

Cryptographic Issues and Vulnerabilities in Web Applications

H M P Kavinda Ranjan Kumara Herath (Reg-No: MS20911058)

M.Sc. in IT Specialized in Cyber Security

Supervisor: Dr. Lakmal / Ms. Chethana

December 2021

Secure Your World with Minimal Risk

Department of Information Technology Faculty of Graduate & Reach Sri Lanka Institute Of Information Technology

Dedicated

То

My Beloved Parents

And

Son Jalan RukmaHerath

DECLARATION

Here I declare my thesis of the research project work titled "CRYPTOGRAPHIC ISSUES AND VULNERABILITIES IN WEB APPLICATIONS" which was prepared submitted to the Faculty Of Graduate & Research, Sri Lanka Institute Of Information Technology, in the essential part of the requirements for the award of the Master of Science in Information Technology Specializing in Cyber Security, is a bonafide report of the work carried out me. The material contained in this Report has not been submitted to any University or Institution for the award of any degree.

H M P Kavinda Ranjan Kumara Herath Reg-No: MS20911058

.....

CERTIFICATE OF APPROVAL

The undersigned certify that the thesis entitled submitted to the Faculty Of Graduate & Research in partial fulfillment of requirement for the Master of Science in Information Technology Specializing in Cyber Security. The project was carried out under special supervision and within the time frame prescribed by the syllabus. As per the individual evaluation of the students that we pursued their dedication, hardworking, bonafide and ready to undertake any challenges appropriate commercial and industrial work related to their field of study and hence we recommend the award of Master of Science in Information Technology Specializing in Cyber Security.

1.

(Project Supervisor)

2.

(External Examiner)

3.

(Head)

Master of Science in Information Technology Specializing in Cyber Security

ACKNOWLEDGEMENT

The theme which was selected for my final project is quite challenging to narrate due to the subject matters quite new for the industry. I highly Appreciate Dr, Lakmal for being given his full support to select such a challenging topic to explore means of cyber security discipline indeed. Writing in this dissertation quit challenge due to the lack of previous attempts and new to the field of research. I highly appreciate each individual including with my colleges for your guideline which was given to me for accomplishment of the goal without further dragging.

This dissertation looks like a small portion of the single booklet however it could be contributed by several faculty members even though some of them are supported invisibly. My special appreciation goes to my mentor Dr. Lakmal and Ms. Chethana. With their contribution might not be carried out such work within the correct time. I will take this opportunity to express my gratitude to every individual who has given their fullest support for my achievement of this review report throughout our Master of Cyber Security program.

Finally, I would like to express my gratitude with a deep appreciation for my family members for their unforgettable involvement and perpetual encouragement throughout the Master program.

H M P Kavinda Ranjan Kumara Herath Reg-No: MS20911058

ABSTRACT:

Web application security is the most controversial and crucial factor to be concentrated on considering the security aspect of cyberspace. Cryptography takes critical parts of security by implementing encryption and decryption phenomena on data at rest, in moving, and in use to be protected the security breaches. Cryptographic concepts had developed over the last few decades as a result of well-known series of mathematical and logical functions. Weakness of poor programming techniques or leakiness of traditional software development life cycles is a crucial element of the security vulnerabilities that can be a huge impact on several web applications which are currently in existence.

The cryptographic vulnerabilities of the web application would depend on several factors such as lack of knowledge on particular subject matters of cryptography, least privilege and contribution of security techniques while cording, unable to proceed with proper standardized vulnerability assessment criteria, the improper adaptation of cryptographic concepts, unable to intended with high secure framework like DevSecOps, depend on the procedures rather than empirical approaches, etc. Sophisticated tools and techniques are necessary factors of driving through the rectification and mitigation of the security vulnerabilities that exist in the web applications whereas implementation process, testing and monitoring of the System Development Life Cycle. This dissertation emphasized indeed a further illustration of cryptographic vulnerability assessment in several specimens collected from different domains from enterprise web applications and related APIs (Application Protocol Interface) currently established. The tools are the critical elements used to evaluate errors on the codes whereas statistical or dynamic analysis. Static tools are given in high percentage of accuracy of the results whereas automated tools are well suited for mega scripting projects such as millions of code evaluated for errors. Java-based code scripting has been dominated still among the huge percentage of the web sources. Python will be established gradually due to the high inbuilt security system on it. Java and Python are the programming languages still being dominated of existence to discuss in the cryptographic vulnerabilities on the process of web application developments. The ultimate goal of this dissertation could be retain valuable sources of documents enriched with sophisticated technics to be used a reference guide for the developers and the security engineers to fulfilled their gaps between code and security requirements.

Keywords: Application Protocol Interface, Cryptographic Vulnerability, DevSecOps, Dynamic Analysis, Statistical Analysis System Development Life Cycle

TABLE OF CONTENTS

Cover Page	i
Dedication	ii
Declaration	iii
Certificate of appr	ovaliv
Acknowledgemer	tv
Abstract	vi
Table of Contents	vii
List of Figures	viii
List of Tables	xii
Chapter 1: Introdu	lection1
1.1 Backg	cound Introduction
1.2 Other	related topics or terms4
1.2.1	Cryptography4
1.2.2	New Definition of Cryptography5
1.2.3	Encryption technology
1.2.4	Algorithm
1.2.5	Cryptographic Vulnerabilities
1.2.6	Cryptographic Domain
1.3 Motiva	ution9
1.4 Proble	m Definition and Research Questions9
1.4.1	Problem Definition
1.4.2	Research Questions10
1.5 Goals	and Objectives
1.6 Scope	and Applications11
Chapter 2: Literat	ure Review12
2.1 Abstra	ct
2.2 Introdu	13 Iction
2.3 Object	ives14
2.4 Metho	d14
2.5 Standa	rd Framework15
2.5	.1 Investigation Frameworks15
2.5	.2 Bayesian Framework16
2.5	.3 Monotone Framework16
2.5	.4 Javascript Application Frameworks16
2.6 Eleme	nts Related to Cryptographic in Web Applications17
2.6	.1 W3c Web Cryptography APIs17
2.6	.2 TLS/SSL Security

2.7 Tools & Techniques	
2.7.1 CrySL	19
2.7.2 CryptoGuard	21
2.7.3 FixDroid	21
2.7.4 CogniCrypt	23
2.7.5 CryptoLint	24
2.7.6 Slicing Techniques	24
2.8 Protocols Related To Web Application	25
2.9 Security Breaches	27
2.9.1 Internet Protocol Security	27
2.9.2 IPSec Protocol	27
2.9.3 IPSec VPN	
2.9.4 IPSec Protocol	
2.10 Security Breaches	29
2.11 Penetration Testing for Cryptographic Issues and Vulnerabilities	29
2.12 Introduction to Bug Bounty	
2.13 Standard to follow	
2.14 Conclusion	
Chapter 3: Requirement Analysis	33
3.1 Activates of requirement Analysis	33
3.2 Requirement Analysis Techniques	
3.2.1 Software and Hardware Requirement Specifications	
3.2.2 Technical Feasibility	
3.2.3 CryptoGuard	35
3.3 Further More on Feasibility study	35
3.4 Required Facilities	
3.4.1 Budget	
3.5 Known about the attack vectors and the countermeasures	37
Chapter 4: System Design and Architecture	
4.1 Type of study	
4.2 Data collection method and research instruments	
4.3 Sampling Technique	40
4.3.1 Intended data analysis techniques	40
Chapter 5: Methodology	42
5.1 Penetration Testing	42
5.1.1 Penetration Testing Fundermentals	43
5.2 Penetration Testing Stages	44
5.2.1 Pre-Engagement Phase	45
5.2.2 Information-Gathering Phase	45
	viii

5.2.3 Vulnerability Analysis Phase	5
5.2.4 Reporting Phase44	5
5.3 Vulnerability Assessment And Penetration Testing Tool4	7
5.3.1 Testing Tools & Common Vulnerabilities47	7
5.3.2 Cryptographic Vulnerability Testing Tools48	8
5.4 Bug Bounty Practices	8
5.4.1 Bug Bounty Process)
5.4.2 Rewards	1
5.4.3 Kali Linux for bug bounty	2
5.5 Common Cryptographic Vulnerabilities	3
5.5.1 Brute Force Attack	3
Chapter 6: Implementation Details	0
6.1 Finding Vulnerabilities from CryptoGuard55	5
6.2 Java Build Tools	5
6.3 Scanning Enhancement	7
6.4 Java File	4
6.5 Java Class file60)
6.6 Schema Design6	1
6.7 Python Cryptographic Vulnerabilities	2
6.8 Vulnerability Detection Methods	3
6.8.1 Cryptographic Vulnerability63	3
6.8.2 Detection Methods	3
Chapter 7: Result and Analysis	6
7.1 Insufficiently protected credentials	5
7.2 Recommendations	3
7.3 Week Keys vulnerability)
7.4 FPGA	С
7.4.1 Field-Programmable Gate Array7	1
7.5 Cryptographic common vulnerabilities	2
7.6 False positives	ł
Chapter 8: Conclusion and Future Work	5
8.1 Conclusion	5
8.2 Limitation	7
8.3 Future enhancement	7
8.4 Future Implementation Suggestion	9
References	1
Appendix	5

LIST OF FIGURES

Figure 1.1 Security and Vulnerability Risk	3
Figure 1.2 Proposed security architecture of Security Operation Center	3
Figure 2.1 Public key signature	17
Figure 2.2 Vulnerability in coding	20
Figure 2.3 (a) encryption of AES (b) Graph of data dependency for key Bytes	20
Figure 2.4 the cryptographic key with in a hard-coded string	22
Figure 2.5 insecure code detection from FixDroid	22
Figure 2.6 suggestions to figure out the issue	22
Figure 2.7 HTTPS upgrade as per the suggestion	23
Figure 2.8 Architecture of FixDriod	23
Figure 2.9 the process of code generation of CogniCript	24
Figure 2.10 SSL and TLS development process	26
Figure 3.1 security in depth for general for whole criteria	37
Figure 5.1 Vulnerability Assessment and Penetration Testing Life cycle	46
Figure 5.2 Penetration testing lab requirements	46
Figure 5.3 Bug Bounty Variants	50
Figure 5.4 Bug Bounty Cycle	51
Figure 5.5 CFRF attack	54
Figure 6.1 Cryptographic misuse detection from CriptoGusrd	55
Figure 6.2 the flow of Scanning	56
Figure 6.3 Expansion of source scanning Limited usage of Soot	57
Figure 6.4 Methodologies of Java preparation to Soot	58
Figure 6.5 Limited usage of Soot	58
Figure 6.6 Method of Java Class Loading	55
Figure 6.7 Retrieving qualified path for Java file	59
Figure 6.8 Create soot environment in Java Class File	60
Figure 6.9 From the Java class file retrieving fully qualified path	61
Figure 6.10 Vulnerabilities and packages over years	62
Figure 6.11 Vulnerabilities over Years in high, medium and low	63
Figure 6.12 Type of Vulnerabilities according to Industrial Control System	64

Figure 7.1 Users password change	66
Figure 7.2 Read the value of password in config.properties	67
Figure 7.3 Read the value of password in registry key	67
Figure 7.4 verify the password from compress version	67
Figure 7.5 RSA Key vulnerability	69
Figure 7.6 Secure system of FPGA – model one	71
Figure 7.7 Secure system of FPGA – model two	71
Figure 7.8 Secure system of FPGA – model three	72
Figure 7.9 Secure & Insecure source	72
Figure 7.10 API URL	73
Figure 7.11 Predictable number generation	73
Figure 7.12 Insecure algorithms	73
Figure 7.13 Insecure cipher algorithms	73
Figure 7.14 Source of false positives	74
Figure 7.15 Programming idioms	74
Figure 8.1 most wanted languages	
Figure 8.2 Web Frameworks	
Figure 8.3 Proposed KSOC FPGA Security Cloud based solution	80

LIST OF TABLES

Table 1.1 encryption algorithms	6
Table 1.2 Algorithm Comparison	7
Table 2.1 High, Medium, and Low level of risk of cryptographic vulnerabilities	
Table 2.2 different approaches of network security protocols	26
Table 2.3 Secure and insecure threat models	29
Table 2.4 ITIL, COBIT and ISO/IEC27002	31
Table 3.1 Required Budget for the entire project	
Table 5.1 Testing Tools and Common Vulnerabilities	47
Table 5.2 Cryptographic Vulnerability Testing Tools	48
Table 6.1 Common vulnerabilities in Python	61
Table 6.2 Vulnerabilities, attack type and cryptographic properties	64
Table 6.3 CWE report on cryptographic vulnerabilities test cases	64
Table 6.4 CRYPTOAPI-BENCH Comparison	65
Table 7.1 NIST Cryptographic Algorithm recommendation	68
Table 7.2 Strong and weak keys in some countries	69
Table 7.3 50 most repeated SSH Keys	
Table 7.4 Diplomat Great Accuracy Value	75