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HES (hybrid energy system)s are becoming energy systems of choice for standalone applications due to
ever increasing fuel costs and global concern on GHG (Green House Gas) emissions. However, it is
difficult to justify the higher ICC (Initial Capital Cost) of renewable energy components, especially for
rural electrification projects in developing countries. This paper illustrates the modeling and simulation
of HESs, and multi-objective optimization carried out in order to support decision-making in such in-
stances. LEC (Levelized Energy Cost), ICC and GHG emission were taken as objective functions in the
optimization and the sensitivity of market prices and power supply reliability was further evaluated.
Results depict that Pareto front of LEC, ICC and GHG emission can be simplified as a combination of ICC
eLEC and LECeGHG emission Pareto fronts making the decision-making process simpler. Gradual
integration of renewable energy sources in a number of design stages is proposed for instances where it
is difficult to bear the higher ICC. Finally, importance of planning integration of renewable energy sources
at early design stages of the project is highlighted in order to overcome the difficulties that need to be
faced when coming up with the optimum design.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction HESs are currently used in Sri Lanka to supply the power re-
HES (hybrid energy system)s are becoming popular for off grid
electrification as many applications around the world are reported
[1e6]. HESs are economical, consume less fossil fuels, and produce
less GHG (Green House Gases) [3,7]. Due to these advantages
modeling, simulation, and optimization of off grid HESs have
become an area of interest during the last few years [8,9].

Determining optimum system configuration and operation
strategy becomes important at the early design stages of HESs [10].
This is a challenging process due to the complexity of decision
space variables and objective functions. Several optimizing algo-
rithms based on, numerical [11,12], probabilistic [13] and heuristic
[14e16] techniques have been proposed to derive the optimum
design. Furthermore, conflicting objectives such as cost, unmet load
fraction, pollutant emission and utilization efficiency of renewable
energy have been taken into consideration through multi-objective
optimization [17e21]. Previous literature on multi-objective opti-
mization of HESs have been reviewed by Fadaee and Radzi [22] and
highlighted the importance of adapting the optimization process in
order to match with the local context.
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quirement of telecommunication towers and proposed for rural
electrification projects far away from the existing power grid.
Higher ICC (Initial Capital Cost), fuel transportation and mainte-
nance of the ICG (Internal Combustion Generator) can be taken as
the main challenges that need to be overcome when designing
standalone HESs in developing countries [7,23]. At the same time, it
is important to evaluate the sensitivity of fuel prices and the cost of
renewable energy components (i.e. wind turbines and solar panels)
on optimum design due to present market volatility. Reliability of
power supply needs to be assured which plays a major role when
developing the final design. Therefore, it is important to identify
the best practices that can be adopted while evaluating all the
above aspects throughmulti-objective optimization, which is taken
into discussion in this work for a rural electrification project.

Designers try to minimize the ICC and the LEC (Levelized Energy
Cost) at early design stages of HESs consideringfinancial limitations.
At the same time, it is expected to minimize the fuel consumption
and the GHG emission considering environmental impact and fuel
transpiration. However, it is essential to bear a higher ICC when it
comes to renewable energy sources although the operational and
maintenance costs are low. On the other hand, the ICC required for
the ICG is quite small compared to the operational andmaintenance
cost. When it comes to life cycle cost, it has been shown that opti-
mum selection of renewable energy sources along with dis-
patchable energy sources can reduce the life cycle cost of HESswhen
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Fig. 1. HES configuration.

Table 1
Parameters for the SPV efficiency model for different solar panel types.

p q r s m u

Monocrystalline 23.62 �0.2983 �0.09307 �0.9795 0.1912 0.9865
Polycrystalline 15.39 �0.1770 �0.09736 �0.8998 0.0794 0.9324
Amorphous 36.02 �0.7576 �0.02863 �1.1432 0.6601 1.0322
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compared to ICG systems [3,7]. Therefore, the LEC and the ICC
become conflicting objectives resulting in a Pareto front. Similarly,
the LEC and the GHG emission (or fuel consumption) produce a
Pareto front as they also conflict with each other [18,20,24]. There-
fore, it is important to analyze the Pareto front of ICCeLECeGHG
emission considering the impact of power supply reliability and
current market changes in fuel price and renewable energy sources.
Finally, it is important to develop innovative methods to overcome
techno-economical challenges when designing HESs. A concise
description on themodeling and simulation techniques used in this
work is given in Sections 2 and 3 respectively. Section 4 illustrates
the optimization technique used, decision space variables and
objective functions. Finally, the results are analyzed in Section 5.
2. Mathematical model developed

A HES consisting of wind turbines, SPV (Solar PV) panels, ICG, AC
(alternative current)eDC (direct current), DCeAC converters, bat-
tery bank and a battery charger is taken into consideration in this
work (Fig. 1).
2.1. Energy flow through SPV panels

Hourly solar irradiation on the tilted SPV panel and the energy
conversion efficiency of themodules need to bemodeled in order to
estimate the power output from SPV panels. Hourly horizontal solar
irradiation data is used to compute hourly tilted solar irradiation
(Gb) values using Klucher [25] and Climed-2 models [26]. The semi-
empirical formula proposed byDurisch et al. [27] is used to compute
the efficiency of SPV panels (hpv) according to Eq. (1).
~PwðtÞ ¼
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In Eq. (1), AM denotes the air mass value [28] and qcell is the cell
temperature. The following values are used: Gb,0 ¼ 1000 W m�2,
qcell,0 ¼ 25 �C and AM0 ¼ 1.5. Parameters p, q, r, s, m, u for different
SPV technologies are taken from Table 1 [27,29].

Hourly power output from the SPV panels (PSPV(t)) is calculated
using Eq. (2). Minor losses taken place in the energy conversion,
including efficiency drop at the inverter, dust accumulation on SPV
panels etc are taken into account through hC-SPV.

PSPVðtÞ ¼ GbðtÞhpvðtÞ A NSPVhC-SPV (2)
2.2. Energy flow through wind turbines

Power law approximation (Eq. (3)) is used to compute wind
speed at wind turbine hub level, based on wind speed data
collected at an anemometer height of 12 m.

VhubðtÞ=VaneðtÞ ¼ ðZhub=ZaneÞg (3)

In Eq. (3), Vhub(t) and Vane(t) are wind speeds at hub level (Zhub)
and anemometer height (Zane), g denotes the power law exponent
taken as 0.14.

Several mathematical models have been introduced to model
the power output fromwind turbines. These models can be divided
into twomajor categories, i.e. mathematicalmodels based onpower
available inwind and conceptual power curve of wind turbines. The
latter can be further sub-divided to mathematical models based on
presumed shape of power curve and actual power curve of wind
turbine [30]. Thapar et al. [30] show that a mathematical model
based on the actual power curve of a wind turbine provides a much
more accurate result compared to other techniques. Therefore, cu-
bic spline interpolation technique [31,32], which is a method based
on the actual power curve of the wind turbine is used in this work,
to model the power output of turbines. The power curve provided
by the manufacturer of a locally available wind turbine is used and
the power curve of thewind turbine is modeled by using ns number
of cubic spline interpolation functions, considering ns þ 1 points
from the power curve given by the manufacturer (Eq. (4)).
V1

V2

ubðtÞ < Vr

(4)
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In Eq. (4), ai, bi, ci, and di represent coefficients of the polynomial
function which vary with the power curve of the wind turbine.
Further, Vr, Vci, a, Vco and Pr denote the rated wind speed, cut-in
wind speed, cut-off wind speed and rated power of the wind tur-
bine respectively.

Finally, the electric power from the wind turbines is calculated
according to Eq. (5)

PwðtÞ ¼ ~PwðtÞ Nw hw�inv (5)

where Nw denotes the number of wind turbines and hw-inv denotes
inverter efficiency.

2.3. Mathematical model for the battery bank

SOC (State of Charge) model [33] was used to compute the
charge level of the battery bank. Rain Flow Algorithm based on
Downing’s Algorithm [34,35] was used to compute the lifetime of
the battery bank.

2.4. Fuel consumption of the ICG

The hourly power requirement from the ICG is determined
through the Combined Dispatch Strategy (illustrated in Section 3).
Load factor of the ICG is determined based on the Dispatch Strategy,
and used to calculate FC(t) (hourly fuel consumption) from ICG. In
most of the instances, the fuel consumption was assumed to vary
linearly with the load factor [36,37]. The fuel consumption is taken
as a polynomial function of the load factor in this work, considering
the nonlinear components of the fuel curve (Fig. 2). A detailed
description about the energy flow model can be found in Ref. [38].

2.5. Life cycle cost model

Several life cycle cost models have been proposed to analyze the
cash flow of HESs [39e42]. A simple life cycle cost model is devel-
oped in this work based on previous publications of Kaldellis et al.
[41] and Diaf et al. [39], which is illustrated in detail in this section.

LCC (life cycle cost) of the system consists of two components
i.e. ICC and OM cost (Operation and Maintenance). ICC of system
components comprises the AC (acquisition costs) and the installa-
tion costs. Installation cost of system components is taken as a
fraction of AC (a) (Table 2) (Eq. (6)).

ICC ¼ ð1þ aÞAC (6)
Fig. 2. Variation of fuel consumption with load factor.
ICC of the system (ICC0) is calculated considering the initial
expenditure on ICG (ICCGen), wind turbines (ICCW), SPV panels
(ICCSPV), battery bank (ICCB) and inverters (ICCInv) according to
Eq. (7).

ICC0 ¼ ICCGen þ ICCW þ ICCSPV þ ICCB þ ICCInv (7)

When it comes to OM, it comprises FOM (Fixed OM) and VOM
(Variable OM) cash flows. The annual fuel consumption cost, and
the maintenance cost for the ICG, wind turbines and SPV panels are
taken into consider under FOM expenditure.

Eq. (8) is used to compute the PV (Present Value) of entire FOM
cash flows (FOMPV), where CRF denotes the Capital Recovery Factor,
which is computed using Eq. (9). In Eq. (9), p denotes the annual
real interest rate, and n denotes the lifetime of the project in years.
Annual real interest rate p is finally calculated using Eq. (10) where f
and g denote return on investment and local market annual infla-
tion rate (Table 2).

FOMPV ¼ FOM:CRF (8)

CRF ¼ ðpð1� pnÞÞ=ð1� pÞ (9)

p ¼ ð1þ f Þ=ð1þ gÞ (10)

VOM includes replacement cost of battery bank, ICG and in-
verters, which depends on operating conditions, number of oper-
ating hours and life expectancy. It is assumed that both SPV panels
and wind turbines are having the exact lifetime of the project.
Finally, the Present Value of the entire VOM cash flows (VOMPV) is
calculated using Eq. (11) considering the Present Value of VOM of
each year.

VOMPV ¼
Xk¼n

k¼1

pkVOMk (11)

The NPV (Net Present Value) of the LCC comprises ICC0, FOMPV
and VOMPV, which is used to calculate the LEC according to Eq. (12)
where ELD (Electricity Load Demand) denotes the hourly electricity
load demand.

LEC ¼ LCC=
Xk¼n

k¼1

Xt¼8760

t¼1

ELDt;k (12)

Local market prices of the system components are given in
Tables 2 and 3.
2.6. Mathematical model for pollutant emission

Combustion of fossil fuels in ICGs release a number of noxious
gases including CO, NOx, SOx and PM (Particulate Matter) etc.
Hourly emission rates of various exhaust gases depend upon dy-
namic load factor of the ICG, engine technology and manufacturer
[43]. However, total amount of CO2 produced has been used along
with fuel consumption or energy produced through the ICG in
previous publications, neglecting the sensitivity of load factor of the
Table 2
Parameters of the cost model.

Parameter Percentage (%)

SPV panel & wind turbines
Installation cost as a fraction of acquisition cost 20
Annual O&M as a fraction of acquisition cost 5

ICG installation cost as a fraction of acquisition cost 5
Local market annual inflation rate 2



Fig. 3. Hourly variation of ELD.

Table 3
Present local market prices system components.

Component Description Cost ($)

Wind turbine 1 kW 2081
5 kW 9588

Solar panels including inverters
and ground mounting structure

Monocrystalline 1.22 m2) 888
Polycrystalline (0.79 m2) 945
Amorphous (1.28 m2) 877

Single phase ICG (20,000
working hours)

0.5 kVAe7.5 kVA 335.5e4195
Hourly O&M 0.11

Cost of fuel (Diesel 1 L) 1.03
Battery Bank 12 V, 250 Ahs � 4 500 � 4
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ICG on emission [18,20,24]. As a result, impact of dispatch strategy
on the GHG emission has not been depicted in the emission model.
Moreover, impact of pollutants such as CO, NOx, SOx and PM (Par-
ticulate Matter) etc. has not been evaluated. In order to rectify the
above issues, dynamic emission model based on the load factor of
the ICG is introduced in the present study. Emission rates of CO,
NOx, SOx and PM were taken for different load factors of the ICG
[44] (i.e. 10%, 25%, 75% and 100% given in Table 4), and Lagrangian
interpolation is used to calculate the hourly exhaust emissions.
Finally, the Eq. CO2 model introduced by Lora & Salomon [45] is
used to compute the ecological and environmental impact of
noxious gasses (taken as GHG emission).

3. Simulation of HES

The simulation combineshourly varyingmeteorological data and
the ELD according to the operation strategy designed by the system
designer known as the dispatch strategy. Time series of hourly wind
speed and solar irradiation data are taken and the renewable energy
output is computed by using the mathematical model illustrated in
Section 2. When the renewable energy potential is not sufficient to
provide the power requirement, dispatchable energy sources are
used. Detailed description about the control strategy and brief
description about the time series of hourly wind speed, solar irra-
diation and ELD are illustrated in this section.

3.1. Meteorological data and ELD (Electricity Load Demand)

Hourly average wind speed and solar irradiation values of 1995,
1997 and 1998 at Hambanthota, a southeast location of Sri Lanka
(06�070 N 81�070 E) are taken in this study. When it comes to ELD, it
is highly specific to the application. In this study, the ELD is
considered to vary with the summer-weekly load variation pro-
posed by IEEE (Institute of Electrical and Electronics Engineers)
system reliability committee [46] (Fig. 3).

3.2. Dispatch Strategy

Combined Dispatch Strategy, which is a combination of Battery
Charging Strategy, Frugal Discharge Strategy, SOC Set Point Strat-
egy, Load Following Strategy, and Peak Shaving Strategies used in
Table 4
Averageemission rates of various exhaust gases underdifferent generator load conditions.

Generator
load
percentage

THC g/kWh CO g/kWh NOx g/kWh PM g/kWh CO2 g/kWh

10 5.6 32 43 1.1 1487.94
25 6.8 23 38 1.2 970.44
50 2.5 15 37 1.9 793.17
75 13 10 29 2.6 736.67
100 15 09 26 2.1 727.22
this work [10,36,37] (Fig. 4). Detail description about the Dispatch
Strategy is illustrated in this section.

3.2.1. State 1: Battery Charging Strategy
When electricity production through renewable energy sources,

PR(t) (Pw(t) þ PSPV) is higher than the ELD, additional energy pro-
duced is used to charge the battery bank. However, when the
battery bank reaches its maximum SOC, additional energy pro-
duced will be wasted, which is known as the WRE (Wasted
Renewable Energy). The Battery Charging Strategy is quite easy to
understand since it does not take any support from the dis-
patchable energy sources to supply the power requirement.

3.2.2. State 2: Frugal Discharge Strategy
Dispatchable energy sources are used to supply the additional

power requirement when the power output from the renewable
energy sources is inadequate. When the requirement of the dis-
patchable energy i.e. difference between ELD and PR(t) (Pa) is small,
it is not advisable to use the ICG to provide the additional power
requirement which will result in poor efficiency and higher OM
cost. Therefore, the battery bank is used in such instances to supply
the additional power until it reaches PD (dispatch load), which is
optimized in the optimization algorithm.

3.2.3. State 3: SOC Set Point Strategy
When the additional power requirement goes beyond PD

(dispatch load) the system will shift to SOC Set Point Strategy
where the ICG is driven at its maximum power (Pngen) and the
additional power produced is used to charge the battery bank till it
gets into set point SOC (SOCset point) which is optimized using
optimization algorithm.

3.2.4. State 4: Load Following Strategy
Additional conversion losses will take place when the battery

bank is charged using the ICG. At the same time, this will minimize
the renewable energy storage capacity. Therefore, when Pa is
greater than (critical load) the system will shift to Load Following
Strategy where the ICG is driven to supply Pa and battery will not
take place. PC is also optimized in the optimization algorithm.

3.2.5. State 5: Peak Shaving Strategy
When the additional power required goes beyond Pngen, Peak

Shaving Strategy is used where the battery bank will be used to
along with the ICG.



Fig. 4. Dispatch strategy.

Fig. 5. Optimization algorithm.
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3.3. Breakdown of power supply

The power supply breakdowns when Pa(t) is greater than the
addition of Pngen and the maximum power output of the battery
bank (PBat-Max). Loss of Power Supply (LPS(t)) can be calculated
using Eq. (13)

LPSðtÞ ¼ PaðtÞ � Pngen � PBat�Max (13)

Finally, the unmet load fraction is calculated using Eq. (14)
which is taken as the measure of power supply reliability.

Unmet load fraction ¼
Xt¼8760

t¼1

LPSðtÞ=
Xt¼8760

t¼1

ELDðtÞ (14)

4. Multi-objective optimization of HES

It is a challenging process to come-up with the optimum system
configuration and the operation strategy when designing HESs.
Objective functions related to the problem are neither linear nor
analytical. At the same time, some of the decision space variables
are continuous while some are discrete. Therefore, enumerative
and heuristic methods become more appropriate compared to
classical gradient based techniques. A number of enumerative al-
gorithms have been developed in order to optimize HESs during the
last few years [12,47e49]. Furthermore, software based on
enumerative techniques such as HOMER has been used extensively
in order to come-up with the optimum system design [1,3,50,51].
However, when compared to heuristic methods, computational
time required to obtain the optimum solution is much higher when
it comes to enumerative techniques [50]. As a result of this, recent
reviews on HES optimization highlight the importance of using
heuristic techniques in order to optimize HESs [22,52]. A number of
heuristic techniques including Genetic Algorithm [14,36,53],
Simulated Annealing [16], Particle Swarmmethod [15,54] etc. were
used to develop algorithms to optimize HESs. Furthermore,
evolutionary algorithms were used to carry out multi-objective
optimizations considering conflicting objectives.

4.1. Optimization algorithm

Considering these perspectives, Steady ε-State Evolutionary Al-
gorithm [55], based on the ε-dominance technique [56], is used in
this study to come-up with Pareto fronts considering conflicting
objectives. Initial population is randomly generated in the optimi-
zation algorithm and objective function values are computed after
the life cycle simulation (Fig. 5). Based on objective function values,



Table 5
Range of decision space variables.

Variable Minimum Maximum Interval Discrete/Continuous

SPV type 0 3 1 Discrete
SPV panels 0 220 1 Discrete
Wind turbine power 0 2 1 Discrete
Wind Turbines 0 20 1 Discrete
No of batteries 0 100 4 Discrete
ICG capacity (kVA) 0 7.5 0.5 Discrete
SOCmin 30% 50% e Continuous
Pmin 30% 50% e Continuous
SOCset_value 70% 100% e Continuous
Pd Pmin Pngen e Continuous

Fig. 6. Pareto front of ICC, LEC and GHG emission with unmet load fraction of 2%.
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a non-dominant set of alternative solutions are selected which
produces the initial archive. After coming upwith the initial archive
and the population, both crossover and mutation operators are
used along with the constraint tournament method to reproduce
the population and archive. This routine takes place until the
termination of main loop, which occurs when desired generations
were achieved.
4.2. Operators used in the optimization algorithm

Some of the decision space variables of the optimization prob-
lem are continues while some are discrete. Hence, real parameter
operators; Simulated Binary Crossover Operator [57] and Poly-
nomial Mutation Operator [58] were used in this study instead of
binary coded operators.
4.3. Decision space variables and objective functions

System configuration parameters that relate with the dis-
patchable, non- dispatchable energy sources and the storage were
optimized using the optimization algorithm. The upper and lower
bounds of these variables are selected according to Table 5. Simi-
larly, the variables related with the operation strategy were opti-
mized. Operation of the ICG is controlled through three main
parameters, PD, PC and Pmin (illustrated in Section 3.3). The upper
and lower bounds of these variables were selected according to
Table 5. Other parameters related with the dispatch strategy such
as SOCmin and SOCset-value were optimized simultaneously (Table 5).
Objective functions derived in Sections 2 and 3 were used in the
optimization algorithm. A detailed description about the objective
functions and constraints used for different optimization problems
is given in Table 6.
Table 6
Objective functions and constraint used in different optimization problems.

No of
objectives

Objectives Constraint
unmet load
fraction (%)

Sensitivity

3 LEC, ICC0,
emission equivalent

2, 5, 10 Unmet fraction
(2%, 5%, 10%)

2 LECeICC0 2 Fuel cost (present price,
þ5%, þ10%, þ15%)

2 LECeICC0 2 Wind turbine and SPV
panel cost (present price,
�5%, �10%)

2 LECeemission
equivalent

2 Fuel cost (present price,
þ5%, þ10%)

2 LECeemission
equivalent

2 Wind turbine and SPV
panel cost (present price,
�5%, �10%)
5. Results and discussion

Obtained results from the multi-objective optimization consid-
ering several sets of objectives are taken into discussion in this
section.
5.1. Pareto optimization of ICC, LEC and GHG emission

Pareto front of ICCeLECeGHG emission (or fuel consumption)
portrays a better picture of the alternative design solutions that
need to be evaluated when coming up with the final design. GHG
emission is taken to represent both fuel consumption and GHG
emission instead of taking these aspects as two separate objectives.
Finally, Pareto fronts were taken for three different unmet load
fractions i.e. 2%, 5% and 10% (Figs. 6e8).

When analyzing these three Pareto fronts, it was observed that
the LEC reduces with the increase of ICC initially, and reaches to a
minimum (Region A in Fig. 9). In Region A, both GHG emission
and LEC become non-conflicting objectives since both of these
functions decrease with the increase of ICC. Therefore, the solu-
tions of this region do not appear in LECeGHG emission Pareto
Fig. 7. Pareto front of ICC, LEC and GHG emission with unmet load fraction of 5%.



Fig. 8. Pareto front of ICC, LEC and GHG emission with unmet load fraction of 5%.
Fig. 10. Impact of power supply on ICC, LEC and GHG emission Pareto front.
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front. With further reduction of GHG emission beyond the mini-
mum LEC, both ICC and LEC vary parallel to each other (becomes
non-conflicting) and get increase with the reduction of GHG
emission (Region B). Therefore, Region B comes into the picture
when taking LECeGHG emission Pareto front. This makes it
important to come-up with the system design which minimizes
the LEC initially, and based on that, it can be determined whether
to use LECeGHG emission or LECeICC Pareto front while
analyzing limitations of ICC, fuel transportation, GHG emission,
maintenance of ICG etc.

5.2. Sensitivity of power supply reliability and market prices

Power supply reliability is having a notable impact on the
design. Based on the Pareto fronts obtained, it can be interpreted
that both GHG emission and ICC have increasedwith the increase of
power supply reliability (Fig. 10). However, the sensitivity of unmet
load fraction is insignificant when comparing 2%e5% unmet load
fractions.

Due to highly volatile market conditions, sensitivity of market
prices needs to be studied at early design stages. When it comes to
Fig. 9. Two main regions of ICC, LEC and GHG emission Pareto font with unmet load
fraction of 2%.
SPV panels, notable price reduction can be observed during recent
past [60]. At the same time, Bolinger and Wiser [59] reveal that
there is a reduction inwind turbine prices in present U.S. market. In
order to estimate the impact of price reduction in SPV panels and
wind turbines, LECeICC Pareto fronts were taken with 5% and 10%
reduction of present market prices (Fig. 11). Further, sensitivity
analysis was conducted for LEC–HG emission Pareto front (Fig. 12).
When analyzing the Pareto fronts, it was observed that the impact
of cost reduction in renewable energy components is not significant
in ICCeLEC Pareto front, especially with lower ICCs. Dominant role
of ICG can be taken as the reason behind this observation. However,
the cost reduction makes a notable impact on LECeGHG emission
Pareto front with the increase of renewable energy fraction.

Escalation of fuel prices and its impact on the Pareto fronts are
evaluated by taking into account 5%, 10% and 15% increase of the
present market price of fuel. Although the sensitivity of fuel cost is
insignificant on the ICC, notable increase in the LEC was observed
with the increase of fuel prices, especially when LEC is above 0.30 $
(Fig. 13). When analyzing the Pareto front of LECeGHG emission, it
Fig. 11. ICCeLEC Pareto front with cumulative price reduction of SPV panels and wind
turbines.



Fig. 12. Solutions of LEC-emission Pareto front with price reduction of renewable
energy components.

Fig. 14. ICC with LEC of solutions in LEC-emission Pareto front with increase of fuel
prices.
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was observed that the sensitivity of fuel escalation is insignificant
(Fig. 14). When evaluating the sensitivity of both fuel prices and
renewable energy sources, it is prudent that incorporating renew-
able energy sources beyond the minimum LEC (system designs in
Region B) will help to overcome the vulnerability of the future fuel
price escalation while taking advantage of cost reduction in
renewable energy sources. Therefore, gradual integration of
renewable energy sources in several stages needs to be encouraged
when it is difficult to bear higher ICC.
5.3. Gradual integration of renewable energy sources

It is essential to come-up with an appropriate initial design for a
project, which is to be extended later. The set of optimum design
solutions of the Pareto front with unmet load fraction of 2% is taken
into discussion in order to analyze the sequential process of adding
renewable energy sources.

It is a challenging task to consider the entire Pareto front at
once. Therefore, objective space is divided into six sections based
Fig. 13. ICC-LEC Pareto front with increase of fuel price.
on the ICC, and several design solutions from each section are
extracted and tabulated in Table 7. When analyzing these design
solutions, it was observed that the LEC gradually reduces when
moving from Section 1 to Section 5, and subsequently gets
increased when moving to Section 6. Therefore, LECeICC Pareto
front can be used to analyze the integration of renewable
energy sources within Section 1 to Section 5. Pareto front of LECe
ICCeGHG emission needs to be taken when analyzing the cases
that go up to Section 6. When considering the designs with
lowest ICC (Section 1), ICG plays a dominant role, contributing
almost 70% of the total power generation (Table 8). As a result of
it, both fuel consumption and GHG emissions are quite high.
When moving from Section 1 to Section 5, contribution of ICG
gradually reduces while minimizing the fuel consumption and
GHG emission (Tables 7 and 8). Gradual increase of battery bank
is the other important feature that can be observed.

Selection of renewable energy sources in each step, is not that
straight forward. When selecting 1-B as the initial design, renew-
able energy integration becomes quite simple. However, there are
several limitations when selecting 1-A and 1-C as the initial design.
Table 7
Selected set of solutions from ICCeLECeGHG emission Pareto front.

Section-
case

LEC ($) ICC ($) Emission
(kg CO2 eq.)

Number
of SPV
panelsa

Number
of wind
turbines

Number
of battery
banks

ICG
capacity
(kVA)

1-A 0.3639 15,475 52,436 0 3b 2 6
1-B 0.3393 17,311 46,991 0 1c 1 5.5
1-C 0.3237 20,363 45,006 1 1c 2 5.5
2-C 0.2947 26,167 39,099 1 7b 2 5
2-B 0.2708 30,640 34,070 0 2c 2 5
3-A 0.2455 41,253 28,030 0 12b 4 4.5
3-B 0.2344 41,794 25,850 0 3c 2 4.5
4-B 0.2113 55,794 20,536 0 3c 9 4.5
4-C1 0.2051 58,001 18,087 1 4c 4 4
5-B 0.1956 77,336 13,721 0 5c 8 5.5
5-C1 0.1946 81,094 13,185 1 5c 9 7.5
5-C2 0.1991 116,706 8376 3 6c 20 7.5
6-C1 0.2100 133,369 5927 6 7c 21 7.5
6-C2 0.2273 156,382 3546 6 9c 21 7.5

a SPV panels with ‘Amorphous’ type.
b Wind turbine with 1 kW capacity.
c Wind turbine with 5 kW capacity.



Table 8
Fuel consumption and energy production of selected designs.

Section-
case

Annual fuel
consumption
(l/yr)

Annual
solar
energy
output
(kWh/yr)

Annual
wind
energy
output
(kWh/yr)

Annual
ICG
energy
output
(kWh/yr)

Solar
energy
output
(%)

Wind
energy
output
(%)

ICG
energy
output
(%)

1-A 12,145 0 9046 40,146 0 18 82
1-B 10,941 0 15,077 35,699 0 30 70
1-C 10,424 348 15,077 34,458 1 30 69
2-A 9056 348 21,108 29,935 1 41 58
2-B 7891 0 30,154 26,085 0 54 46
3-A 6492 0 36,185 21,460 0 63 37
3-B1 5987 0 45,231 19,791 0 70 30
4-A1 4757 0 45,231 15,722 0 74 26
4-B1 4189 348 60,308 13,847 0 81 19
5-B1 3178 0 75,385 10,504 0 88 12
5-C1 3054 348 75,385 10,095 0 88 12
5-C2 1940 1043 90,462 6413 1 92 7
6-C1 1373 2086 105,539 4538 2 94 4
6-C3 821 2086 135,693 2715 1 97 2
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Since there are no design solutions with SPV panels with in Section
3, higher ICC is required when moving from Section 2 to Section 4
when starting with 1-C. At the same time, there is certainmismatch
in wind turbine capacity when starting with 1-A. These two ex-
amples clearly depict that it is essential to plan the addition of
renewable energy sources at each stage.

A possible path, that can be taken in the renewable energy
integration process is taken into analysis in Fig. 15. This starts
from1-B and goes through 2-B, 3-B, 4-B1, 5-C1, up to 6-C2. Initial
design comes up with a low ICC. Renewable energy sources are
added gradually which reduces both fuel consumption and the
Fig. 15. Analysis of a complete rene
LEC in each step. When analyzing the sequential process, it was
observed that fuel consumption gets reduced in each step at least
by 20% and the LEC gets reduced at least by 8% (when considering
the life cycle cost) in each step compared to the previous designs
except in the final stage. In the final stage, the LEC gets increased
by 14.4% compared to the previous stage although there is a
significant reduction in the fuel consumption. Therefore, this
design may not be economical in present context. However, with
the reduction of costs in renewable energy components and
escalating market prices of fossil fuels such systems may have
financial feasibility in near future.

Rural electrification is been taken as the prime concern in this
work. However, the obtained results through the analysis can be
adapted for electrification of telecommunication towers, hotels and
offshore lighthouses which are located close by to the location
selected. It is essential to come-up with certain changes when
moving towards other applications. Scale of the plant is having a
notable impact on life cycle cost and need to be evaluated. Fuel
transportation, becomes challenging for certain applications while
power supply reliability becomes critically important for some
other. Therefore, all the above factors need to be taken into eval-
uation in the decision-making process when moving to other
applications.

Special attention needs to be given to the expansion of energy
infrastructure, especially for rural electrification projects which is
not taken into evaluation in this study. Furthermore, timeframe of
each stage needs to be determined. This makes it important to
move beyond the simple life cycle optimization of HESs and use a
sequential optimization of the system considering each step while
allowing for expansion of the grid which will be taken into
consideration in future publications.
wable energy addition process.



A.T.D. Perera et al. / Energy 54 (2013) 220e230 229
6. Conclusion

It is essential to look over the possible methods of designing
green energy systems in a viable manner. Set of alternatives ob-
tained from multi-objective optimization considering LEC, ICC and
emission provides a detail picture about the possible paths that can
be taken in such circumstances. It is possible to simplify three
dimensional Pareto front into two separate two dimensional Pareto
fronts: ICCeLEC and LECeGHG emission. Further, it was shown that
power supply reliability is having a notable impact on the Pareto
fronts. It was observed that ICC and GHG emission increasewith the
increase of power supply reliability.

Whenanalyzing thesensitivityofpresentmarketconditions, itwas
found that fuel price escalation is having a significant impact on so-
lutions in ICCeLEC Pareto front. At the same time, reduction of
renewable energy component prices is having a positive impact on
LEC-emission Pareto front. Therefore, gradual integration of renew-
ableenergysources intoHESbecomesanattractive solution.However,
it is essential to conduct a proper analysis when coming up with the
initial system design and subsequent stages. An optimum pathway is
analyzed in this work, which shows that both LEC, GHG emission and
fuel consumption get reduce when going ahead. Therefore, gradual
integrationof renewableenergysources intoexistingHESsneeds tobe
encouraged where it is difficult to bear higher ICC.
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Nomenclature

a power law exponent
b tilt angle of SPV panel
hch battery charging efficiency
hpv efficiency of the SPV panels
qa ambient temperature
qcell cell temperature
s hourly self-discharge coefficient
AM air mass value
ASPV panel area
CBat capacity of battery bank
CRF Capital Recovery Factor
ELD Electricity Load Demand
FOM Fixed OM
FOMPV Present Value of FOM
Gb hourly tilted solar irradiation
g rate of local market annual inflation
GHG Green House Gases
HES hybrid energy system
ICC Initial Capital Cost
ICG Internal Combustion Generators
LCC life cycle cost
LEC Levelized Energy Cost
LPS Loss of Power Supply
NSPV number of SPV panels
OM Operation and Maintenance cost
PBat-Max(t) maximum power of the battery bank
PGen(t) ICG power output
Pngen nominal power of the generator
PM Particulate Matter
Pr rated power of wind turbine
PSPV(t) hourly power output of the SPV panels
SOC State of Charge
SPV Solar PV
THC total hydrocarbon
VCO cut-off speed of wind turbine
Vr rated wind speed of wind turbine
VOM Variable OM
VOMPV Present Value of Variable OM
Vr rated wind speed
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