Synthesis and Characterization of Novel Nanomaterials for Removal of Textile Dyes in Industrial Wastewater

Leshan Usgodaarachchi MP20700324 MPhil in Materials Engineering

Department of Materials Engineering Sri Lanka Institute of Information Technology

February 2022

Declaration

I hereby declare that to the best of my knowledge this submission is my own work and it neither contains direct material previously published nor written by another person or material which to substantial extent has been accepted for the award of any other academic qualification of a university or other institute of higher learning except where acknowledgement is made in the text.

Certified by	1012
Signature	:
Date	. 5/2/2022

Date

Signature	:
Date	:

Name of Supervisor II : Dr. Mudith Karunaratne

Signature	:
Date	:

Name of Supervisor I	II : Prof. Saravanamuthu Vigneswaran
Signature	:
Date	:

ACKNOWLEDGEMENT

Foremost, I would like to express my deepest gratitude to my supervisor, Dr. Charitha Thambiliyagodage and my co-supervisors Prof. Saravanamuthu Vigneswaran and Dr. Mudith Karunaratne for proper guidance, encouragement, motivation, and continuous support for the successful completion of the research and the thesis. All of the work succeeded because of their kindness and excellent supervision.

The opportunity provided to me by Dr. Charitha Thambiliyagodage for working as Research assistant on his Accelerating Higher Education Expansion and Development (AHEAD) project driven me into gain my special curiosity in wide range of topics in materials science and engineering. Specially, the condensed matter, catalysts, solid-state materials, supercapacitors, graphene-based materials, metal-organic frameworks (MOF), zero-valent metal composites, heterogeneous topology and morphology-controlled material designing, synthesis of nanomaterials, electronic, optical, and magnetic materials (EOM) materials and high energy materials. Also, the freedom and free mind set given to myself by Dr. Charitha Thambiliyagodage resulted to expand the scope of this research work. Furthermore, I would like to express my sincere gratitude to Prof. Saravanamuthu Vigneswaran for effort in review & editing our articles prior submissions to journals. I am most privileged to convey my gratitude to my colleges for the immense support throughout various aspects of the research work. I would like to thank the World Bank Project for funding my research project and Sri Lanka Institute of Nanotechnology (SLINTEC), Industrial Technology Institute (ITI), University of Moratuwa and University of Peradeniya for providing instrumental facilities in materials characterization.

ABSTRACT

Inefficient treatments and uncontrolled pollutants generation to the environment has been significantly affected the living standards in the ecosphere. The advancement in nanotechnology resulted in the effective treatment of all of the pollutants generated in the environment. In the field of textile dye removal, the special features of nanomaterials are gaining attention due to their enhanced physical, chemical and mechanical properties. Rice husk is an agricultural waste material that is used for the production of adsorbents in this study. Mesoporous silica nanoparticles were successfully synthesized by using rice husk as the raw material via a sol-gel pathway using cetyltrimethylammonium bromide (CTAB) as the structure-directing agent. The functionalization of silica nanoparticles was taken place in two pathways, such as in-situ and post functionalization methods by using 3-aminopropyltriethoxysilane (APTES) as the functionalization agent. Mesoporous silica nanoparticles were able to effectively adsorb methylene blue dye from aqueous solutions. The adsorption of MB could be best described by the pseudosecond-order model and well fitted to the Langmuir equation, with a maximum monolayer capacity of 19.26 mg/g. Photocatalytic decomposition of the organic pollutants gains emerging attention after the discovery of water splitting ability by TiO₂. The high purity (98.8%, TiO₂) rutile nanoparticles were successfully synthesized using ilmenite sand as the initial titanium source. This novel synthesis method was cost-effective and straightforward due to the absence of the traditional gravity, magnetic, electro statistic separation, ball milling and smelting processes. Also, highly corrosive environmentally hazardous acid leachate generated during the leaching process of ilmenite sand was effectively converted into highly efficient photocatalysts. The most efficient photocatalysts were composed of anatase-TiO₂/rutile-TiO₂/Fe₂O₃, α-Fe₂O₃/Fe₂TiO₅/TiO₂ and Fe₂TiO₅/TiO₂. The synthesized nanocomposites were characterized by microscopic (SEM and TEM) and spectroscopic (XRD, Raman, XPS, FT-IR and DRS) analytical techniques. These nano heterostructures were catalytically active for the photodegradation of methylene blue upon irradiation by a light source (LED or sunlight). Efficient charge separation and limiting electron-hole recombination in photocatalyst surfaces resulted in the overall performance of synthesized material. Reduced

graphene oxide (r-GO) has lately attracted a lot of attention to overcome limitations associated with photocatalysts. The honeycomb sp² network structure of r-GO improves charge separation and transportation through the surface of the catalyst. The fabricated GO/Fe₃O₄ heterogeneous photocatalyst shows very efficient degradation performance by overcoming the limitations associated with the narrow bandgap of Fe₃O₄ (0.1 eV). Finally, the synthesis of graphene like materials by catalytic graphitization of sucrose by using Fe and Ti transition metals studied in this study. Herein, we reported that Fe and Ti metal oxides promoted to the graphitization process at low temperature. Sucrose mixed with only uncalcined Fe₂O₃ produced Fe₃C, Fe, Fe₃O₄ dispersed on graphitic carbon, while sucrose mixed with only Fe₂TiO₅/TiO₂ product, and mixed with uncalcined Fe₂O₃ and Fe₂TiO₅/TiO₂ led to the production of TiO₂, Fe₃C, Fe, Fe₃O₄ dispersed on graphitic carbon. The most outstanding photocatalyst synthesized material composed with TiO₂/Fe₃C/Fe/Fe₃O₄-Graphitic carbon which is sun light sensing photocatalyst.

Keywords: Heterostructures, Rice husk, Reduced graphene oxide, Photocatalysis, Catalytic graphitization, Ilmenite sand

Table of Contents

ACKNOWLEDGEMENT	ii
ABSTRACT	iii
Table of Contents	v
List of Tables	viii
List of Figures	ix
Abbreviations	xiii
CHAPTER 1: INTRODUCTION	1
1.1 Problem Statement	2
1.2 Research gap	3
CHAPTER 2: LITERATURE REVIEW	10
2.1 Chemistry of dyes	11
2.2 Classification of dyes	11
2.2.1 Direct dyes	12
2.2.2 Reactive dye	13
2.2.3 Vat dyes	13 14
2.2.5 Azo Dyes	14
2.3 Wastewater Treatment	16
2.3.1 Physicochemical techniques	17
2.3.2 Chemical oxidation techniques	19
2.4 Adsorption of Dyes on Silica nanomaterials	24
2.5 Synthesis of Titanium dioxide from natural Ilmenite sand	27
2.5.1 Sulphate Process	28
2.5.2 Chloride Process	29
2.6 Titanium Dioxide	30
2.7 TiO_2 based photocatalysts and enhancement of the photocatalytic activi	ty of
TiO_2	33
2.7.1 Fundamentals of photocatalysis	33
2.7.2 Non-metal modified TiO ₂	
2.7.4 Semiconductors coupling TiO ₂ and heterojunction construction	
2.7.5 Graphene-based photocatalysts	39
CHAPTER 3: METHODOLOGY	41
3.1 Synthesis of mesoporous silica nanoparticles derived from rice husk and	d
surface-controlled amine functionalization for efficient adsorption of methy	lene
blue from aqueous solution	41
3.1.1 Materials	41

3.1.2 Washing and acid treatment	41
3.1.3 Thermal treatment	42
3.1.4 Preparation of the silica precursor	42
3.1.5 Preparation of mesoporous silica nanoparticles by sol-gel pathway (MSN-A)	42
3.1.6 Amine functionalization of silica nanoparticles	43
3.1.7 Characterization of materials	43
3.2 Fabrication of TiO_2 and visible light sensitive titanium-iron based	
photocatalysts from natural ilmenite	44
3.2.1 Materials	44
3.2.2 Hydrochloric acid leaching and facile separation	44
3.2.3 Preparation of Nanomaterials	45
2.3.4 Materials Characterization	47
3.3 Efficient photodegradation activity of α -Fe ₂ O ₃ /Fe ₂ TiO ₅ /TiO ₂ and Fe ₂ TiO ₅ /TiO ₂ nanocomposites synthesized from natural ilmenite	48
3.3.1. Materials and methods	48
3.3.2 Synthesis of Fe ₂ TiO ₅ /TiO ₂	48
3.3.3 Synthesis of α -Fe ₂ O ₃ /Fe ₂ TiO ₅ /TiO ₂	
3.3.4 Synthesis of α -Fe ₂ O ₃	
3.3.5 Characterization methods	49
3.3.6 Photocatalytic activity	50
	1
3.4 Photocatalytic activity of GO/Fe ₃ O ₄ fabricated by Sri Lankan graphite u	nder
2 4 1 Motorials	
3.4.2 Synthesis of Graphana Oxida (GO)	
3.4.2 Synthesis of Fe ₂ O ₄ nanonarticles	50
3.4.5 Synthesis of GO/Fe ₂ O ₄	51
3 3 5 Photocatalytic activity evaluation	51 51
3.5 Efficient photocatalysis of $TiO_2/Fe_3C/Fe/Fe_3O_4$ – Graphitic carbon	
composites fabricated by catalytic graphitization of sucrose using natural	50
ilmenite under visible light	52
3.5.1 Materials	52
3.5.2 Preparation of Nanomaterials	52
3.5.5 Antibacterial activity	
5.5.4 Characterization	55
	1
4.1 Synthesis of mesoporous sinca nanoparticles derived from rice nusk and surface-controlled amine functionalization for efficient adsorption of methy	lene
blue from aqueous solution	56
4.1.1 SEM Analysis	58
4.1.2 FTIR Analysis	59
4.1.3 TGA Analysis	60
4.1.4 BET Analysis	61
4.1.5 Adsorption Kinetics	63
4.1.6 Adsorbent material optimization	63
4.1./ pH parameter optimization	64

4.1.8 Adsorbent dosage parameter optimization	65
4.1.9 Adsorption kinetics modelling	66
4.1.10 Adsorption Isotherms	71
4.2 Exprication of TiO ₂ and visible light sensitive titanium-iron based	
hotocatalysts from natural ilmenite	77
4.2 1 Precipitation of the rutile nanonarticles and photocatalyst composites	,
4.2.2 XRD and XRF Analysis	80
4.2.2 RRD and RRT Analysis	
4.2.5 Kaman analysis	85
4.2.4 SELVI morphological analysis	05
4.2.6 Ontical adsorption properties	00
4.2.0 Optical adsorption properties	00
	00
4.3 Efficient photodegradation activity of α -Fe ₂ O ₃ /Fe ₂ TiO ₅ /TiO ₂ and	
Fe ₂ TiO ₅ /TiO ₂ nanocomposites synthesized from natural ilmenite	95
4.3.1 XRD and XRF Analysis	95
4.3.2 Raman analysis	98
4.3.3 Morphological analysis	100
4.3.4 XPS Analysis	102
4.3.5 DRS analysis	104
4.3.6 Photocatalytic activity	104
4.4 Photocatalytic activity of GO/Fe ₃ O ₄ fabricated by Sri Lankan graphite ur	nder
visible light irradiation	108
4.4.1 SEM analysis	108
4.4.2 XRD analysis	109
4.4.3 FT-IR spectroscopic analysis	110
4.4.4 Magnetic behavior	.111
4.4.5 Photocatalytic activity	112
4.5 Efficient photosotalysis of TiO /E $C/E_{0}/E_{0}$. Craphitic carbon	
4.5 Efficient photocatalysis of 1102/143C/14/14304 – Oraphilic carbon	
ilmonite under visible light	11/
4.5.1 XRD Analysis	114
4.5.1 AND Analysis	119
4.5.2 TEM analysis	120
4.5.5 Resonant Raman Spectroscopy	120
4.5.5 XPS Analysis	122
4.5.5 XR 5 Analysis	120
4 5 7 DRS analysis	128
4 5 8 Photocatalysis performance	131
4 5 9 Antibacterial activity	136
	100
CONCLUSION	138
REFERENCES	142

List of Tables

Table 1. 1. Comparative analysis of the existing water treatment methods
Table 1. 2 . Methods for reducing contamination by improving characteristics of
RHA
Table 4. 1. Textural parameters of MSN-A and functionalized silica materials
Table 4. 2. Adsorption kinetic parameters of methylene blue onto MSN
Table 4. 3. Parameters calculated by Langmuir Freundlich and Temkin adsorption
isotherm models
Table 4. 4. Chemical composition of the ilmenite sand as metallic oxides80
Table 4. 5. Structural properties of the composite analyzed by XRD crystalline
planes
Table 4. 6. Textural characteristics of TiO2 samples as prepared
Table 4. 7. Dark adsorption of methylene blue onto nanocomposites: kinetic factors
Table 4. 8. Linear and polynomial kinetic parameters for visible light
photocatalysis92
Table 4. 9. Organic dye degradation rates using photocatalysts based on ilmenite
sand94
Table 4. 10. XRD analysis of the composites' structural properties
Table 4. 11. XRF analysis of ilmenite sand and FFT-800
Table 4. 12. Initial rate constants of the photodegradation of MB by the composites
Table 4. 13. Metallic composition of the synthesized materials as metallic oxides
Table 4. 14. Percentage adsorption removal of MB, adsorption capacity and the
rate constant of MB degradation by the synthesized materials131
Table 4. 15. A comparison of the obtained adsorption capacities with the same
reported in the literature
Table 4. 16. Antibacterial Assay 137

List of Figures

Figure 2. 1. Systematic illustration of Direct Fast Brown M and Brilliant Yellow
Figure 2. 2. Systematic illustration of Reactive blue 4 and Reactive blue 1913
Figure 2. 3. Systematic illustration of Vat violet 10 and Vat blue 414
Figure 2. 4. Systematic illustration of Disperse Violet 28 and disperse yellow 9 15
Figure 2. 5. Systematic illustration of Pigment yellow 3 and Pigment red 122 16
Figure 2. 6. Crystalline structure of Anatase (left) Rutile (middle) and Brookite
(right)
Figure 2. 7. (a) Anatase [TiO ₆] and (b) Anatase unit cell
Figure 2. 8. (a) Ball and stick models of the basic rutile $[TiO_6]$ octahedron and (b)
tetragonal unit cell of rutile
Figure 2. 9. The method of photocatalytic water splitting for H ₂ production 34
Figure 2. 10. (a) Charge transfer diagram for metal/TiO ₂ under UV light irradiation
due to the Schottky junction; (b) Charge transfer diagram for metal/TiO2 under
visible light irradiation due to surface plasmon resonance (SPR) effects
Figure 2. 11. The effects of N and S dopants on TiO ₂ improved visible light
photocatalytic activity
Figure 2. 12. Photoactivation and charge carriers transferring according to the Type
I and Type II band alignments
Figure 2. 13. (a) The SP ² hybridization between carbon atoms and (b) honeycomb
structural arrangement of graphene
Figure 3. 1. Refluxing of Rice husk in 10% hydrochlori acid
Figure 3. 2. (a) Acid leached rice husk inside the muffle furnace prior combustion
and (b) Acid leached rice husk ash
Figure 3. 3. (a) Sol-gel synthesized silica nanoparticles and (b) Facile separation
of synthesized MSN
Figure 3. 4.(a) Conc hydrochloric acid refluxing process of ilmenite sand (b) Facile
separated ilmenite sand acid leachate and (c) separated iron chloride titanium
residue and un-leached ilmenite sand45
Figure 3. 5. (a) Graphene oxide suspension and (b) Graphene oxide films 51

Figure 4. 1. XRD patterns of RHA and Acid leached RHA
Figure 4. 2. (a) RHA and (b) acid leached RHA57
Figure 4. 3. The mechanism of formation of mesoporous silica spheres
Figure 4. 4. SEM images of the (a) MSN-A (b) MSN-B (c) MSN-C and (d) MSN-
D59
Figure 4. 5. (a) FTIR spectra of MSN-A and amine-modified silica particles (b)
FTIR spectra of MSN-A and amine-modified silica particles responsible for amine
vibration bands
Figure 4. 6. TGA curves for MSN-A and amine-modified silica nanoparticles 61
Figure 4. 7. (a) Nitrogen adsorption-desorption isotherms of MSN-A and amine-
modified silica nanoparticles. (b) Pore size distribution of MSN-A and amine-
modified silica nanoparticles
Figure 4. 8. Performance of MSN-A MSN-B MSN-C and MSN-D adsorbents on
adsorption of MB
Figure 4. 9. Effect of pH on adsorption of MB on MSN-A MSN-B MSN-C and
MSN-D adsorbents
Figure 4. 10. (a) The percentage removal of MB on different weight of MSN-A
loading and (b) Effect of MSN-A dosage on MB adsorption capacity66
Figure 4. 11. Pseudo first order kinetics model for adsorption of MB on to MSN
Figure 4. 12. Pseudo second order kinetics model for adsorption of MB on to MSN
Figure 4. 13. Langmuir adsorption isotherm model of MB on to MSN-A73
Figure 4. 14. Freundlich adsorption isotherm model of MB on to MSN-A74
Figure 4. 15. Temkin adsorption isotherm model of MB on to MSN-A76
Figure 4. 16. (a) Facilely separated unreacted ilmenite leached titanium residue and
leached iron chloride with other metallic chlorides and (b) NaxTiOy(OH)j titanium
solution (Titanium-sol)77
Figure 4. 17. XRD pattern of (a) natural ilmenite (b) dried titanium residue (c)
amorphous titanium dried at 100 $^\circ C$ (d) TiO2-A (e) TiO2-B (f) uncalcined TFTO
(TiO_2/Fe_2O_3) composite (g) TFTO-800 composite (h) TF composite (i) TF-450
composite and (j) TF-800 composite

Figure 4. 18. Raman pattern of (a) TFTO-800 (b) TF-450 (c) TF-800 and (d) TiO_{2} -
A85
Figure 4. 19. SEM images of (a) Ilmenite sand (b) TiO ₂ -A (c) TiO ₂ -B (d)
uncalcined TF composite (e) TF-450 composite and (f) TF-800 composite 86
Figure 4. 20. (a) Nitrogen adsorption-desorption isotherms of TiO ₂ -A and TiO ₂ -B
(b) pore size distribution of TiO ₂ -A and TiO ₂ -B87
Figure 4. 21. (a) Kubelka-Munk function vs wavelength plot for TiO ₂ -A Tauc Plot
for determination of (b) direct band gap $(n = 1/2)$
Figure 4. 22. (a) MB degradation rate at various time intervals (b) TFTO-800 TF-
450 and TF-800 pseudo first order models Dark 60 min adsorption of MB onto
produced nanocomposite (c) pseudo second order model of TF-450 and (d) pseudo
second order model of TFTO-800 and TF-80090
Figure 4. 23. Decolorization of MB by photocatalytic decolorization
Figure 4. 24. First order kinetic photodegradation of MB under LED Light for (a)
TFTO-800 (b) TF-450 and (c) TF-800 nanocomposites92
Figure 4. 25. XRD patterns of (a) F00-600 (b) FF0-600 (c) FFT-600 (d) F00-800
(e) FT0-800 (f) FFT-800 and (g) TiO ₂ -80097
Figure 4. 26. Raman spectra of (a) F00-600 (b) FF0-600 (c) FFT-600 (d) F00-800
(e) FT0-800 (f) FFT-800 and (g) TiO ₂ -80099
Figure 4. 27. (a) Bright field TEM image (b) (c) HRTEM images of FFT-600 (d)
(e) HRTEM image of FFT-800 EDX spectra of FFT-600 (f) composite (g) C (h) O
I Ti (j) Fe EDX spectra of FFT-800 (k) composite (l) C (m) O (n) Ti and (o) Fe
EDX spectra of FFT-600101
Figure 4. 28. SEM images of (a) FFT-600 (b) FFT-800102
Figure 4. 29. High resolution XPS spectra of (a) Ti 2p of FFT-600 (b) Ti 2p of
FFT-800 (c) Fe 2p of FFT-600 (d) Fe 2p of FFT-800 (e) C 1s and (f) O 1s of FFT-
800 Survey spectra of (g) FFT-600 (h) FFT-800103
Figure 4. 30. DRS spectra of (a) TiO2 (b) F00-800 (c) FT0-800 (d) FFT-800 . 104
Figure 4. 31. Photocatalytic efficiency of different catalysts towards degradation
of MB on exposure to (a) LED source (b) Sunlight106
Figure 4. 32. SEM images of (a) (b) GO (c) GO/Fe ₃ O ₄ and (d) GO/Fe ₃ O ₄ obtained
by secondary electron detector and backscatter electron detector respectively 109

Figure 4. 33. XRD patterns of (a) natural graphite powder (b) GO (c) Fe ₃ O ₄ and
(d) GO/Fe ₃ O ₄
Figure 4. 34. FT-IR spectra of GO Fe ₃ O ₄ and GO/Fe ₃ O ₄
Figure 4. 35. (a) GO/Fe_3O_4 with degraded MB after the reaction (b) magnetic
GO/Fe ₃ O ₄ attached to an external magnet112
Figure 4. 36. (a) Rate plot (b) variation of C/C_0 with time (c) conversion of MB at
each cycle showing the reusability of the GO/Fe ₃ O ₄ 113
Figure 4. 37. XRD patterns of (a) precursor compounds (b) SF composites (c) SI
composites (d) SFI composites117
Figure 4. 38. Bright field TEM images of (a) SF 10 (b) SI 10 (c) SFI 20, HRTEM
images of (d) SI 10 (e) and (f) SF 2.5 (g) SI 10 (h), (i) and (j) SFI 20, Selected area
diffraction patterns of (k) SF 2.5 (l) SI 10 (m) SFI 20119
Figure 4. 39. SEM images of (a), (b) SF 10 (c), (d) SF 1 (e), (f) SI 10 (g), (h) SI 1
(i), (j) SFI 20 (k), (l) SFI 2, EDX spectra of (m) SF 10 (n) SF 1 (o) SI 10 (p) SI 1
(q) SFI 20 (r) SFI 2121
Figure 4. 40. (a) Peak deconvolution of SF 10, variation of I_D/I_G of (b) SF (c) SI
and (d) SFI composites, variation of L_a of (e) SF (f) SI and (g) SFI composites,
variation of L_D of (h) SF (i) SI and (j) SFI composites, $1/L_D^2$ vs. La^2 of (k) SF (l) SI
and (m) SFI
Figure 4. 41. High resolution spectra of C 1s of (a) amorphous carbon (b) α -Fe ₂ O ₃
(c) FTO, high resolution spectra of O 1s of (d) amorphous carbon (e) α -Fe ₂ O ₃ (f)
FTO, high resolution spectra of Fe 2p of (g) FTO (h) α -Fe ₂ O ₃ (i) SF 10 (j) SF 1 (k)
SI 10 (l) SI 1 (m) SFI 20 (n) SFI 2, high resolution spectra of Ti 2p of (o) FTO (p)
SI 10 (q) SI 10 (r) SFI 20 and (s) SFI 2
Figure 4. 42. (a) Diffuse reflectance UV-Visible spectra (b) direct transition (c)
indirect transition of the synthesized composites130
Figure 4. 43. First order kinetics plots of (a) SF (b) SI (c) SFI composites 136

Abbreviations

MSN	Mesoporous silica nanoparticles
СТАВ	Cetyltrimethylammonium bromide
APTES	3-Aminopropyltriethoxysilane
RH	Rice husk
RHA	Rice husk ash
MSN-A	Mesoporous silica nanoparticles by sol-gel pathway
MSN-B	Amine modified MSN via co-synthesis method by pre addition of APTES
MSN-C	Amine modified MSN via co-synthesis method by post addition of APTES
MSN-D	Amine modified MSN via post grafting method
TiO ₂ -A	800 °C annealed amorphous TiO ₂
TiO ₂ -B	800 °C annealed CTAB assigned amorphous TiO ₂
TFTO	Uncalcined TiO ₂ /Fe ₂ TiO ₅
TFTO-800	800 °C annealed TFTO powder TFTO
TF	Uncalcined TiO ₂ /Fe ₃ O ₄
TF-450	450 °C annealed TF powder
TF-800	800 °C annealed TF powder
FFO-600	600 °C annealed Fe ₂ TiO ₅ /TiO ₂
FOO-600	600 °C annealed α -Fe ₂ O ₃
FOO-800	800 °C annealed α -Fe ₂ O ₃
SF	Carbon and Iron composite

SI	Carbon and Ilmenite composite
SIF	Carbon, Ilmenite and Iron composite
LED	Light eliminative diode
r-GO	Reduced graphene oxide
GO	Graphene Oxide
SPR	Surface plasmon resonance
LSR	Localized surface plasmon resonance
DET	Direct electron transfer
FE-SEM	Field Emission Scanning Electron Microscope
FTIR	Fourier Transformation Infrared Spectroscopy
TGA	Thermogravimetric analysis
XRD	X-ray diffraction
XRF	X-ray fluorescence analyzer
XPS	X-ray photoelectron spectroscopy
TEM	Transmission electron microscopy
EDS	Energy dispersive spectra
DI	Deionized water
AHEAD	Accelerating Higher Education Expansion and Development
MOF	Metal-organic frameworks
EOM	Electronic, optical, and magnetic materials
SLINTEC	Sri Lanka Institute of Nanotechnology
ITI	Industrial Technology Institute