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Heterogeneous multiple robots are currently being used in smart homes and industries for di�erent purposes. �e authors have
developed the Web interface to control and interact with multiple robots with autonomous robot registration. �e autonomous
robot registration engine (RRE) was developed to register all robots with relevant ROS topics. �e ROS topic identi�cation
algorithm was developed to identify the relevant ROS topics for the publication and the subscription. �e Gazebo simulator
spawns all robots to interact with a user. �e initial experiments were conducted with simple instructions and then changed to
manage multiple instructions using a state transition diagram. �e number of robots was increased to evaluate the system’s
performance by measuring the robots’ start and stop response time. �e authors have conducted experiments to work with the
semantic interpretation from the user instruction.�emathematical equations for the delay in response time have been derived by
considering each experiment’s input given and system characteristics. �e Big O representation is used to analyze the running
time complexity of algorithms developed. �e experiment result indicated that the autonomous robot registration was successful,
and the communication performance through the Web decreased gradually with the number of robots registered.

1. Introduction

Autonomous robot registration and control is one of the
complex tasks in robotic application development. ROS was
developed to improve interoperability and reduce hetero-
geneous multiple robot programming complexities. ROS is a
kind of middleware used by developers in robotic applica-
tions to reuse most existing software developed by di�erent
researchers. �ere are di�erent nodes, topics, and message
formats for di�erent robots in ROS. An algorithm was
developed to �nd the related topics to control di�erent
robots in ROS. �erefore, in our system, the main com-
ponent is the robot registration engine (RRE), which is
developed to register multiple heterogeneous robots by
getting all related rostopics.�eWeb interface was developed

to interact with robots and users using the ROS bridge
server. ROS bridge server worked as an interface between the
ROS environment and the Web interface. We have devel-
oped di�erent Web interfaces to interact with the user and
di�erent types of experiments in our research as described
by Web interfaces I to V.

Web interfaces I to IV were developed to work with
instructions such as moving the robot to a speci�c location
and working with multiple instructions sequentially. Web
interface V was developed to work with instructions with
semantics. We have used the Gazebo simulator for our
experiments. �e robot actions and the initial position were
changed with time.�erefore, we have created a schedule for
each robot to complete movement or navigation in the
experiment with Web interface V. �en, we have identi�ed
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the relevant ROS topic in corresponding nodes to subscribe
and publish the corresponding command values from the
user command. (e command publishing engine (CPE) is
responsible for publishing the ROS command for each ac-
tion defined in the given user-level instruction.

Different architectures were used to design the hetero-
geneous multiple robot system, including centralized, dis-
tributed, and hybrid mode [1]. Our solution is based on the
centralized server architecture as shown in Figure 1.

We have conducted experiments with Web interfaces I
to V with different inputs. (e state transition system works
with multiple instructions when the user issues several
commands sequentially. We have derived the mathematical
equations for each experiment for the delay time in response
to the inputs and system characteristics. (e algorithm’s
running time was expressed using the Big O notation,
representing the time complexity.

(e following sections are grouped as follows. Section 2
represents a literature survey with background readings and
related research works. (e methodology with algorithms
and main components of the design are presented in Section
3. (e experiments and evaluation of the research project
with results are described in Section 4. Finally, Section 5
describes the conclusion with future works.

2. Background Studies

(ere are many research works that are currently related to
heterogeneous multiple robot control and communication.
(erefore, we have categorized all background reading as
multiple robot controls,Web Interface for robot control, and
robot programming and control interface with user
instructions.

2.1. Multiple Robot Controls. Some research groups have
implemented heterogeneous multiple robot control with the
help of a human. Seohyun et al. have developed layered
architecture to manage and control multiple robots with the
intervention of humans. (ey have designed the interface to
separate the autonomous and manual parts. (ey have
proposed architecture to control multiple robots with the
human intervention. (ey have separated the manual part
and the mechanical part in this architecture. (ey have
enhanced the multiple robot control with the human in-
tervention [2].

Alberri et al. have developed architecture to connect
multi-robot heterogeneous systems with a hierarchical
system that is mainly based on the ROS. (e layered ar-
chitecture was used in this development. Lower layers were
implemented with C and C++ languages. Complex com-
putations were performed by the upper layer and an in-
termediate level. (ey have used three different devices
(autonomous quadcopter, autonomous mobile robot, and
autonomous vehicle) to complete the testing of the system
[3].

A system was developed where personal computers work
as servers and robots work as nodes. Again, the hybrid
architecture based on ROS with multiple robot systems was

used. (e server processed all complex computation and
visualization, and each node in robots was used to process
the real-time tasks [1].

(ere were many research projects with multiple robots,
but our work is unique because of autonomous robot reg-
istration with the Web interface, performance evaluation,
and heterogeneous robots.

2.2. Web Interface for Robot Control. Costa et al. have in-
troduced a Web-based interface for multiple robot com-
munication using ROS. Two services were implemented
named monitor and control. In addition, they have
implemented operations as robots move forward, move to
the right, move to the left, and move backward. (e main
contribution was to manage heterogeneous robots by lay-
people with the help of ROS [4].

Penmetcha et al. have implemented a system to manage
robots that are based on ROS and non-ROS with cloud
technologies. (e robotic applications were executed with
machine learning algorithms based on JavaScript-based li-
braries. (e CPU utilization and latency performance were
calculated, and an average latency of 35milliseconds is
achieved. In addition, the innovative cloud was developed
using Amazon Web services [5].

Singhal et al. have developed a fleet management system
with autonomous mobile robots using a single master and
cloud-based configuration. In addition, autonomous navi-
gation was used with a global planner. (e authors have
identified the critical limitation and issues with cloud ro-
botics [6].

Beetz et al. have developed a service named openEASE to
work with the available research based on cloud technology.
openEASE is a Web-based knowledge service that robotic
researchers can remotely access. (e researchers can access
semantically annotated data from real-world scenarios [7].

Casañ et al. have implemented a tool with the Web
browser interface for online robot programming. It provides
the interface with the text box for scripting. MATLAB re-
mote programming environments were used to implement
the system [8].

Even though there are many projects with Web inter-
faces for robot control, our work is different since we have
implemented the interface to register and control hetero-
geneous robots and work with multiple instructions
sequentially.

Rajapaksha et al. have implemented a system, which
takes user-level instruction with uncertain words for a drone
and converts it to machine-understandable executable for-
mat using the ontology [9, 10].

Rajapaksha et al. have developed a system to control and
communicate with robots using user instruction with un-
certain terms. (ey used the ontology to represent the
knowledge of the robot for uncertain terms. (e developed
system is able to understand the commands such as go fast
and go very fast. (ey have developed the user-friendly
environment to interact with the robots [11, 12].

Rajapaksha et al. have developed a GUI-based system to
program and control the robots with Web interface [13].

2 Journal of Robotics



Rajapaksha et al. have implemented a heterogeneous mul-
tiple robot control system by registering robots autono-
mously with high-level user instructions [14, 15].

Buscarino et al. have proposed a methodology to the
control group of robots without central coordination. (ey
have proved that the system performance with having noise
can be improved by including long-range connections be-
tween the robots. (ey have modeled the network as a
dynamic network [16].

2.3. Robot Programming and Control Interface with User
Instructions. Tiddi et al. have developed a system to help
nonexpert users in robotics for robotic application devel-
opment with the help of the ontology in the ROS envi-
ronment. (e main focus was to reduce the time for robot
programming for a specific task using the ontology repre-
sentation. (e nonexpert’s user needs to configure the
system to complete different tasks by the robot [17].

Tiddi et al. have developed the interface, which allows
nonexperts to use a robot as a development platform. (e
system provides high-level commands with the help of
fundamental ontology. (ese ontologies have mapped the
high-level capabilities on the robot low-level capabilities
(e.g., communication and synchronization). (ey have used
the middleware as ROS [18].

Pomarlan and Bateman have implemented a system that
translates “semantic specification” in a natural language
instruction to a program that a simulated robot can execute.
For example, the system can interpret a sentence into a
program that allows the robot to understand the sentence.
(e main task was to cover a set of basic action concepts

from an ontology [19]. Amaratunga et al. have developed an
interface to program novel programmer to program easily
with interface developed. (ese ideas can be used for robot
programming interface development [20].

Muthugala et al. have reviewed the service robot com-
munications where robots can work with information
having uncertainty in natural language instructions. (ey
have implemented the system to identify the issues in
working with the qualitative information in the given user
instruction in current research work. (ey have indicated
that the quantitative value of information with uncertain
terms can depend on the environment, previous experience,
and the current context [21].

Sutherland andMacDonald have created domain-specific
language to work with the text, which is named as RoboLang.
(at language is working with the existing programming
tools. In addition, the program code can be executed on other
robot platforms with minor modification of the code [22].

Datta et al. developed an integrated development envi-
ronment for visual programming by abstract textual domain-
specific language. It provides the program development
environment to program robotic applications very fast and
very simple with the user requirements [23]. Jayawardena
et al. developed a new concept named as coach player model
to learn from user commands [24, 25].

Gayashini et al. have developed a navigation model in an
unknown area with obstacles. (ey have developed a reverse
navigation model based on previous knowledge [26]. Pan-
agoda et al. have developed a similar system with a potential
field graph. (ey have developed a recovery behavior al-
gorithm to find an alternative path if the current path has
any obstacle [27].

Move to your
allocated

location and
start the work 

WEB INTERFACE

INTERPRETER

ONTOLOGY

Turtlebot
specific

command

TIAGo
specific

command

Husky
specific

command

Generic
command 

Schedule
Management 
for multi 
Robot 

Figure 1: High-level system diagram.
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Jayawardena et al. have implemented a system to im-
plement software for a given robotic programming scenario
within a minimum amount of time. Less coding can be used
to create software for the given scenario.(e software can be
modified, and all changes are made quickly without any
errors. (e behavior execution engine (BEE) was used to
integrate the subsystems together [28].

Datta et al. have developed a system with an environ-
ment to develop the program for robots with interactive
behaviors. Moreover, it is a visual programming tool. Subject
matter experts (SMEs) can involve in the service robot
application development. It makes the post-software de-
ployment easy [29].

Kim et al. have developed a system to understand the
qualitative information with commands for service robots
using the ontology. (ey have used lexicon semantic pattern
matching to get the most relevant keywords from the user
instruction. (ey developed an interpretation system as a
prototype, and it was tested with many commands. Standard
vocabulary and semantics were defined in the ontology that
intelligent agents can use [30].

Scibilia et al. have reviewed motor control theory and
sensory feedback applications performed in parallel. Opti-
mal control models were developed to represent the humans’
ability to behave optimally after a certain level of training.
(e advantage of the structural model and Hosman’s de-
scriptive model is discussed in this review [31].

Bucolo et al. have worked on a complex and imperfect
electromechanical structure that can be used as paradigm for
the imperfect system. (ey have indicated that the electrical
and mechanical interactions generate complex patterns
because it prevents system to reach correct conditions [32].
Our solution may not be perfect in terms of performance
characteristics.

Rashid et al. have developed an algorithm named cluster
matching to get the orientation and localization of the ro-
bots. Each robot could estimate the relative orientation of
neighbor robots that are within its transmission range. It is
able to get the absolute positions and orientations of the
team robots without knowing the ID of the other robots [33].

Ali et al. have developed the multi-robots navigation
model in dynamic environment named shortest distance.
(e collision-free trajectory was developed using the current
orientation and position of the other robots. (is algorithm
is based on the concept of reciprocal orientation that
guarantees smooth trajectories and collision-free paths [34].

According to the above background studies, we can
identify that some researches are more similar to our system,
but in our system, we have developed an automated robot
registration engine that is not available in any other system.
Furthermore, our semantic analysis is also based on opti-
mized algorithms compared with the existing techniques
used by other researchers.

3. Methodology

(e authors have implemented a Web interface to interact
with the robots and users.(eWeb interfaces were developed
to interact with different types of experiments in our research.

Web interfaces I to IV were developed to work with simple
instructions such as moving the robot forward, moving the
robot circle, and getting the robot’s current position. Web
interface V was developed to work with instructions with
semantics. We have used the Gazebo simulator for our ex-
periments. (e standard ROS JavaScript Library provided by
the ROS Web Tools (http://robotwebtools.org/) was used to
connect ROS with the Web interface. In the last experiment,
the user can issue an instruction like “Move to the Room 3” to
all robots that are placed at different positions. Figure 2
represents the system architecture of our system.

3.1. Robot Registration Engine. (e algorithm that we have
developed to register all multiple heterogeneous robots
with the human intervention is represented in Figure 3. We
have initially created a node called “regRobot” to complete
the rest of the line execution of the algorithm. IP addresses
were extracted from the given IP address list named as
“ipList.”(e IP address is used to connect all heterogeneous
service robots in the Gazebo environment. Next, ROS
commands were executed to collect the software specifi-
cation, which has used the execl() system call by the ROS
node created earlier. Finally, an ontology named as
“Registration Ontology” is created to represent available
ROS details.

3.2. Command Interpreter. When a user issues a high-level
user instruction on the Web interface provided by the
system, the instruction is analyzed by the command inter-
preter to separate the action, subject, object, and constraint,
as shown in Figure 4. First, the instruction can be sent to
process the synonyms and semantics. (en, it needs to find
out relevant ROS nodes, ROS topics for subscription, and
publication with the algorithm as shown in Figure 3.

(e system is implemented by handling multiple in-
structions one by one issued by the user using a state
transition diagram with the description of the states as
shown in Figure 5. (e robot state is saved in the ROS topic
to retrieve the robot state from time to time. When the robot
is ready, it will accept the user’s instruction and complete the
assigned work accordingly.

When a user issues multiple instructions to the robot
through the Web interface, the related flowchart with the
state transition is shown in Figure 6. Initially, a robot must
register with the robot registration engine and update the
state as ready in the ROS topic. (en, the robot can work
according to the instruction given by the user. While the first
instruction is processed, the user can issue another in-
struction and then the robot must be interrupted to handle
the second instruction. Based on the priority of the in-
struction, the robot must be able to decide to continue the
current work or start the second instruction. (e work state
has the highest priority, the motion state has the second
highest priority, the dialog state has the third priority, and
the ready has the lower priority. Each robot will exit from the
system if the instructions are not received within the defined
timeout.
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3.3. Movement Management. (e most critical component
of our experiments is the movement of the robots using
different instructions using different interfaces. Once a robot
is registered with the RRE, it uses the ROS topic identifi-
cation algorithm to identify the corresponding ROS topic for
the movement. In experiment 01, the authors have used
teleoperation to move robots forward and circle in an open
environment in Gazebo. In experiments 02, 03, and 04, the
authors have used the Web-based interface to move robots
forward and circle in an open environment in Gazebo with
multiple robots. Finally, in experiment 05, the robot was
moved to a specific location using the algorithm given in
Figure 7.(e notations used in the flowchart are described in
Table 1.

3.4. Synonym Analysis. Users can enter different types of
instructions as described in Table 2 and based on the
command interpreter outputs, and the system accepts only
commands and commands with the condition. (ere can be
some commands with different verbs with the same
meaning, called synonyms. Robots may not be able to un-
derstand synonyms until it is appropriately programmed.
(erefore, we implemented ontology, which is created with
the Web ontology language property called “sameAs” to find
the synonyms in the given instruction. We have used the
“owl:sameAs” statement to identify the two uniform resource
identifiers, which means each individual has the same
“identity.” We can take the example as synonyms for in-
struction “move” are “shift, go, proceed, walk, and advance.”
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Users can update ontology manually. Synonym identifica-
tion is used in the ROS topic identification algorithm for
publishing commands. Different heterogeneous service ro-
bots can use different ROS topics; therefore, we need to find
the correct ROS topic to publish the commands.

3.5. Semantic Analysis. (e semantic meaning of the com-
mand is one of the main tasks in interpreting the user-level
instructions. Suppose a robot can detect a semantic error in
the given user-level instruction that will better implement the
robot’s intelligence. For example, when a user issues a user-
level instruction with the verb “go,” we can guarantee that the
next part should be a location or destination. (e semantic
analysis algorithm is described in Figure 8.

(e ontology code has a property that requires
restricting all robots from moving to a specific position.
“owl:allValuesFrom” is the property that can be used to
define the class with all possible values of the given property
defined by “owl:onProperty.” If the object is not in the re-
stricted value list, it is considered an invalid command and
gets the user intervention.

3.6. Ontology. Ontology is a model used to represent the
concept and the relationships among all related concepts; for
example, if we select the robot’s ontology, we can represent
all concepts in the robot domain and the relationships
among all concepts related to robots [35–37]. Finding
concepts from the ontology is the one that takes more time
because the running time complexity of the searching al-
gorithm is given byO(n), where n is the number of classes in
the given ontology. (e part of the ontology that we have
created is shown in Figure 9.

3.7. Command Publishing Engine. According to the user-
level instruction issued, the command interpreter can
identify the action (move, navigate, identify) subject, con-
straint, and object defined in the user instruction. (e
command publishing engine needs to identify the corre-
sponding ROS topics relevant to the action to publish and
subscribe for initiation of the action. For example, if we want

to move the robot to a specific location, we can publish the
command on ROS topics such as cm d vel, cm d_vel_mux,
or cm d vel mux/input/navi. (ese ROS topics will be
varying from robot to robot in heterogeneous environments.
(e possible ROS topics for the movement and ROS topic
for the initial pose are shown in Figure 10.

When a user enters the instruction to all heterogeneous
service robots, we need to initiate the action for each robot.
(is task is completed by command publishing engine
(CPE), which can publish the action on the corresponding
ROS topic. Initially, CPE can locate the current position of
each robot using the optimized algorithm. Get robot posi-
tion algorithm of each robot is defined in Figure 11. (e
algorithm has used the IP address and the undated ontology
to get the initial position and the orientation.

We have created a node in ROS called “initPos.” It is re-
sponsible for running the remaining lines of the defined al-
gorithm. Inaddition, thisnodecanfindthe relevantROStopics
related to the initial position and orientation of the robot.

Each robot may have a different ROS topic to subscribe
to and publish for different operations.(erefore, we need to
identify these topics before executing any commands on
each robot. (e ROS topic identification algorithm is de-
scribed in Figure 12. Initially, the system used the given IP
address list and port list to connect with all robots. (e ROS
topic in the ontology, which the RRE generated previously to
create a shared file as rtList, is used. (en, it called the Get
ROSTopic() algorithm, which is used to get the corre-
sponding ROS topics for each action. (is algorithm was
used to find the ROS topics for each action defined in the
user instruction. For example, if the action is to move the
robot from one location to another location, then we need to
find the corresponding ROS topic used from the identified
list as “cmd,” “vel,” “cmd vel,” “velocity,” “speed,” “travel,”
and “run.” If the identified ROS topics list was not matched
with the ROS topics received from the RRE, we called Get
Uncertain ROSTopic() to find the ROS topics with syno-
nyms of the action based on the ontology. (is algorithm
uses the synonyms for the given action to find the corre-
sponding ROS topic. If we can find one, we can use the topic
for subscribing or publishing the action; otherwise, we need
to get the user input to resolve the problem.

Table 1: Notations used in the flowchart and experiments.

Notation Description
Us

x Linear speed of the robot in x-direction at the start in ms− 1

ωs
z Angular speed of the robot in z-direction at the start in ms− 1

ωe
z Angular speed of the robot in z-direction at the stop in ms− 1

θ Current robot orientation in quaternion form
θd (e difference between current robot orientation and goal orientation in quaternion form

Table 2: General goal and task scheduling table.

Robot name Time slot 1 Time slot 2 Time slot 3 Time slot 4
t0 − t1 t1 − t2 t2 − t3 t3 − t4

R1 Goal1,1 + Task1,1 Goal1,2 + Task1,2 Goal1,3 + Task1,3 Goal1,4 + Task1,4
R2 Goal2,1 + Task2,1 Goal2,2 + Task2,2 Goal2,3 + Task2,3 Goal2,4 + Task2,4
R3 Goal3,1 + Task3,1 Goal3,2 + Task3,2 Goal3,3 + Task3,3 Goal3,4 + Task3,4
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3.8. Schedule Management. In our solution, we have
assigned scheduled work and location for each robot for a
given time slot.(e robot can execute user instruction only if
it is a free time slot; otherwise, the robot needs to complete
the allocated task. (e CPE can publish or subscribe to the
relevant values for each ROS topic. Each heterogeneous

robot has given a specific goal (Gi,j) or position to move with
specific allocated work (Ti,j) based on the given time al-
location as shown in Table 2. According to the given time
slot, the location to move (goal) and task to be completed for
each robot are displayed in the goal and task scheduling
table.
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Figure 9: Fragment of the ontology.

Figure 8: Semantic analysis algorithm.
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3.9. Navigation Management. Autonomous navigation of
the robot is one of the main research areas in robotic
programming. ROS is implemented to work with the nav-
igation stack that is used to navigate from one location to

another location easily by hiding most of the complex tasks
in autonomous robot navigation. Navigation can be
implemented using the ROS topics, message formats, and
shapes of footprint of the robot and selecting the relevant

Action

Move

Navigate

Identify

…………….

…………….

/cmd_vel

/*../*../ cmd_vel

/cmd_vel_mux

/*../*../ cmd_vel_mux

/cmd_vel_mux/*../

/cmd_vel_mux

/command_velocity
ROS Topic for Initial Pose 

/odem

*/odem

/odemetry

Figure 10: ROS topics for the movement.

Figure 11: Get initial position algorithm.
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values for the ROS topics for each robot. Odometry and
sensor information were used as main inputs for the ROS
navigational stack, and then, it generated the corresponding
velocity for the mobile base. According to the ROS speci-
fication, we can find that the mobile base is controlled by
xisvelocity, yisvelocity, an dt hetaisvelocity, and a 2D
planner laser is mounted on the mobile base. (e navigation
is exactly successful on the square-shaped robots.

(e map server was used to store the created map file. All
heterogeneous service robots used the map stored in the map
server to navigate obstacles fromone location to another. amcl

(AdaptiveMonteCarloLocalization)fileandmove basefilefor
each robotweremaintainedas launchfiles to localize andmove
the robot in the given environment. For example, ROSscan,
ROSo do metry, ROSinitialpose, and ROSparticleclou d

topics were used in the amcl launch file for each robot for the

localization. For example,ROStopiccm d vel,ROStopicgoal,
ROStopico de m, ROStopiclocal plan, ROStopicglobal

plan, and ROStopicfootprint were used for remapping the
ROStopicmove base node for each robot.

3.10. %read Management. Since we need to control and
coordinate multiple robots simultaneously, threads can be
used to complete the task efficiently. Furthermore, a thread is
a lightweight process inside a process. (erefore, concur-
rency can be developed using the threads quickly.

4. Experiment and Results

We have conducted the experiments withWeb interfaces I to
V for simple instructions and measured the response time of

Figure 12: ROS topic identification algorithm.
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the robot start and stop with the Web interface. (e initial
experiment was conducted without the Web interface. We
have used the following notation for our experiments as
shown in Table 1.

4.1. Experiment 01: Single Robot Interaction with Simple In-
struction without Using the Web Interface. Initially, the au-
thors completed the experiment with a single robot without
using the Web interface in the Gazebo simulator with
TurtleBot3.(e authors have issued instructions to move the
robot forward and move in a circle using the terminal in-
terface with the rostopic pub command. We have evaluated
the average response time of the robot for a start and stop
instructions. We have conducted the experiments with
different linear and angular speeds of the robot for start and
stop instructions. (e experiment results will be displayed as
shown in Table 3. (e interaction with TurtleBot3 with the
terminal without using a Web interface is shown in Fig-
ure 13. (e response delay for the start and stop of the robot
is represented by equations (1) and (2), where Rstart

s,d and R
stop

s,d

represent the single robot delay at start and stop, respec-
tively, τd,os represents the delay in system call execution in
operating system, τd,ROS is used to represent the delay in
communicating with ROS topics, and c1, c2 are constants.

R
start
s,d � τd,os + τd,ROS +

c1

U
s
x + ωs

z􏼈 􏼉
, (1)

R
stop

s,d � τd,os + τd,ROS + c2 U
s
x + ωs

z􏼈 􏼉. (2)

Figure 14 represents the average start and stop response
time for the robot for each instruction. (e average start
response time gradually decreases when the linear and
angular speed increases, while the average stop time in-
creases when the linear and angular speed increases.

4.2. Experiment 02: Single Robot Interaction with Simple In-
struction with Web Interface without Autonomous Robot
Registration. (e authors developed the Web interface to
interact with the robot using the ROS bridge server. (e
authors have issued instructions to move the robot forward
and move in a circle using the buttons provided in the Web
interface with the robot. We have evaluated the average
response time of the robot for a start and stop instructions.
We have conducted the experiments with different linear
and angular speeds of the robot for start and stop in-
structions.(e experiment results will be displayed as shown
in Table 4. (e interaction with TurtleBot3 with the terminal
withWeb interface is shown in Figure 15.(e response delay

Table 3: Single robot average start/stop response time without Web interface.

Us
x � 0.5 ms− 1 Us

x � 1.0 ms− 1 Us
x � 1.5 ms− 1

StartResponse(s)

ωs
z � 0.0ms− 1 0.871 0.807 0.787

ωs
z � 0.5ms− 1 0.657 0.541 0.531

ωs
z � 1.0ms− 1 0.561 0.512 0.499

ωs
z � 1.5ms− 1 0.511 0.501 0.476

StopResponse(s)

ωe
z � 0.0ms− 1 1.211 1.728 2.161

ωe
z � 0.5ms− 1 1.039 1.631 1.981

ωe
z � 1.0ms− 1 1.001 1.431 1.871

ωe
z � 1.5ms− 1 0.988 1.181 1.761

Figure 13: Single robot interaction without Web interface.
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for the start and stop of the robot is represented by equations
(3) and (4), where Rstart

s,d and R
stop

s,d represent the single robot
delay at start and stop, respectively, τd,web represents the
delay in communication through Web interface, τd,ROS is
used to represent the delay in communicating with ROS
topics, and c1, c2 are constants.

R
start
s,d � τd,web + τd,ROS +

c1

U
s
x + ωs

z􏼈 􏼉
, (3)

R
stop

s,d � τd,web + τd,ROS + c2 U
s
x + ωs

z􏼈 􏼉. (4)

Figure 16 represents the average start and stop response
time for the robot for each instruction. (e average start
response time gradually decreases when the linear and
angular speed increases, while the average stop time in-
creases when the linear and angular speed increases.
According to the analysis, the authors have identified that
Web communication is slightly faster than communication
through the terminal.

4.3. Experiment 03: Single Robot Interaction with Simple In-
struction with a Web Interface with Autonomous Robot
Registration. (e robot registration engine was developed to

collect all robot details, including all ROS topics necessary to
subscribe and publish. (e ROS topic identification algo-
rithm was developed to select the relevant ROS topics for
each action defined in the user instruction. We have eval-
uated the average response time of the robot for a start and
stop instructions. We have conducted the experiments with
different linear and angular speeds of the robot for start and
stop instructions. (e experiment results will be displayed as
shown in Table 5. (e interaction with TurtleBot3 with the
terminal with Web interface is shown in Figure 17. (e
response delay for the start and stop of the robot is rep-
resented by equations 5and 6, where Rstart

s,d and R
stop

s,d rep-
resent the single robot delay at start and stop, respectively,
τd,web represents the delay in communication through Web
interface, τd,ROS is used to represent the delay in commu-
nicating with ROS topics, τd,RT represents the delay in ROS
topic identification, and c1 and c2 are constants.

R
start
s,d � τd,web + τd,ROS + τd,RT +

c1

U
s
x + ωs

z􏼈 􏼉
, (5)

R
stop

s,d � τd,web + τd,ROS + τd,RT + c2 U
s
x + ωs

z􏼈 􏼉. (6)

Figure 18 represents the average start and stop response
time for the robot for each instruction. (e average start
response time gradually decreases when the linear and
angular speed increases, while the average stop time in-
creases when the linear and angular speed increases.
According to the analysis, authors have identified that au-
tonomous robot communication is slightly slower than
communication through the Web without autonomous
registration.

4.4. Experiment 04: Homogeneous Multiple Robot Interaction
with Simple Instruction with a Web Interface with Autono-
mous Robot Registration. (e authors have developed the
launch file to create multiple robots in the same Gazebo
environment. Initially, two TurtleBot robots were spawned
in the empty Gazebo world at two different locations. (e
simple move instructions were issued to both robots si-
multaneously and evaluated the average response time for
the start and stop instructions. (e separate namespaces
were used to identify each ROS topic for each robot.(e first
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Figure 14: Single robot interaction without Web interface.

Table 4: Single robot average start/stop response time with Web
interface.

Us
x � 0.5 ms− 1 Us

x � 1.0 ms− 1 Us
x � 1.5 ms− 1

StartResponse(s)

ωs
z � 0.0ms− 1 0.811 0.789 0.766

ωs
z � 0.5ms− 1 0.753 0.732 0.699

ωs
z � 1.0ms− 1 0.611 0.601 0.544

ωs
z � 1.5ms− 1 0.571 0.577 0.501

StopResponse(s)

ωe
z � 0.0ms− 1 1.031 1.402 1.981

ωe
z � 0.5ms− 1 1.001 1.267 1.812

ωe
z � 1.0ms− 1 0.981 1.101 1.602

ωe
z � 1.5ms− 1 0.911 0.999 1.201
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robot was named robot 1, and the second one was named
robot 2.(e interaction with multiple two TurtleBot with the
terminal with Web interface is shown in Figure 19. (e
response delay for the start and stop of the robot is rep-
resented by equations (7) and (8), where Rstart

m,d and R
stop

m,d

represent the multiple robots’ delay at start and stop, re-
spectively, τd,web represents the delay in communication

through Web interface, τd,ROS is used to represent the delay
in communicating with ROS topics, τd,RT represents the
delay in ROS topic identification, and c1, c2, α, and β are
constants.

R
start
m,d � α τd,web + τd,ROS + τd,RT􏽮 􏽯 +

c1
U

s
x + ωs

z􏼈 􏼉
, (7)

R
stop

m,d � β τd,web + τd,ROS + τd,RT􏽮 􏽯 + c2 U
s
x + ωs

z􏼈 􏼉. (8)

Secondly, the authors have spawned another four robots
in the same Gazebo environment for the experiment. Sep-
arate namespaces were given for each robot to avoid conflicts
with the same ROS topic.(e simple move instructions were
issued to both robots simultaneously, and the average re-
sponse time for the start and stop instructions is evaluated.
(e experiment results will be displayed as shown in Table 6.
(e interaction with multiple four TurtleBot with the ter-
minal with Web interface is shown in Figure 20.

Figure 21 represents the average start and stop response
time for the single robot, two robots, and four robots for
each instruction where the linear speed is changed, but the
angular speed is kept constant to avoid the collision among
the robots. (e average start response time gradually in-
creases when the number of robots increases, while the
average stop time increases when the number of robots
increases.

Figure 15: Single robot interaction with Web interface.
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Figure 16: Single robot interaction with Web interface.

Table 5: Single robot average start/stop response time with Web
interface autonomous.

Us
x � 0.5 ms− 1 Us

x � 1.0 ms− 1 Us
x � 1.5 ms− 1

StartResponse(s)

ωs
z � 0.0ms− 1 1.011 1.001 0.981

ωs
z � 0.5ms− 1 1.001 0.987 0.956

ωs
z � 1.0ms− 1 0.987 0.872 0.789

ωs
z � 1.5ms− 1 0.861 0.761 0.712

StopResponse(s)

ωe
z � 0.0ms− 1 1.345 1.765 2.552

ωe
z � 0.5ms− 1 1.241 1.451 2.222

ωe
z � 1.0ms− 1 1.109 1.431 1.988

ωe
z � 1.5ms− 1 1.011 1.344 1.765
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4.5. Experiment 05:Move theRobots to a SpecificLocationwith
a Web Interface with Autonomous Robot Registration. (e
authors have completed the experiment to move the robot
(single robot, two robots, and four robots) to a given target
location by an instruction using the Web interface. (e
robots were placed at different positions to move the same

distance on average.(e following map represents the initial
position and target locations of two and four robots as
shown in Figure 22.

(e authors have conducted the experiments with a
single robot, two robots, and four robots with a single in-
struction to move the robot to a specific location given by
(x, y) coordinates. (e average time taken by robots to a
specific location was measured and presented in Table 7.(e
average move time increases with the number of robots and
distance, as shown in Figure 23. (e delay for moving single
robot and multiple robots is represented by equations (9)
and (10), where Rmove

s,d and Rmove
m,d represent the single and

multiple robots’ delay in moving to specific location, re-
spectively, τd,web represents the delay in communication
through Web interface, τd,ROS is used to represent the delay
in communicating with ROS topics, τd,RT represents the
delay in ROS topic identification, τd,pos is used to represent
delay in getting the current position and orientation of the
robot, and c1, c2, α, and β are constants.

R
move
s,d � τd,web + τd,ROS + τd,RT + τd,pos +

c1

U
s
x + ωs

z􏼈 􏼉
, (9)

R
move
m,d � β τd,web + τd,ROS + τd,RT + τd,pos􏽮 􏽯 + c2 U

s
x + ωs

z􏼈 􏼉.

(10)

4.6. Experiment 06: Robot Interaction with Multiple Instruc-
tions with a Web Interface with Autonomous Robot
Registration. We have completed the experiment with the
multiple instructions issued by the user sequentially with the
state transition diagram.(e sample interaction between the
user instruction through the Web interface and the robot is
shown in Figure 24. (is diagram represents only three user
instructions that the user issues to control the robot. (e
experiment was conducted with three instructions to move
the robot to three different locations. (e target locations
were represented as (x0, y0), (x1, y1), and (x2, y2). (ese
target locations were selected to make sure all robots move at
equal distance on average.

Figure 17: Single robot interaction with Web interface auto-registration.
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Figure 18: Single robot interaction with Web interface auto-
registration.
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(e initial robot positions for two robots and four robots
are represented in the map given in Figure 25. (e robots
were initially placed concerning the target locations where
each robot must move the same distance. (e blue color
circle represents the initial robot position. (e green color
square represents target locations given by user instructions.
(e target locations are identified to ensure all robots travel
equal distances on average.

(e equation that represents the delay occurs because
multiple instructions issued by user were developed using

the mathematical notation. We have used δij as state
transition time from i to j, ∀(i, j) ∈ 1, 2, 3, 4, 5, 6{ }, Sδ as time
taken to save the state in ROS topic, Rδ as time taken to
retrieve the state from ROS topic, and ϵn as transition delay
by n instructions, where n ∈ 1, 2, 3, . . . , l{ }. (e total state
transition delay time ϵsn for single instruction n � 1 is shown
in equation (11). (e total state transition delay time ϵmn for
multiple instructions n � 1, 2, 3, ..l is shown in equation (12).
(e delay for moving single robot and multiple robots to
specific location with multiple instructions sequentially is

Figure 19: Multiple two robots’ interaction with Web interface auto-registration.

Table 6: Multiple robots average start/stop response time with Web interface autonomous.

Us
x � 0.5 ms− 1 Us

x � 1.0 ms− 1 Us
x � 1.5 ms− 1

StartResponse(s)

SingleRobot 1.011 1.001 0.981
TwoRobots 1.129 1.078 1.016
FourRobots 1.456 1.241 1.112
StopResponse(s)

SingleRobot 1.345 1.765 2.552
TwoRobots 1.674 1.987 2.987
FourRobots 1.987 2.134 2.456

Figure 20: Multiple four robots’ interaction with Web interface auto-registration.
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Figure 21: Multi-robot interaction with Web interface.
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Figure 22: Initial position and target locations: (a) two robots and (b) four robots.

Table 7: Average moving time for multiple robots with single instruction.

Average move time (s) Move to (x0, y0) Move to (x0, y0) and (x1, y1) Move to (x0, y0), (x1, y1), and (x2, y2)

SingleRobot 2.01 2.22 3.01
TwoRobots 2.24 3.01 3.34
FourRobots 3.05 3.21 4.01

Journal of Robotics 17



represented by equations (13) and (14), where RmIns
s,d and

RmIns
m,d represent the single and multiple robots’ delay in

moving to specific location, respectively.

ϵsn � δ01 +δ12 +δ2j +δj6 +7Sδ +7Rδ, ∀j ∈ 3,4,5{ }, (11)

ϵmn � δ01 +δ12 + 􏽘
n�l

n�1
δ2j +δj6 +(3+ l) Sδ + Rδ( 􏼁,

if n � l,∀j ∈ 3,4,5{ },

(12)

R
mIns
s,d � ϵsn + τd,web + τd,ROS + τd,RT + τd,pos +

c1

U
s
x +ωs

z􏼈 􏼉
, (13)

R
mIns
m,d � β ϵmn + τd,web + τd,ROS + τd,RT + τd,pos􏽮 􏽯 + c2 U

s
x +ωs

z􏼈 􏼉.

(14)

(e experiment was conducted with multiple instruc-
tions with single, two, and four robots. All robots were given
the target locations in each instruction to travel the same
distance on average to make the completion time for the
comparison.(e average completion time is tabled as shown
in Table 8. (e average completion time and the number of
instruction relationships are shown in Figure 26.

4.7. Experiment 07: HeterogeneousMultiple Robot Interaction
with Semantic Instruction with a Web Interface with Au-
tonomousRobotRegistration. We have evaluated our system
in the Gazebo environment using three robots such as
turtlebot, husky, and TiaGo. (e virtual environment,
available in Python httpserver (Python–mhttp), was exe-
cuted to implement necessary Web pages with JavaScripts
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Figure 23: Average move time for moving a robot to a specific location.
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for the Web interface. We have used the rosbridge server to
work as an interface between ROS and non-ROS clients. (e
user has added the instruction on the Web interface pro-
vided by the system to interact with the multiple robots. (e

instruction types, which were used to test our system, are
shown in Table 9. Type I was a general instruction with no
synonym or semantic issue. (e synonym was added to
instruction type II, where a synonym analysis algorithm

10m

10m

(0, a1)

(0, –a1)
(x1, y1) (x0, y0)

Robot2

Robot1

(x2, y2)

(a)

10m

10m
(x1, y1)

(x0, y0)

Robot2

Robot4 Robot3

Robot1

(–b1, –b2) (b1, –b2)

(–b1, b2) (b1, b2)

(x2, y2)

(b)

Figure 25: (a) Initial positions of two robots: (b) initial positions of four robots.

Table 8: Average completion time for multiple robots with multiple instructions.

Average competition time (s) Single instruction Two instructions (ree instructions
SingleRobot 2.32 2.98 3.56
TwoRobots 2.59 3.24 3.98
FourRobots 3.23 3.57 4.62
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Figure 26: Average completion time with multiple instructions with state transition.

Table 9: Instruction types used for testing.

Instruction
type Description Example

Type I Instruction without synonym or semantic issue Move to A and clean
Type II Instruction with synonym Shift to B and clean
Type III Instruction with semantic issue Move to roof and clean
Type IV Instruction with synonym and semantic issue Shift to sky and clean

Type V Instruction with synonym and semantic issue (not programmed where user involvement is
needed)

Proceed to sea and
clean

Journal of Robotics 19



processed it. (e semantic of the instruction is not clear in
instruction type III. Instruction type IV has both synonym
and semantic issues. (e synonym and semantic were not
programmed for the instruction type V, where the user has
to handle the synonym and semantic issues. (e system was
tested with many instructions, type I to type V.

(e identification of the synonym and the semantic
issues were performed by our algorithms accurately. Fur-
thermore, we have completed the time complexity analysis
of our algorithm to measure the system’s performance using
the Big O notation. (e time complexities of all algorithms
are shown in Table 10. Time complexity is calculated using
the number of loops used by each algorithm, where n is the
input size. (e graph of the time complexity for all algo-
rithms is shown in Figure 27. According to the time
complexity analysis, we can identify that the robot regis-
tration algorithm and ROS topic identification algorithm
have poor performance because time complexity is O(n4).

Time complexity analysis with Big O notation for each
type of instruction is shown in Table 11. Command inter-
preter has used the Synonym Analysis Algorithm(), and
Semantic Analysis algorithm(), where Synonym Analysis
Algorithm() has taken O(n2), and Semantic Analysis algo-
rithm() has taken O(n3) running time based on the asymp-
totic notation in algorithm analysis. (erefore, instruction
type II is poor comparedwith instruction type III. Instruction
typeV is worse because user interaction is needed to solve the
synonymand semantic issue in the instruction since synonym
and semantics are not programmed.

In addition to the above discussed time complexity
analysis for instruction types I to V, we have conducted two
types of experiments with the Gazebo environment with
Turtlebot, Husky, and TiaGo robots. In the first experiment
type, we have moved all heterogeneous robots to a given goal
in the open world in the Gazebo, and the second type of
experiment is to navigate all heterogeneous robots to a given

Table 10: Time complexity of algorithms.

Algorithm name Time complexity in Big O notation
Robot Registration Algorithm() O(n4)

Synonym Analysis Algorithm() O(n2)

Semantic Analysis Algorithm() O(n3)

Get Position and Orientation Algorithm() O(n)

ROS Topic Identification Algorithm() O(n4)
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Figure 27: Graph of the time complexity of all algorithms.

Table 11: Instruction types with time complexity.

Types Algorithms used in command interpreter Time
complexity

Algorithms used in robot registration
and command publishing engine

Time
complexity

Type I Analysis algorithm is not needed O(1) RR Algorithm()+ ROS TI Algorithm() O(n4)

Type
II Synonym Analysis Algorithm() O(n2) RR Algorithm()+ ROS TI Algorithm() O(n4)

Type
III Semantic Analysis Algorithm() O(n3) RR Algorithm()+ ROS TI Algorithm() O(n4)

Type
IV

Synonym Analysis Algorithm()+ Semantic Analysis
Algorithm() O(n3) RR Algorithm()+ ROS TI Algorithm() O(n4)

Type
V

Synonym Analysis Algorithm() + Synonym Analysis
Algorithm()+human intervention is needed O(n3) RR Algorithm()+ ROS TI Algorithm() O(n4)
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goal with obstacles in the Gazebo. All three robots (turtlebot,
husky, and Tiago) in an open world in the Gazebo are shown
in Figure 28. Experiments were conducted using the system
above multiple robots with movement and navigation using
20 type IV instructions. Users can update the goal and task
assigned for each robot for the different schedules in Ta-
ble 12. We have added the self-rotation for each robot to
simulate the task completed by robots based on the
scheduled task. We found some errors in robot registration
algorithm and ROS Topic Identification Algorithm() for
movements and navigation. (ere were more ROS topic
settings than the robot’s movement in an open world in
navigation.

(e results of the experiment are represented in the table
for three robots Turtlebot, Husky, and TiaGo, where we have
tested 20 times for each goal at 4 different time slots as 8.00-
10.00 am, 10.00-12.00 noon, 12.00-2.00pm, and 2.00-
4.00pm. We received different ontology searching errors,
robot registration errors, ROS topic identification errors,
and command publishing errors in each time slot.(erefore,
we gradually minimized the error with the experienced we
had in each experiment with the timing. (e success rate is
measured with 20 tests. It defines the number of successful
tests without errors out of 20 tests for each robot in each type
of experiment.

(e results of experiment type 01 (without navigation)
are shown in Table 13. According to the analysis, we have

identified that the turtlebot has a higher success rate com-
pared with other robots, as shown in Figure 29.

(e results of the experiment type 02 (with navigation)
are shown in Table 14. (e success rate is also increasing as
similar to experiment 01 as shown in Figure 30.

(e running time of the robot registration algorithm and
ROS topic identification algorithm is O(n4), where n is the
number of actions defined in the user instruction. (ese two
algorithms had the highest time complexity compared with
other algorithms developed in our system.

In general, delay in response time for the start has de-
creased when the linear and angular speed is increased.
However, delay in response time for the stop has increased
when the linear and angular speed is increased. Delay has
occurred when the robot is controlled without the Web
interface because of the delay with system call execution
through operating system and delay with communication
with ROS functions. When a robot is controlled through the
Web without auto-registration, the delay has occurred in
communication through the Web and communication with
ROS through the ROS bridge server. When the auto-reg-
istration was added to the system, then we need to add the
delay taken by the algorithm for the ROS topic identification.
It is obvious that the delay time increases with the number of
robots increased. When the robot is sent to a specific lo-
cation, then we need to add time taken to get the current
position and orientation for the delay time. When a robot is

Table 12: Goal and task scheduling table.

Robot name Time slot 1 Time slot 2 Time slot 3 Time slot 4
t0 − t1 t1 − t2 t2 − t3 t3 − t4

Turtlebot A(2, 2) + rotate(5) FreeTime B(−2, 2) + rotate(5) C(2, −2) + rotate(5)

Husky D(5, 5) + rotate(10) E(5, −5) + rotate(10) FreeTime F(0, 5) + rotate(10)

TiaGo FreeTime G(1, −1) + rotate(15) H(0, 1) + rotate(15) I(−1, 1) + rotate(15)

Table 13: Experiment results for goal without navigation.

Robot Goal without navigation

Experiment Goal 01 success rate 08.00-
10.00

Goal 02 success rate 10.00-
12.00

Goal 03 success rate 12.00-
02.00

Goal 04 success rate 02.00-
04.00

Turtlebot 0.65 0.85 0.90 0.95
Husky 0.50 0.65 0.70 0.80
TiaGo 0.45 0.55 0.65 0.85

Figure 28: Husky, Turtlebot, and TiaGo robots in empty world.
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controlled by the multiple instructions, then we had to use a
state transition system. (erefore, we need to add the time
taken by the state transition system to save and retrieve the
state to the delay time to get the more accurate results.
According to the analysis, the authors have identified that
Web communication is slightly faster than communication
through the terminal.

5. Conclusion and Future Works

(is research study has developed a system to issue in-
struction through the Web interface and controls multiple
robots. Initially, all multiple robots need to register with
robot registration engine. (e autonomous robot registra-
tion and autonomous ROS topic identification algorithms
were implemented successfully. (e delay time is increased
with the introduction of these algorithms. We have derived
the mathematical equations for each delay time, which varies
based on the inputs and system characteristics. (e exper-
iment result indicated that the autonomous robot

registration was successful, and the communication per-
formance through the Web decreased gradually with the
number of robots registered. (e running time of the robot
registration algorithm and ROS topic identification algo-
rithm is O(n4). We have not implemented the access control
of the multiple robots in the same environment. We will be
implementing access controlling and synchronization with
all robots in our future work.
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