

An Empirical Evaluation of SQA Practices and Their Effectiveness in Sri Lankan Software Industry

H.M.K. Weerakoon (MS19801346) M.Sc. in Information Management

Supervisor: Dr. Nuwan Kodagoda

Head/Department of Computer Science and Software Engineering

December, 2021

(Word Count: 28,374)

Faculty of Graduate Studies & Research Sri Lanka Institute of Information Technology

DECLARATION

I hereby declare that to the best of my knowledge, this submission is my own work and it neither contains direct material previously published nor written by another person or material, which to substantial extent, has been accepted for the award of any other academic qualification of a university or other institute of higher learning except where acknowledgement is made in the text.

Certified by

Signature	:
Date	:

Name of Supervisor I	:
Signature	:
Date	:

ACKNOWLEDGEMENT

In these preliminary lines, I would like to express my profound gratitude and deep regards to those who contributed for the success of this thesis, which is the outcome of my M.Sc. Master project research carried out at Sri Lanka Institute of Information Technology (SLIIT) over the course period January 2020-December 2021. I would like to express my great gratitude to those who have contributed to the thesis for their understanding, encouragement, and support, because this work would not have been possible without all their valuable day-to-day effort, commitment and dedication.

First and foremost, my special words of appreciation and deepest recognition go to my thesis mentor/supervisor, Dr. Nuwan Kodagoda for his remarkable assistance provided by conducting periodic reviews of research progress in order to make sure that the progress curve of the project does not drop down. I benefited enormously from his invaluable expertise, insightful comments, and excellent supervision. I would also gratefully acknowledge our coordinator, Dr. Janaka Wijekoon for his exemplary guidance, monitoring and constant encouragement to complete the task.

Furthermore, I would also like to express my gratitude to the lecturers of Sri Lanka Institute of Information Technology (SLIIT) for providing a solid base of knowledge, which is not only useful for this research, but also for future development in social life and career.

A global thank you to all the individuals who participated in the research surveys giving their time and expertise. The contributions that were made proved to be very valuable in conducting this research study. Finally, a special thank goes to my family and friends for their constant encouragement without which this thesis would not have been a possible.

ABSTRACT

Quality Assurance (QA) refers to the planned activities carried out in a system, so that quality requirements for a product or service will be fulfilled. It is the systematic measurement, comparison with standards, analyzing processes and associated feedbacks focusing on high level of accuracy.

Quality assurance in software is a highly demanding and an emerging area effecting to the success or failure of a software project critically, hence an integral part of project management. The importance of sustaining a positive quality assurance is highly determined by the fact that it builds a proactive management system that reduces the rework amount, leading to low cost and improve productivity. Software Quality Assurance (SQA) domain deals with the quality principles in software engineering development processes. It defines and measures the outputs at different stages of software development process quantifying the quality in terms of defects.

In Sri Lanka software industry is the fifth largest job category according to 2019 ICT Workforce survey by the Information and Communication Technology Agency (ICTA). The objectives of this study are achieved by gathering data by consultation with IT professionals; developers, QA engineers, project managers and analyze them by the use of various statistical techniques such as, percentage analysis, chi-squared analysis and correlation analysis presenting results in suitable hypothesis and relevant interpretation.

The purpose of this empirical evaluation is to explore different SQA practices across a range of IT organizations in Sri Lanka aiming to help these organizations to identify what approaches in eliminating bugs are effective and support finetuning their QA strategies in software development projects by focusing on few of important areas, such as, software testing, quantitative project management, etc. while bridging the gaps identified in various areas of project management relating to software development.

Key words: Software, Quality assurance, Effectiveness, Sri Lanka

TABLE OF CONTENTS

CHAPTER 1	: INTRODUCTION
1.1 Bac	kground of the Study1
1.2 Pro	blem Statement6
1.3 Res	earch Questions and Objectives7
1.3.1	Research Questions7
1.3.2	Research Objectives7
1.3.3	Hypotheses of The Study
1.4 Lin	nitations of The Study9
1.5 Res	earch Layout and Organization9
CHAPTER 2	2: LITERATURE REVIEW11
2.1 Lite	erature Introduction
2.2 The	Empirical Evidences on Software Quality Assurance Practices
2.3 The Software I	Empirical Evidences on Impact of Various Activities on Software Projects in Development Organizations
2.3.1 Q	Quantitative Project Management
2.3.2 P	roject Monitoring and Control
2.3.3 R	equirement Management25
2.3.4 C	Configuration Management
CHAPTER 3	3: RESEARCH METHODOLOGY
3.1 Me	thodology Introduction
3.2 Dat	a29
3.2.1	Sample Population
3.2.2	Sample Size
3.2.3	Sampling Technique
3.2.4	Data Collection Instruments
3.3 Me	thodology
3.3.1	Variables
3.3.2	Tools for Data Analysis and Interpretation
3.3 Cor	clusion

CHAPTER	4: ANALYSIS AND INTERPRETATION	
4.1 Int	roduction	37
4.2 Ba	ckground of The Study	37
4.3 An	alysis of Quantitative Data	
4.3.1	Percentage Analysis	
4.3.2	Chi-Square Analysis	106
4.3.3	Correlation Analysis	117
4.4 Co	nclusion	119
CHAPTER	5: CONCLUSION	120
5.1 Int	roduction	120
5.2 Ma	ain Empirical Findings	120
5.2.1	Percentage Analysis – Personal & Organizational Factors	
5.3 Dis	scussion	121
5.3.1	Main Objective	121
5.3.2	Sub Objective 1	124
5.3.3	Sub Objective 2	125
5.3.4	Sub Objective 3	126
5.3.5	Hypotheses	
5.3.6	Conclusion	131
CHAPTER	6: REFERENCES	132
CHAPTER	7: APPENDIX	136
Appendix	I: Survey Questionnaire	136
Appendix	II: Interview questionnaire – Evaluating effectiveness of SQA processe	es140

LIST OF FIGURES

Figure 1.1: Various components in software project management
Figure 2.1: A model of software testing process
Figure 2.2: Software quality characteristics
Figure 2.3: How project completion is affected by critical elements
Figure 2.4: Categories of SQA challenges
Figure 2.5: Characteristic distribution of software defects origin
Figure 2.6: SQA process integrated with PMLC and SDLC
Figure 2.7: Sample traceability matrix
Figure 3.1: Research methodology
Figure 4.1: Gender wise distribution of the respondents
Figure 4.2: Highest educational status wise distribution of the respondents40
Figure 4.3: Work domain wise distribution of the respondents41
Figure 4.4: Overall experience wise distribution of the respondents
Figure 4.5: Work domain wise distribution of the respondents
Figure 4.6: Association with current organization wise distribution of the respondents44
Figure 4.7: Organization size distribution of the respondents45
Figure 4.8: Organization's age distribution of the respondents46
Figure 4.9: Organization's geographical location distribution of the respondents
Figure 4.10: Organization's business domain distribution of the respondents
Figure 4.11: Organization's client overview distribution of the respondents
Figure 4.12: Organization's supporting business domain distribution of the respondents50
Figure 4.13: Organization certification distribution of the respondents
Figure 4.14: Full-time QA engineers working at the organization of the respondents
Figure 4.15: QA automation engineers working at the organization of the respondents
Figure 4.16: Engineer/ developer time spent for developer testing at the organization of the respondents
Figure 4.17: Testing approaches of the organization56
Figure 4.18: Tools used for functional testing for web applications
Figure 4.19: Tools used for functional testing for mobile applications
Figure 4.20: Tools used for load testing60
Figure 4.21: Tools used for bug tracking

Figure 4.22: Satisfaction on bug reporting and tracking
Figure 4.23: Satisfaction on finding defects before production
Figure 4.24: Satisfaction on time spent on creation of test cases
Figure 4.25: Satisfaction on time spent on developer testing
Figure 4.26: Satisfaction on functional/integration testing
Figure 4.27: Satisfaction on unit test coverage
Figure 4.28: Satisfaction on level of complexity of maintaining test automation
Figure 4.29: Satisfaction on time spent on automation scripting
Figure 4.30: Agreement on "Our current testing process supports well to maintain a good quality
in our developed applications."
Figure 4.31: Agreement on "Test automation is important to increase team efficiency as it helps
detecting defects early on during the development phase."
Figure 4.32: Agreement on "Test automation is worth the investment, both time and effort."73
Figure 4.33: Agreement on "Developer testing should be done before passing a build to the QA
team."
Figure 4.34: Agreement on "It is important for the QA team to be aware of the release and
deployment process."
Figure 4.35: Agreement on "The organization should pay more attention towards expansion of
automation testing."
Figure 4.36: Agreement on "We rely on users to find too many defects in production."
Figure 4.37: Agreement on "It is concerned that the defects found in production make negative
impacts on customer satisfaction." 80
Figure 4.38: Availability of project level goals/ performance indicators defined for different types
of projects in respondents' organizations
Figure 4.39: Frequency of relook of project level goals in respondents' organizations
Figure 4.40: Frequency of root-cause analysis for deviations in project metrics at respondents'
organizations
Figure 4.41: Implementation of rolling out tool for data driven project management at respondents'
organizations
Figure 4.42: Awareness of project managers on statistical process control techniques and their
Eigure 4.42: Implementation of statistical process control techniques by project response of
rigure 4.45: implementation of statistical process control techniques by project managers at
respondents organizations

Figure 4.44: Implementation of frequently applying project monitoring and controlling techniques
at respondents' organizations
Figure 4.45: Various types of project monitoring practices at respondents' organizations
Figure 4.46: Levels of project reviews at respondents' organizations
Figure 4.47: Availability of formal system of feedback and control for project based on different
status reports at respondents' organizations91
Figure 4.48: Availability of project communication plan/ escalation matrix in project plan at
respondents' organizations
Figure 4.49: Availability of project communication plan/ escalation matrix in project plan at
respondents' organizations
Figure 4.50: Consideration of collecting requirements at project planning in respondents'
organizations
Figure 4.51: Availability of a formal process of how to handle requirement changes at respondents'
organizations95
Figure 4.52: Frequency of revisiting project planning parameters (cost, effort, scheduling) based
on requirement changes at respondents' organizations
Figure 4.53: Availability of a formal process of how to handle requirement changes at respondents'
organizations97
Figure 4.54: Accurate reporting of effort overrun caused by requirement changes to all relevant
stakeholders at respondents' organizations
Figure 4.55: Availability of tools for requirement management at respondents' organizations99
Figure 4.56: Availability of organizational level guidelines for identification of documents and
records to be kept under configuration control100
Figure 4.57: Availability of tools for configuration management at respondents'
organizations101
Figure 4.58: Types of artifacts identified in configuration management at respondents'
organizations102
Figure 4.59: Practice of mandatory conduct of impact analysis in case of requirement changes at
respondents' organizations103
Figure 4.60: Practice of regular configuration management audits at respondents'
organizations104
Figure 4.61: Availability of defined organizational process to handle change requests and releases
at respondents' organizations105

LIST OF TABLES

Table 3.1: Classification on software development organizations in Sri Lanka based on number of employees
Table 3.2: Sampling population with regards to the classification of software organizations in Sri Lanka
Table 4.1: Gender wise distribution of the respondents
Table 4.2: Highest educational status wise distribution of the respondents 40
Table 4.3: Work domain wise distribution of the respondents 41
Table 4.4: Overall experience status wise distribution of the respondents 42
Table 4.5: Number of organizations worked distribution of the respondents 43
Table 4.6: Association with current organization wise distribution of the respondents 44
Table 4.7: Organization size distribution of the respondents
Table 4.8: Organization's age distribution of the respondents
Table 4.9: Organization's geographical location distribution of the respondents 47
Table 4.10: Organization's business domain distribution of the respondents 48
Table 4.11: Organization's client overview distribution of the respondents 49
Table 4.12: Organization's supporting business domain distribution of the respondents50
Table 4.13: Organization certification distribution of the respondents 51
Table 4.14: Full-time QA engineers working at the organization of the respondents 52
Table 4.15: QA automation engineers working at the organization of the respondents 53
Table 4.16: Engineer/ developer time spent for developer testing at the organization of the respondents
Table 4.17: Testing approaches of the organization 55
Table 4.18: Tools used for functional testing for web applications 57
Table 4.19: Tools used for functional testing for mobile applications 58
Table 4.20: Tools used for load testing
Table 4.21: Tools used for bug tracking

Table 4.22: Satisfaction on bug reporting and tracking
Table 4.23: Satisfaction on finding defects before production
Table 4.24: Satisfaction on time spent on creation of test cases 64
Table 4.25: Satisfaction on time spent on developer testing
Table 4.26: Satisfaction on functional/ integration testing
Table 4.27: Satisfaction on unit test coverage 67
Table 4.28: Satisfaction on level of complexity of maintaining test automation
Table 4.29: Satisfaction on time spent on automation scripting 69
Table 4.30: Agreement on "Our current testing process supports well to maintain a good quality in our developed applications." 70
Table 4.31: Agreement on "Test automation is important to increase team efficiency as it helpsdetecting defects early on during the development phase."71
Table 4.32: Agreement on "Test automation is worth the investment, both time and effort."73
Table 4.33: Agreement on "Developer testing should be done before passing a build to the QA team." 74
Table 4.34: Agreement on "It is important for the QA team to be aware of the release and deployment process." 75
Table 4.35: Agreement on "The organization should pay more attention towards expansion of automation testing." 77
Table 4.36: Agreement on "We rely on users to find too many defects in production."
Table 4.37: Agreement on "It is concerned that the defects found in production make negative impacts on customer satisfaction." 80
Table 4.38: Availability of project level goals/ performance indicators defined for different types of projects in respondents' organizations
Table 4.39: Frequency of relook of project level goals in respondents' organizations 82
Table 4.40: Frequency of root-cause analysis for deviations in project metrics at respondents' organizations 83
Table 4.41: Implementation of rolling out tool for data driven project management at respondents' organizations 84
Table 4.42: Awareness of project managers on statistical process control techniques and their usage at respondents' organizations

Table 4.43: Implementation of statistical process control techniques by project managers at respondents' organizations 86
Table 4.44: Implementation of frequently applying project monitoring and controlling techniques at respondents' organizations
Table 4.45: Various types of project monitoring practices at respondents' organizations
Table 4.46: Levels of project reviews at respondents' organizations
Table 4.47: Availability of formal system of feedback and control for project based on different status reports at respondents' organizations
Table 4.48: Availability of project communication plan/ escalation matrix in project plan at respondents' organizations
Table 4.49: Availability of project communication plan/ escalation matrix in project plan at respondents' organizations
Table 4.50: Consideration of collecting requirements at project planning in respondents' organizations
Table 4.51: Availability of a formal process of how to handle requirement changes at respondents' organizations
Table 4.52: Frequency of revisiting project planning parameters (cost, effort, scheduling) based onrequirement changes at respondents' organizations
Table 4.53: Availability of a formal process of how to handle requirement changes at respondents' organizations
Table 4.54: Accurate reporting of effort overrun caused by requirement changes to all relevant stakeholders at respondents' organizations
Table 4.55: Availability of tools for requirement management at respondents' organizations99
Table 4.56: Availability of organizational level guidelines for identification of documents and records to be kept under configuration control 100
Table 4.57: Availability of tools for configuration management at respondents'
organizations101
Table 4.58: Types of artifacts identified in configuration management at respondents' organizations 102
Table 4.59: Practice of mandatory conduct of impact analysis in case of requirement changes at respondents' organizations 103
Table 4.60: Practice of regular configuration management audits at respondents'
organizations104

Table 4.61: Availability of defined organizational process to handle change requests and releases
at respondents' organizations105
Table 4.62: Chi-square values- Personal and organizational factors and availability of project level
goals indicators108
Table 4.63: Chi-square values- Personal and organizational factors and implementation of rolling-
out tools for data driven project management109
Table 4.64: Chi-square values- Personal and organizational factors and implementation of
statistical process control techniques110
Table 4.65: Chi-square values- Personal and organizational factors and availability of feedbacks and control system for projects 111
Table 4.66: Chi-square values- Personal and organizational factors and implementation of tools for project monitoring & control 112
Table 4.67: Chi-square values- Personal and organizational factors and availability of formal process of how to handle requirement changes 113
Table 4.68: Chi-square values- Personal and organizational factors and availability of tools for requirement management
Table 4.69: Chi-square values- Personal and organizational factors and types of artifacts in configuration management
Table 4.70: Chi-square values- Personal and organizational factors and availability of defined organizational process to handle change requests and releases
Table 4.71: Correlation matrix 118

LIST OF ABBREVIATIONS

CMMI	Capability Maturity Model Integration
ICTA	Information and Communication Technology Agency
IEEE	Institute of Electrical and Electronics Engineers
IT	Information Technology
ISO	International Organization for Standardization
QA	Quality Assurance
SaaS	Software as a Service
SDLC	Software Development Life Cycle
SCM	Software Configuration Management
SPSS	Statistical Package for the Social Sciences
SQA	Software Quality Assurance
QMS	Quality Management Systems
USD	United States Dollar
WBS	Work Breakdown Structure