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functionality of the developed methodology for accurate 
queue estimations, asserting the practical applicability of 
VAR models in other locations constituting mixed traffic.
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Introduction

The investigation and evaluation of traffic behaviour help to 
demonstrate various perspectives of traffic predictions. Vehi-
cle queue predictions are widely used in traffic management 
to predict future trends in the queue. The existing queue 
prediction approaches mainly scope within homogeneous 
traffic conditions, where car following and lane discipline 
are imminent. Thus, the use of such models in heterogeneous 
conditions reduces the accuracy of the results. The hetero-
geneous traffic flow is defined as a traffic stream containing 
various vehicles, either motorized or non-motorized [1]. 
Therefore, heterogeneous traffic belongs to different vehi-
cle classes in terms of static characteristics such as shape 
and dimensions along with dynamic characteristics such 
as speed and acceleration. As mentioned by Verma et al. 
[2], heterogeneous traffic is dominated by different traffic 
behaviour and queuing behaviour. The sharing of the right-
of-way (ROW) for the different vehicle classes, causing a 
difference in lateral and longitudinal directions, results in a 
weak lane discipline scenario. Therefore, weak lane disci-
pline scenarios do not follow the First-In-First-Out (FIFO) 
or Last-In-First-Out (LIFO) queue disciplines. The car fol-
lowing models and other models based on lane discipline, 
cannot be rendered with such traffic behaviours.

The gap-filling behaviour is incurred mainly by smaller 
vehicles such as two-wheelers and three-wheelers, as they 

Abstract Traffic congestions are increased globally due to 
rapid urbanization and expedited economic developments 
in many countries. Vehicle queue is a governing aspect of 
traffic congestion, studied over the past decades. Most of 
the existing queue estimation approaches are limited to 
homogeneous traffic conditions. However, the traffic condi-
tions in many developing countries are heterogeneous and 
are heavily influenced by mixed vehicle composition, lane 
changing, and gap-filling behaviours. This study aims to 
estimate the queue length at signalized intersections hav-
ing heterogeneous traffic conditions. The heterogeneity was 
assimilated with the consideration of Passenger Car Units 
(PCU) in the measurements of the traffic flow and the lane-
changing movement within the considered road section. The 
influential factors of the queue length were contemplated 
with the arrival flow, discharge flow, outbound lane change, 
inbound lane change, and signal configuration. A Vector 
Auto Regression (VAR) model was developed to estimate 
queue length, with a lag time of 15 s for each variable. The 
results have indicated a higher accuracy in the queue esti-
mation as well as the practical application for prediction, 
constituting the traffic characteristics of the formed vehicle 
queue. The R squared of the VAR model was 0.97, along 
with a Mean Absolute Percentage Error (MAPE) of 21.55%. 
The model estimation results of right turning lanes were 
well accurate with MAPE ranging from 15 to 17%, whilst 
for through movement lanes, accuracy was slightly low with 
MAPE in the range of 23–26%. The study manifests the 
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percolate through the gaps between their larger neighbours 
(buses, trucks, etc.). As shown by Wickramasinghe et al. [3], 
smaller vehicles tend to approach the stop line faster and 
are served earlier than heavy vehicles. The smaller vehicles 
lead to the placement of vehicles at any given point, which 
largely ignores lane separation. In addition, the smaller vehi-
cles may even create virtual lanes as they move forward and 
provide additional gaps to their own vehicles. Therefore, 
heterogeneous traffic conditions are very much different 
from homogeneous conditions, due to sudden lane-changing 
behaviours, weak lane discipline, and gap-filling behaviours. 
Consequently, FIFO queuing systems are inapplicable, and a 
novel approach with a queueing behaviour called Probably-
First-In-Probably-First-Out (PFIPFO) should be incorpo-
rated. This was defined by Verma et al. [2], as a queuing 
behaviour in which a vehicle that has arrived before or after 
another given vehicle, may with some probability leave ear-
lier than it.

The queue estimation methods have been mainly devel-
oped for signalized intersections. Seiran [4] classified the 
queue length estimation approaches as analytical queue 
estimation techniques and data-driven queue estimation 
techniques. The analytical techniques are the input–output 
technique and the shockwave-based approach. Whilst data-
driven techniques were probabilistic probe vehicle-based 
positioning methods, Kalman-Filtering, Markovian Chains-
Based models, direct video-based queue estimation methods, 
and neural network methods for queue prediction. According 
to Anusha et al. [5], the input–output method is fundamen-
tally similar to the vehicles’ conservation equation. Such 
that, the authors calculated the queue length of signalized 
intersections from the difference between the arrival vehicle 
number and the discharge vehicle number. The input–output 
methods have been used for more than seven decades as 
Newell [6] utilized it in the study for the queue approxima-
tion in a fixed cycle traffic light. In addition, Stephanopou-
los & Michalopoulos [7], Sharma et al. [8] and Sieran [4] 
utilized a similar methodology of vehicle conservation by 
integrating the input–output method.

Comert [9] developed a stochastic model to estimate the 
cycle-to-cycle queue length from probe vehicle data and the 
results were within a ± 5% error. However, the study did not 
predict future queue lengths. Hao et al. [10] developed seven 
cycle-by-cycle queue estimation models, using Bayesian net-
work models. The data were collected from mobile traffic 
sensor data between the upstream and downstream of an 
intersection. The results show that the stochastic approach 
is more robust in low penetration rates, compared to deter-
ministic approaches. However, the cycle-by-cycle approach 
in queue estimation is less applicable in the real world, as 
the queue variation is high within a cycle. Therefore, the 
model suffers from the lack of availability of actual ground 

truth data, as the queue is estimated only at a certain instant 
with this approach.

Zhan et al. [11] incorporated the Gaussian Process-based 
interpolation method and a car following model. The authors 
reconstructed the equivalent cumulative arrival—departure 
curve of each lane to estimate the queue length. The data 
collection was done using license plate data for each lane 
of the road. The Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE) of the queue estimation was 
below 3.2 vehicles and 2.4 vehicles. However, the authors 
highlighted lane changing and inferring incorrect arrival 
times as the key limitations, as the data are from license 
plate capturing.

Zeng [12] predicted the queue length using a stochastic 
fluid theory. Therefore, two fluid theories were used con-
sidering the road traffic and congested traffic, to predict the 
queue length for single-lane and multi-lane scenarios. The 
average relative prediction error of the single-lane scenario 
was 24.7%, and for the multi-lane scenario was 38.2%. The 
higher prediction error percentage in the multi-lane scenario 
was justified by the authors with the lane-changing scenario. 
The higher error percentage for queue predictions in hetero-
geneous conditions was further highlighted by Li et al. [13]. 
They integrated the Lighthill–Whitham–Richards shockwave 
theory and Robertson’s platoon dispersion model, to pre-
dict the arrival of vehicles, five seconds in advance for each 
lane and further integrated with the Kalman-Filter method 
to predict the queue length as the number of vehicles. The 
final queue prediction results of the maximum queue had an 
average RMSE of 2.33 vehicles, MAE of 1.82 vehicles, and 
Mean Absolute Percentage Error (MAPE) of 16.12%.

In contrast, Jayatilleke et al. [14] attempted to predict the 
queue length under heterogeneous conditions. The authors 
obtained a queue prediction model with an R squared of 
0.724 and an MAE of 1.82 m. Even though the methodol-
ogy quantified heterogeneous traffic as the mixed vehicle 
composition, lane changing was not incorporated. They 
concluded that lane changing is heavily attested in hetero-
geneous conditions, thus, should be dealt with accordingly. 
Additionally, they concluded that prediction accuracy for 
queue lengths above 50 m is reduced up to 40% due to lane-
changing movements. Moreover, lane changing constitutes 
to violation of the FIFO phenomena of the input–output 
approach, consequently, increasing the percentage error of 
queue predictions. Thus, lane changing has a major influ-
ence on optimizing the accuracy of queue predictions under 
heterogeneous conditions.

Time series analysis has been used in econometrics to 
examine long-run and short-run dynamics among macro-
economic variables and stock exchanges. The studies were 
casual relationships among macroeconomic variables and 
stock prices in the Colombo Stock Exchange [15], the rela-
tion between the unemployment rate and stock prices in the 
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USA, China, and Japan [16], and the effect of macroeco-
nomic variables on stock prices in Sri Lanka stock market 
[17], volatility models for the stock indices of Colombo 
Stock Exchange [18]. Therefore, time series analysis helps 
to identify short-run and long-run relationships, whilst the 
application of the time series method helps to assess the 
short-run and long-run relationships of queue length.

The present research study focuses on identifying the 
most influential characteristics of the vehicle queue. Moreo-
ver, the developed relationships between the vehicle queue 
length and other variables, help to estimate the queue accu-
rately under heterogeneous conditions. Thus, the main 
objectives of the study were as follows,

• To quantify the governing factors of heterogeneous traffic 
conditions

• To develop an accurate lane-based queue estimation 
model under heterogeneous conditions

• To validate the developed queue estimation model, by 
applying it to a different location in contrast to the road 
geometry and traffic characteristics

The research methodology was developed by accounting 
for the heterogeneity of traffic in terms of lane changing and 
the mixed vehicle composition. The research was focused 
on developing a time series equation and its application, to 
predict the queue length at signalized intersections in hetero-
geneous traffic conditions. Time series analyses are mainly 
incorporated in econometrics where the variables rely on 
time. Therefore, this study explicates the queue length and 
the governing factors in the form of a generalized Vector 
Auto Regression (VAR) model and further predicts the vehi-
cle queue at signalized intersections under heterogeneous 
traffic conditions.

Methodology

Data Collection

Study Area for Model Development

The model development study area was selected to represent 
the heavy heterogeneity of vehicle traffic. The study area 
(Location 1) for queue prediction is the Armour-Street Junc-
tion, which is a three-phased, four-legged junction as shown 
in Fig. 1. The considered leg (Maradana end) for the queue 
prediction was a three-lane road section, spanning a length 
of 120 m. The data were recorded from drone cameras on a 
weekend from 2.30 to 6.30 pm.

The geometric characteristics of the location are shown 
in Table 1.

Study Area for Queue Prediction

The developed model was applied to a different location 
in Thalawathugoda, Sri Lanka (Location 2), to further 
verify the model applicability as real-time queue predic-
tions. Location 2 is a four-lane signalized junction, with 
one right turning lane, two through lanes, and one left turn-
ing lane as shown in Fig. 2. However, the left turning lane 
was disregarded, as it is not signal controlled. Two video 
cameras were used, to cover a total length of 100 m in the 

Fig. 1  Study area for model 
development (Location 1)

Table 1  Geometric characteristics of location

Parameter Lane 1 Lane 2 Lane 3

Location of lane Lane near curb Middle lane Lane near 
centre 
median

Width of lane (m) 3.8 3.5 3.2
Turning movement Through and left turn Right turn Right turn
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Thalawathugoda–Pannipitiya leg of the Junction, capturing 
from 7.30 to 11.30 am on a weekday.

Data Extraction

The methodology was developed considering the four main 
aspects: vehicle queue, traffic flow, lane changing, and traf-
fic control. Therefore, six data categories were extracted 
as queue length, arrival flow, discharge flow, inbound lane 
change, outbound lane change, and signal type. The data 
extraction was initially conducted for time sequences of 2 s 
and 5 s as shown below.

• Maximum queue length at the end of the time sequence
• Cumulative arrival and discharge flow for each time 

sequence
• Cumulative inbound and outbound lane changing for 

each time sequence
• Traffic control for each time sequence

Queue Length

The queue length was measured in metres, and the consid-
ered reference points were the start of the queue at the stop 
line to the back of the vehicle queue at the end of each time 
sequence. The starting point of the queue was considered as 
the stop line at the start, regardless of the vehicle’s stopping 
position. This was considered to address the heterogeneity, 
as small vehicles tend to stop beyond the marked stop line. 
The vehicle queue was assessed as the maximum queue 
length of the vehicles at the time sequence, whilst the queues 
were further characterized according to the classification of 
Macioszek & Iwanowicz [19]

• Stopped—This was considered when all the vehicles in 
the queue were completely stopped due to being condi-
tioned by a red signal. The stopped queue is illustrated 
in Fig. 3.

• Partially moving queue—This was considered when 
vehicles are moving very slowly or when there are vehi-
cles whose drivers alternately start and stop manoeuvres, 
due to the oversaturation of the queue. The partially mov-
ing queue is illustrated in Fig. 4. In the vehicle queue, 
the first three vehicles have left the queue and the fourth 
vehicle  (V4) has started moving as the traffic control is 
released/ front vehicles are moving. However, the follow-
ing vehicles after the fourth vehicle is still in the queue, 
as the maximum back of the queue is still formed. There-
fore, in this scenario, the queue was considered from the 
stop line to the downstream until the back of the maxi-
mum queue formed. If the maximum back of the queue 
is moved forward, the queue was considered accordingly.

• Moving Queue—This was considered when the vehicles 
whose drivers have starting-up, manoeuvred to leave 
the intersection at the green signal duration, but are still 
influential at the back of the queue. The moving queue is 
illustrated in Fig. 5.

• The queue length phases for the queue transformation are 
characterized by three phases: queue formation, queue 
stagnation, and queue dissipation as defined in Table 2.

Arrival Flow and Discharge Flow

The arrival flow was determined at the upstream point of the 
road section, whilst the discharge flow was measured at the 
stop line. One of the core factors governing heterogeneous 
traffic conditions is the diversified vehicle composition. The 

Fig. 2  Study area of real-time queue prediction (Location 2)

Fig. 3  Stopped queue

Front vehicles -
Moving

V4Following vehicles 
- Queued

Fig. 4  Partially moving queue

Fig. 5  Moving queue
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use of arrival and discharge flows was designed to address 
this predominantly. The mixed traffic composition was dealt 
with considering the PCU of the vehicles [20]. Thereby, the 
considered PCU values for each vehicle category are shown 
in Table 3.

The arrival flow and the discharge flow were measured 
for each time sequence accordingly. Therefore, the cumula-
tive count of the PCU values within the considered time 
sequence was used.

Lane Changing

The lane changing was determined for each of the lanes by 
considering the complete lanes as the areal sections. The 
area of the road section was determined by the length and 
width of the considered lane. Where inbound lane chang-
ing was considered if the vehicles entered the lane section, 
within the given time sequence. Whilst the outbound lane 
change was considered if the vehicles exited the lane section. 
The considered lane-changing movements are summarized 
in Table 4.

Traffic Control

The traffic control in signalized intersections is directly 
attributed to the signal lights. The signal controls constitut-
ing the vehicle queues are either by red signals for queue for-
mations, or green signals for queue dissipations. Therefore, 
the signal control variable was extracted as a categorical 
variable as shown below.

• Green signal control = 0
• Red signal control = 1

Thus, the sample dataset of the first 10 time sequences of 
the training dataset, accounting for 50 s is shown in Table 5.

Development of the time series model

Model development was done based on the time series anal-
ysis for time sequence 2 s and 5 s using the EVIEWS Student 
Version Lite 11 software. The analysis was conducted in six 
main phases: checking for stationarity, likelihood-ratio test, 
optimal lag length, checking for granger causality, checking 
for cointegration and model fitting & validation.

Stationarity is a common assumption in many time series 
techniques. The stationarity means there is no growth or 
decline in data. That is data fluctuate around a constant 
mean, independent of time and the variance of the fluctua-
tions remains constant over time. On the contrary, non-
stationary data have means, variances and covariances that 
change over time. Behaviour of non-stationary can be trends, 
cycles, random walks, or a combination of these three. Non-
stationary data cannot be used to model or forecast. The sta-
tionarity was visually inspected to identify potential trends 
and any other seasonal patterns with the aid of the Auto 
Correlation Function (ACF) graph and the Partial Auto Cor-
relation Function (PACF) graph of the correlogram. These 
tests were performed to identify the correlation between the 
data points at time t with datapoints at time t = 1.

Augmented Dickey-Fuller (ADF) is the augmented ver-
sion of the popular unit root test called the Dickey-Fuller 
test. The unit root test was conducted with respect to the 
ADF test. The test was performed in two phases where the 
first phase was for intercept only, and the second phase 
was for intercept and trend. The ADF test statistics were 

Table 2  Queue length phases of the queue transformation

Queue length phase Definition

Queue formation The queue length is gradually increased with respect to the increasing vehicle arrival flow at the red signal phase
Queue stagnation The queue length is stagnating at a constant rate, due to the reduction/discontinuation of the traffic flow at the red signal 

phase
Queue dissipation The queue length is gradually decreased with respect to the increasing vehicle discharge flow at the green signal phase

Table 3  PCU Factors for considered vehicle categories

Vehicle category PCU factor

Motor bike 0.5
Three-wheeler 0.67
Car/Van/Jeep 1
Light goods vehicle (LGV) 1.25
Medium goods vehicle (MGV) 1.75
Bus/Heavy good vehicle (HGV) 2.25

Table 4  Lane-changing movements

Lane-changing type Lane 1 Lane 2 Lane 3

Inbound lane change 2 to 1 1 to 2
3 to 2

2 to 3

Outbound lane change 1 to 2 2 to 1
2 to 3

3 to 2
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checked by adhering to the t-statistics and the probability. 
The ADF t-statistics were checked to have a lower value than 
the t-statistics than the 5% level t-statistics. The probability 
was checked to be lower than 0.05. The undue variables were 
differenced as the first difference variables and the test was 
reperformed.

The Likelihood-ratio (LR) test was performed for exog-
enous variables, with dummy variables as input variables. 
Such that, the LR value of the signal variable was checked 
to be greater than the chi-squared value, to be acceptable in 
the model.

Granger causality test was performed as two regressions 
with hypothesis considerations for each x variable and the y 
variable as shown below.

First regression.

H0 = X does not Granger-cause Y Vs.  H1 = X does 
Granger-cause Y.

Second regression.

H0 = Y does not Granger-cause X Vs.  H1 = Y does 
Granger-cause X.

The cointegration test was performed to determine 
whether a group of non-stationary series are cointegrated 
or not. The unrestricted cointegration rank test was obtained 
as a trace test and maximum eigenvalue test, adhering to 
the linear deterministic trend assumption. The considered 
hypothesis of the Johannes-Cointegration test is shown 
below.

H0 = Cointegrating equation does not exist Vs.  H1 = Coin-
tegrating equation exists.

The variables were fitted as VAR models as unrestricted 
VAR as the variables were known to have no cointegrations. 
The model fitting was done for one location.

The model fitting was conducted for 80% of the overall 
dataset whilst the model was validated with 20% of the over-
all dataset to further confirm the reliability of the estimated 
queue [21]. Moreover, the analysis was conducted for the 
two considered time sequences (2 s and 5 s), until a highly 
accurate model was obtained.

Results and Discussion

Time Sequence Optimization

The time sequencing for the VAR model relies on the vehicle 
traffic flow, and for higher traffic flows, the time sequencing 
should be lower or vice versa. Table 6 highlights the time 
sequence selection based on the traffic flow and the accuracy 
of the final model by considering the R squared of the fitted 
model. The two different time sequences of 2 s and 5 s were 
selected as a trial and error, to compare the accuracy of the 
models. The time sequences of 2 s and 5 s were selected 
based on factors such as red signal timing and the length 
between the upstream entry point and the downstream exit 
point. Thus, it was noted that the proposed time sequence in 
the model should be lower than that of the red signal tim-
ing yet should be optimum to avoid the multiple capturing 
of the residual queue at the intersection. Additionally, the 
consideration of the length of the study area is imperative, 
to evade under/over capturing of the traffic flow. A total of 
six separate models were developed initially as shown in 

Table 5  Sample dataset Time 
sequence 
(s)

Arrival flow 
(PCU/5 s)

Discharge flow 
(PCU/5 s)

Inbound lane 
change (PCU/5 s)

Outbound lane 
change (PCU/5 s)

Actual 
Queue (m)

Traffic 
control

5 0 0 0 0 86.1 1
10 0 0 0 0 86.1 1
15 0 0 0 0 86.1 1
20 1.25 0 0 0 86.1 1
25 0 0 0 0 86.1 1
30 0 0 0 0 86.1 1
35 0 0 0 0 86.1 1
40 0 0 0 0 86.1 1
45 0 0 0 0 86.1 1
50 0 0 0 0 86.1 1

Table 6  Time sequence selection based on R squared

Lane 1 Lane 2 Lane 3

R squared 2 s–0.29 2 s–0.17 2 s–0.77
5 s–0.49 5 s–0.97 5 s–0.88
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Table 6, hence the model with the highest R squared was 
chosen.

Thus, the time sequence of 2 s has the lowest model fit-
ting with low R squared values of 0.29, 0.17, and 0.77 for 
lane 1, lane 2, and lane 3, respectively. Yet, the model with 
the time sequence of 5 s has the highest model fitting with 
the R squared of 0.49, 0.97, and 0.88 for lane 1, lane 2, 
and lane 3, respectively. Therefore, the lane 2 model with 
a 5 s time sequence was selected as the best fitting model, 
due to its high R squared in the developed model, and the 
high accuracy when applied to other locations for queue 
predictions.

The analysis results of parameter significance obtained 
for the VAR model estimates are shown in Table 7. The sig-
nificant variables of the VAR model are queue length, arrival 
flow discharge flow, inbound lane change, and outbound lane 
change, whilst the lag is 3. The R squared value of the VAR 
model is substantially high, as it is 0.974 which is higher 
than 0.7 [21]. The high R squared of 0.974 implies the high 
model accuracy, as the developed VAR model predicts the 
actual data with an accuracy of 97.4%. The obtained Dur-
bin–Watson value for the VAR model is 1.953, close to 2.0 
implying that there is no serial correlation in the developed 
model.

The variables of queue length, arrival flow and discharge 
flow, inbound lane changing, and outbound lane changing 
are stationary at level. However, the signal variable was 
unacceptable as an exogenous variable in the model due 
to the failure in the LR test, as the LR value was smaller 
than the Chi-squared value of the model. The obtained VAR 
model for the queue length (at time t) is shown in Eq. 1. As 
per the coefficients of the model, it is evident that queue 
length arrival flow and inbound lane change at the nearest 

time sequences contribute positively to the queue. However, 
the furthest time sequence of queue length is inversely pro-
portional to the queue length at present time. This is due to 
the residual queue dissipation in the furthest time sequences. 
On the other hand, discharge, and outbound lane change at 
nearest time sequences contribute negatively to the queue 
length. The impact from the furthest time sequences is com-
paratively lower overall.

where, (t − 1): time lag by one time sequence (− 5 s), (t − 2): 
time lag by two time sequences (− 10 s), (t − 3): time lag by 
three time sequences (− 15 s).

VAR Model Training Results

The graphically illustrated VAR estimation for the first 
800 s in Fig. 6, shows high accuracy in the predicted values. 
However, a lower model fit was identified in zero queues, 
causing a minor variation between the predicted and the 
actual queue. The higher queue length is incurred with the 
high vehicle density at the end of the red signal phase. Con-
trastingly, the zero queue is incurred with the low vehicle 
density in the green signal phase. However, the estimated 
values from the fitted VAR model at zero queues, have a 
higher percentage error due to the unpredictable nature of 
the model inputs. The prediction error can be contemplated 
as minimal, considering the minor variation of the absolute 
values less than 15 m [14]. The MAPE of the estimation was 
obtained as 21.55%. However, the error is minimized to a 
greater extent with the incorporation of the signal type as a 
categorical variable for traffic control.

VAR Model Validation Results

The trained VAR estimation model was applied to lanes 1 
and 3 of location 1, as a step of model validation. The VAR 
prediction results of lane 1 and lane 3 with the actual field 
data are presented in Fig. 7 and Fig. 8, respectively. The 
model fit in lane 1 was high in the queue formation and dis-
sipation phases, whilst it was low on two occasions: immedi-
ate transformation from queue formation to queue dissipa-
tion and when the queue length is zero. The MAPE for the 
two scenarios of lane 1 and lane 3 were 15.09% and 25.99%. 
The queue prediction behaviour of lane 1 is different from 

(1)

QueueLength =1.049 + 1.3629Queuet−1 − 0.295Queuet−2 − 0.118Queuet−3

+ 0.377Arrivalt−1 + 0.136Arrivalt−2 + 1.714Arrivalt−3

− 0.985Discharget−1 − 0.985Discharget−2 + 0.242Discharget−3

+ 0.266Inboundlanechanget−1 − 0.691Inboundlanechanget−2

+ 2.999Inboundlanechanget−3 − 0.873Outboundlanechanget−1

− 0.411Outboundlanechanget−2 + 0.266Outboundlanechanget−3

Table 7  VAR Estimate Significance

VAR estimates Significance

Queuet−1 0.000
Queuet−2 0.033
Queuet−3 0.015
Arrivalt−1 0.007
Arrivalt−2 0.018
Arrivalt−3 0.022
Discharget−1 0.002
Discharget−2 0.012
Discharget−3 0.051
Inboundlanechanget−1 0.008
Inboundlanechanget−2 0.027
Inboundlanechanget−3 0.043
Outboundlanechanget−1 0.005
Outboundlanechanget−2 0.017
Outboundlanechanget−3 0.029
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lanes 2 and 3, due to the changes in the traffic characteristics. 
Such that, lane 1 has turning movements of through and 
left turning with a comparatively reduced red signal timing 

of 72 s. Therefore, the green signal timing is high within 
the cycle time, and it alternately results in more zero queue 
lengths, which reduces the model fit of the queue prediction.

Fig. 6  VAR Estimation and 
actual field queue data of loca-
tion 1—Lane 2
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Fig. 7  VAR Prediction and 
actual field queue data of loca-
tion 1—Lane 1

-20

0

20

40

60

80

100

120

140

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

62
5

65
0

67
5

70
0

72
5

75
0

77
5

Q
ue

ue
 le

ng
th

 (m
)

Time (s)

Actual Queue
Predicted Queue

Fig. 8  VAR Prediction and 
actual field queue data of loca-
tion 1—Lane 3
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Fig. 9  VAR Prediction and 
actual field queue data of loca-
tion 2—Lane 1
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Fig. 10  VAR Prediction and 
actual field queue data of loca-
tion 2—Lane 2
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Fig. 11  VAR Prediction and 
actual field queue data of loca-
tion 2—Lane 3
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Real‑Time Queue Prediction

The model was applied to the right turning lane (Lane 1), 
through lane near the centre median (Lane 2), and through 
lane near the curb (lane 3) as shown in Fig. 9, Fig. 10, and 
Fig. 11, respectively. The results of the location 2 model 
application demonstrated a similar model fit as location 
1, where the right turning lane has a comparatively lower 
model fit in the queue stagnation phase. However, this error 
is low, considering the absolute difference between the 
observed and the predicted values. The MAPE for lane 1, 
lane 2, and lane 3 were 23.77%, 15.87%, and 16.99%. The 
MAPE variation of location 2 was similar to location 1 as 
the MAPE of the through movement lane was high, due to 
the zero queue length that occurred with the increased green 
signal timing. The results further showed that the model 
performs best in lanes with a high queue stagnation phase.

The prediction results show that a negative queue was 
obtained in two conditions: instantaneous queue drops to 
zero from a high queue length after the queue dissipation 
phase and continuous zero queue length in the queue stagna-
tion phase. As pointed out by Sanchez et al. [22], negative 
queue estimates are erroneous and reduce accuracy. How-
ever, considering the absolute value of the error, the varia-
tion is negligible.

Conclusions

The study was conducted to estimate the queue length with 
adhering to the time series analysis of developing an unre-
stricted VAR model for 5 s time sequence data. Furthermore, 
the developed VAR model was utilized to predict the queue 
length of a four-lane road section with similar traffic con-
ditions. The study assessed the relationships of influential 
factors for queue length. Moreover, the study considered 
the heterogeneous traffic conditions, specifically common 
among transportation networks in urban areas of developing 
countries. Therefore, the impact of heterogeneous conditions 
was accounted for with the quantification of mixed vehicle 
composition in the traffic flow and the lane-changing assess-
ment. The results reveal that arrival flow, discharge flow, 
inbound lane changing, and outbound lane changing are sig-
nificant towards the queue length. The dependency of the 
variables on the queue length of the present time (t) depends 
on the lag time of the previous three time sequences (t − 3). 
The results further demonstrate the variation in the accu-
racy of the predicted models by the traffic characteristics of 
turning movements. Therefore, MAPE of queue estimations 
in through movements lanes were ranging between 15 and 
17%, whereas MAPE of right turning lanes were between 23 
and 26%. The research methodology was limited in certain 

aspects. Thus, it can be further developed, adhering to the 
following future directions.

1. Time sequence: This paper developed an estimation 
method for maximum queue length and predicted the 
short-term queue length for 5 s. Thus, predicting the 
queue length for higher time sequences is helpful to pro-
vide effective traffic management solutions.

2. Consideration of Vehicle Delay: This paper’s main aim 
was to develop a methodology for queue estimation 
and prediction, evaluating heterogeneous traffic. How-
ever, the consideration of vehicle delay is a promising 
research direction.
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