern in this work. However, the obtained results through the analysis can be adapted for electrification of telecommunication towers, hotels and offshore lighthouses which are located close by to the location selected. It is essential to come-up with certain changes when moving towards other applications. Scale of the plant is having a notable impact on life cycle cost and need to be evaluated. Fuel transportation, becomes challenging for certain applications while power supply reliability becomes critically important for some other. Therefore, all the above factors need to be taken into evaluation in the decision-making process when moving to other applications.

Special attention needs to be given to the expansion of energy infrastructure, especially for rural electrification projects which is not taken into evaluation in this study. Furthermore, timeframe of each stage needs to be determined. This makes it important to move beyond the simple life cycle optimization of HESs and use a sequential optimization of the system considering each step while allowing for expansion of the grid which will be taken into consideration in future publications.

Fig. 15. Analysis of a complete renewable energy addition process.

6. Conclusion

It is essential to look over the possible methods of designing green energy systems in a viable manner. Set of alternatives obtained from multi-objective optimization considering LEC, ICC and emission provides a detail picture about the possible paths that can be taken in such circumstances. It is possible to simplify three dimensional Pareto front into two separate two dimensional Pareto fronts: ICC-LEC and LEC-GHG emission. Further, it was shown that power supply reliability is having a notable impact on the Pareto fronts. It was observed that ICC and GHG emission increase with the increase of power supply reliability.

When analyzing the sensitivity of present market conditions, it was found that fuel price escalation is having a significant impact on solutions in ICC-LEC Pareto front. At the same time, reduction of renewable energy component prices is having a positive impact on LEC-emission Pareto front. Therefore, gradual integration of renewable energy sources into HES becomes an attractive solution. However, it is essential to conduct a proper analysis when coming up with the initial system design and subsequent stages. An optimum pathway is analyzed in this work, which shows that both LEC, GHG emission and fuel consumption get reduce when going ahead. Therefore, gradual integration of renewable energy sources into existing HESs needs to be encouraged where it is difficult to bear higher ICC.

Acknowledgment

Authors would like to acknowledge Mr D.M.I.I. Wickremasinghe and Mr. D.V.S. Mahindarathna of University of Moratuwa for their help on developing the computer program. Further, the authors would like to thank Prof Ajith de Alwis from University of Moratuwa, Prof Saman Halgamuge and Dr Hans Gray from University of Melbourne and Nadeesh Madusanka from University of Cambridge for helping the group in various ways. This project is financially supported by a Senate Research Committee Grant-University of Moratuwa (SRC/LT/2011/12).

Nomenclature

- power law exponent α
- tilt angle of SPV panel в
- battery charging efficiency $\eta_{\rm ch}$
- efficiency of the SPV panels $\eta_{\rm pv}$ ambient temperature
- θ_{a} cell temperature
- θ_{cell} hourly self-discharge coefficient σ
- AM air mass value
- panel area A_{SPV}
- C_{Bat} capacity of battery bank
- CRF **Capital Recovery Factor**
- ELD Electricity Load Demand
- FOM Fixed OM
- **FOM**_{PV} Present Value of FOM
- hourly tilted solar irradiation Gβ
- rate of local market annual inflation
- GHG Green House Gases
- HES hybrid energy system
- ICC **Initial Capital Cost**
- ICG Internal Combustion Generators
- LCC life cycle cost
- LEC Levelized Energy Cost
- LPS Loss of Power Supply
- NSPV number of SPV panels
- OM **Operation and Maintenance cost**
- $P_{\text{Bat-Max}}(t)$ maximum power of the battery bank

- $P_{\text{Gen}}(t)$ ICG power output
- nominal power of the generator Pngen
- PM Particulate Matter
- $P_{\rm r}$ rated power of wind turbine
- $P_{\text{SPV}}(t)$ hourly power output of the SPV panels
- SOC State of Charge
- SPV Solar PV
- THC total hvdrocarbon
- cut-off speed of wind turbine $V_{\rm CO}$
- $V_{\rm r}$ rated wind speed of wind turbine
- VOM Variable OM
- VOM_{PV} Present Value of Variable OM
- $V_{\rm r}$ rated wind speed

References

- [1] Nandi SK, Ghosh HR. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh. Energy Policy 2009;37:3659-64.
- Kanase-Patil AB, Saini RP, Sharma MP. Integrated renewable energy systems for [2] off grid rural electrification of remote area. Renewable Energy 2010;35:1342-9. Kumar Nandi S, Ranjan Ghosh H. Techno-economical analysis of off-grid hybrid
- systems at Kutubdia Island, Bangladesh. Energy Policy 2010;38:976-80
- [4] Kaldellis JK. Optimum hybrid photovoltaic-based solution for remote telecommunication stations. Renewable Energy 2010;35:2307-15.
- Dalton GJ, Lockington DA, Baldock TE. Feasibility analysis of stand-alone renewable energy supply options for a large hotel. Renewable Energy 2008;33:1475-90.
- [6] Dalton GJ, Lockington DA, Baldock TE. Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renewable Energy 2009;34:1134-44.
- Díaz P, Arias CA, Peña R, Sandoval D. FAR from the grid: a rural electrification field study. Renewable Energy 2010;35:2829-34.
- Bernal-Agustín JL, Dufo-López R. Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 2009:13:2111-8
- [9] Zhou W, Lou C, Li Z, Lu L, Yang H. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Applied Energy 2010:87:380-9
- [10] Gupta A, Saini RP, Sharma MP. Modelling of hybrid energy system-part II: combined dispatch strategies and solution algorithm. Renewable Energy 2011;36:466-73.
- [11] Kellogg W, Nehrir MH, Venkataramanan G, Gerez V. Optimal unit sizing for a hybrid wind/photovoltaic generating system. Electric Power Systems Research 1996;39:35-8.
- [12] Kaabeche A, Belhamel M, Ibtiouen R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011;36:1214-22.
- [13] Borowy BS, Salameh ZM. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Transactions on Energy Conversion 1996;11:367-75.
- [14] Seeling-Hochmuth GC. A combined optimisation concept for the design and operation strategy of hybrid-PV energy systems. Solar Energy 1997;61:77–87. [15] Hakimi SM, Moghaddas-Tafreshi SM. Optimal sizing of a stand-alone hybrid
- power system via particle swarm optimization for Kahnouj area in south-east of Iran. Renewable Energy 2009;34:1855-62.
- [16] Ekren O, Ekren BY. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy 2010:87:592-8.
- [17] Bernal-Agustín IL, Dufo-López R, Multi-objective design and control of hybrid systems minimizing costs and unmet load. Electric Power Systems Research 2009:79:170-80.
- [18] Bernal-Agustín JL, Dufo-López R, Rivas-Ascaso DM. Design of isolated hybrid systems minimizing costs and pollutant emissions. Renewable Energy 2006:31:2227-44.
- [19] Dufo-López R, Bernal-Agustín JL. Multi-objective design of PV-wind-dieselhydrogen-battery systems. Renewable Energy 2008;33:2559-72.
- [20] Pelet X, Favrat D, Leyland G. Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions. International Journal of Thermal Sciences 2005;44:1180-9.
- [21] Shi J-H, Zhu X-J, Cao G- Y. Design and techno-economical optimization for stand-alone hybrid power systems with multi-objective evolutionary algorithms. International Journal of Energy Research 2007;31:315-28
- [22] Fadaee M, Radzi MAM. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renewable and Sustainable Energy Reviews 2012;16:3364-9.
- [23] Byrne J, Zhou A, Shen B, Hughes K. Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: a GIS- and lifecycle cost-based assessment of Western China's options. Energy Policy 2007:35:4391-401.
- [24] Dufo-López R, Bernal-Agustín JL, Yusta-Loyo JM, Domínguez-Navarro JA, Ramírez-Rosado IJ, Lujano J, et al. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage. Applied Energy 2011;88:4033-41.

- [25] Klucher TM. Evaluation of models to predict insolation on tilted surfaces. Solar Energy 1979;23:111–4.
- [26] De Miguel A, Bilbao J, Aguiar R, Kambezidis H, Negro E. Diffuse solar irradiation model evaluation in the North Mediterranean Belt area. Solar Energy 2001;70:143–53.
- [27] Durisch W, Bitnar B, Mayor J-C, Kiess H, Lam K, Close J. Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation. Solar Energy Materials and Solar Cells 2007;91:79–84.
- [28] Kasten F, Young AT. Revised optical air mass tables and approximation formula. Applied Optics 1989;28:4735–8.
- [29] Notton G, Lazarov V, Stoyanov L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renewable Energy 2010;35:541–54.
- [30] Thapar V, Agnihotri G, Sethi VK. Critical analysis of methods for mathematical modelling of wind turbines. Renewable Energy 2011;36:3166–77.
- [31] Hocaoglu FO, Gerek ÖN, Kurban M. A novel hybrid (wind-photovoltaic) system sizing procedure. Solar Energy 2009;83:2019–28.
- [32] Diaf S, Diaf D, Belhamel M, Haddadi M, Louche A. A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 2007;35:5708–18.
- [33] Piller S, Perrin M, Jossen A. Methods for state-of-charge determination and their applications. Journal of Power Sources 2001;96:113–20.
- [34] Downing SD, Socie DF. Simple rainflow counting algorithms. International Journal of Fatigue 1982;4:31–40.
- [35] Dufo-López R, Bernal-Agustín JL. Influence of mathematical models in design of PV-diesel systems. Energy Conversion and Management 2008;49:820–31.
- [36] Dufo-López R, Bernal-Agustín JL. Design and control strategies of PV-diesel systems using genetic algorithms. Solar Energy 2005;79:33–46.
- [37] Dennis Barley C, Byron Winn C. Optimal dispatch strategy in remote hybrid power systems. Solar Energy 1996;58:165–79.
- [38] Perera ATD, Wickremasinghe DMIJ, Mahindarathna DVS, Attalage RA, Perera KKCK, Bartholameuz EM. Sensitivity of internal combustion generator capacity in standalone hybrid energy systems. Energy 2012;39:403–11.
- [39] Diaf S, Notton G, Belhamel M, Haddadi M, Louche A. Design and technoeconomical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy 2008;85:968–87.
- [40] Kaldellis JK, Kondili E, Filios A. Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost. Applied Energy 2006;83:1384–403.
- [41] Kaldellis JK, Zafirakis D, Kavadias K. Minimum cost solution of wind-photovoltaic based stand-alone power systems for remote consumers. Energy Policy 2012;42:105–17.
- [42] Yang H, Wei Z, Chengzhi L. Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Applied Energy 2009;86:163–9.
- [43] Shah SD, Cocker III DR, Johnson KC, Lee JM, Soriano BL, Wayne Miller J. Emissions of regulated pollutants from in-use diesel back-up generators. Atmospheric Environment 2006;40:4199–209.

- [44] Zhu D, Nussbaum NJ, Kuhns HD, Chang HD, Sodeman D, Uppapalli S. In-plume emission test stand 2: emission factors for 10- to 100-kW U.S. military generators. Journal of the Air & Waste Management Association 2009;59:1446.
- [45] Lora EES, Salomon KR. Estimate of ecological efficiency for thermal power plants in Brazil. Energy Conversion and Management 2005;46:1293–303.
- [46] Grigg C, Wong P, Albrecht P, Allan R, Bhavaraju M, Billinton R, et al. The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Transactions on Power Systems 1999;14:1010–20.
- [47] Ashok S. Optimised model for community-based hybrid energy system. Renewable Energy 2007;32:1155–64.
- [48] Kaldellis JK, Vlachos GT. Optimum sizing of an autonomous wind-diesel hybrid system for various representative wind-potential cases. Applied Energy 2006;83:113–32.
- [49] Li C-H, Zhu X-J, Cao G-Y, Sui S, Hu M-R. Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy 2009;34:815–26.
- [50] Himri Y, Boudghene Stambouli A, Draoui B, Himri S. Techno-economical study of hybrid power system for a remote village in Algeria. Energy 2008;33: 1128–36.
- [51] Khan MJ, Iqbal MT. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy 2005;30:835–54.
- [52] Erdinc O, Uzunoglu M. Optimum design of hybrid renewable energy systems: overview of different approaches. Renewable and Sustainable Energy Reviews 2012;16:1412–25.
- [53] Senjyu T, Hayashi D, Yona A, Urasaki N, Funabashi T. Optimal configuration of power generating systems in isolated island with renewable energy. Renewable Energy 2007;32:1917–33.
- [54] Moghaddas-Tafreshi SM, Zamani HA, Hakimi SM. Optimal sizing of distributed resources in micro grid with loss of power supply probability technology by using breeding particle swarm optimization. Journal of Renewable and Sustainable Energy 2011;3:043105. 17.
- [55] Deb K, Mohan M, Mishra S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation 2005;13:501–25.
- [56] Laumanns M, Thiele L, Deb K, Zitzler E. Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 2002;10:263–82.
- [57] Deb K, Beyer H. Self-adaptive genetic algorithms with simulated binary crossover. Complex Systems 1999;9:431–54.
- [58] Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 2000;186:311–38.
- [59] Bolinger M, Wiser R. Understanding wind turbine price trends in the U.S. over the past decade. Energy Policy 2012;42:628–41.
- [60] http://www.solarbuzz.com/facts-and-figures/retail-price-environment/solarelectricity-prices [accessed 15.08.2012].