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Abstract

Natural disasters can happen without prior warning at any time. It is important to identify
and analyses the post disaster situation to manage the disaster with quick response.
Traditional approaches for disaster analyzing using field surveys are not suitable due to its
high risk, time consuming, labor consuming and costly. In that case Satellite imagery data is
ideal to use for identifying the disaster situation, risk mitigation and post disaster recovery
because it's easy to get the data at anyplace, anytime. However, the processing of satellite
imagery is a significant difficulty and identifying things in a satellite image is crucial in this
field. By using satellite imagery with the newest technologies like the deep learning
approaches can be used to identify the disaster area. Accuracy and efficiency are a very
important factor for making damage assessments and providing relief services. This research
focused at how deep learning can be used to assess building damage using satellite imageries.
The objective of this research is to develop a building damage assessment model by using
deep learning, which can be use in post disaster analysis. According to the literature survey
encoder — decoder model and Siamese model used for process the pre and post disaster

satellite images and assess the damage.
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When consider the figure 4.8 and 5.7 the first column is for post disaster satellite imagery, the second
column consist with manually annotated mask placed with the post disaster satellite imagery and the
third column consist with predicted building damage mask applied satellite imagery. The first row of the
figure 5.6 and 5.7 used EfficentNetB4 model to predict the annotation mask. The second row consist
with the building damage assessment using loss function optimized EfficentNetB4 model and the third
row consist with building damage assessment using proposed Siamese model. Figure 5.6 consists of
extreme weather situation and figure 5.7 consists with tsunami disaster situation. When compare with
all model we can see that proposed Siamese model damage assessment get accurate predicted output.
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