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ABSTRACT The Rainfall-Runoff (R-R) relationship is essential to the hydrological cycle. Sophisticated
hydrological models can accurately investigate R-R relationships; however, they require many data. There-
fore, machine learning and soft computing techniques have taken the attention in the environment of limited
hydrological, meteorological, and geological data. The accuracy of such models depends on the various
parameters, including the quality of inputs and outputs and the used algorithms. However, identifying a
perfect algorithm is still challenging. This study develops a fuzzy logic-based algorithm called Cascaded-
ANFIS to accurately predict runoff based on rainfall. The model was compared against three regression
algorithms: Long Short-Term Memory, Grated Recurrent Unit, and Recurrent Neural Networks. These
algorithms have been selected due to their outstanding performances in similar studies. The models were
tested on the Mahaweli River, the longest in Sri Lanka. The results showcase that the Cascaded-ANFIS-
based model outperforms the other algorithms. The correlation coefficient of each algorithm’s predictions
was 0.9330, 0.9120, 0.9133, 0.8915, 0.6811, 0.6811, and 0.6734 for the Cascaded-ANFIS, LSTM, GRU,
RNN, Linear, Ridge, and Lasso regressionmodels respectively. Hence, this study concludes that the proposed
algorithm is 21% more accurate than the second-best LSTM algorithm. In addition, Shared Socio-economic
Pathways (SSP2-4.5 and SSP5-8.5 scenarios) were used to generate future rainfalls, forecast the near-future
and mid-future water levels, and identify potential flood events. The future forecasting results indicate
a decrease in flood events and magnitudes in both SSP2-4.5 and SSP5-8.5 scenarios. Furthermore, the
SSP5-8.5 scenario shows drought weather from May to August yearly. The results of this study can
effectively be used to manage and control water resources and mitigate flood damages.

INDEX TERMS Cascaded-ANFIS, flood forecasting, GRU, LSTM, rainfall-runoff, RNN, SSP-245,
SSP-585.

I. INTRODUCTION
Natural disasters often occur due to recent climate changes.
Several studies have focused on climate change and its’ effect
detection where Remote sensing methods are highly used in
these methodologies [71].

Floods are frequently observed in natural disasters.
However, they are one of the direct outcomes of the
rainfall-runoff (R-R) process [77]. Due to their severity and
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frequent occurrence, flood prediction has taken significant
attention in R-R modelling [1]. Even though they are natural
disasters, their severity has been impacted by anthropogenic
activities. Flow hydrographs are drastically changed to have
higher peaks quickly due to ongoing urbanization [2], [3], [4].
Flash floods are often in urbanized areas [5], [6]. Hence,
urbanization is one of the most impacting factors in today’s
floods.

In addition to urbanization, changing climate has adversely
impacted today’s floods. Some regions receive higher and
intensified rainfall events [7], [8], [9], [10] whereas some

8920 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5235-8552
https://orcid.org/0000-0002-9966-5576
https://orcid.org/0000-0001-8696-6516


N. Rathnayake et al.: Projected Water Levels and Identified Future Floods: A Comparative Analysis for Mahaweli River, Sri Lanka

other areas receive reduced rainfall events [11], [12] due
to ongoing climate change. Frequent floods are expected in
areas with projected increased rainfall events. Many studies
in the literature support this observation [13], [14], [15].

Therefore, accurate modelling of runoff-rainfall relation-
ships to catchments is in high demand. It is important to
note that each catchment has to be modelled to find its
R-R relationship. Commercial and non-commercial hydro-
logical computer packages are available to simulate the
R-R relationships of catchments. However, these computer
packages require various data related to digital elevationmod-
els, soil data, meteorological data, and discharge data. [17].
The accuracy of the catchment models is highly varied due to
the quality of catchment data [39]. Only some catchments are
gauged to have meteorological and discharge data and other
catchment characteristics on a temporal and spatial basis.
Thus, the catchment models always need help achieving the
required accuracy to model the runoff and then predict the
floods.

In the event of limited data, soft computing [38], [40], and
machine learning techniques [19], [20], [21], [22] are helpful
to model the R-R processes. R-R processes can be modelled
only using the known rainfall and measured discharges and,
importantly, without any catchment characteristics. Hence,
numerous methodologies under soft computing and machine
learning have been developed using various algorithms and
study cases. One of these data-driven methods is the artificial
neural network (ANN), which has been used in various fields,
including hydrology and water resources. It has gained pop-
ularity because it can address, model, and forecast stochastic
and nonlinear situations in the system [41], [42], [43], [44],
[45], [46], [47] The algorithm does not replace conceptual
watershed modelling of the impossibility of describing the
catchment’s internal structure and handling the data dissem-
inated relating to the physical properties. Nevertheless, they
have gained acceptance as a practical substitute for concep-
tual models for forecasting because of numerous benefits,
such as the ability to produce simple and accurate models [48]
and the computation speed [49]. Additionally, this study
has demonstrated its strength and ability to mimic hydro-
logical events. As a result, ANN models are suggested for
rainfall-runoff modelling due to their straightforward designs
and accuracy, enabling addressing the issues of managing
water resources.

To create ANN models, most studies have used feed-
forward and backpropagation (FFBP) networks. Although
relatively well known for their ability to anticipate floods,
neither model’s performance in a particular application has
been determined [43]. Since several learning methods may
be used to improve ANN, there is still a wide range of prob-
ability. Gradient descent (GD) is frequently used in neural
network training at the backpropagation stage [50]. GD has
been used in recent years to increase the potential of the back-
propagation algorithm. However, the GD may experience
problems with convergence, training technique slowdown,

overfitting, and stocking inside local minima. The perfor-
mance of the training algorithm can lower the performance
when the structure of themodel is complex, and the parameter
set is significant [11], [51], [52].

Moreover, Feed-forward deep neural networks (FF-DNNs)
have been used widely in climate change-related studies.
A case study in Kastoria Lake in Greece used FF-DNN
to predict dissolved oxygen. They have obtained maximum
NSE efficiency of 0.89 [70]. Forecasting of dissolved oxygen
was studied using three methods such as the Autoregres-
sive integrated moving average (ARIMA) method, Transfer
Function (TF) method, and NNmethod [72]. They concluded
that the ARIMA method provides significant results com-
pared to TF and NN. Additionally, A combination of tools
such as remote sensing, weather forecasting, and Artificial
Intelligence was used to improve irrigation management in
Mediterranean Basins. This study suggests that comprehen-
sively using these tools can enhance the irrigation system
rapidly [73].

Recently, several novel evaluations of CNN models were
implemented: the ExtremeGradient Boosting (XGBoost) and
CNN-transformer. These algorithms have been widely tested
for uncertain and nonlinear data. Many studies recommended
ANFIS as a highly accurate algorithm for predictions [38],
[40]. Xuan-Nam et al. [39] have proposed an ML model
for blast-induced ground vibration predictions in quarries.
They have employed several state-of-the-art algorithms, such
as Moth-flame optimization-based ANFIS, XGBoost, ANN,
and SVM. The study showcased that the ANIFS-based algo-
rithm outperformed the other model with an accuracy of
98.62%.Moreover, two environmental types of research have
been introduced by Hameed et al. [38] and Junliang et al. [40]
employing ANFIS and XGBoost algorithms.

On the other hand, Genetic Algorithms (GA) in the hydro-
logical sciences have been the subject of several investiga-
tions to train (ANN) rainfall-runoff models that are more
accurate than backpropagation technique-based ANNmodels
in anticipating the quotidian flow [59] using natural code
GAs. In conjunction with intelligence approaches, the GA
has developed into a potent tool for modelling and optimizing
complicated processes [56], [57], [58]. It is commonly used
in ANN to enhance efficiency by tuning the parameters [54],
[55]. Roy and Singh [11] developed a novel hybrid meta-
heuristic method for simulating the rainfall-runoff process
that integrates Biogeography-Based Optimization (BBO),
Particle Swarm Optimization (PSO), and grey wolf opti-
mizer (GWO) combining ANN and Adaptive Network-based
Fuzzy Inference Systems (ANFIS). Moreover, three opti-
mization algorithms integrated with ANFIS were introduced
for rainfall-runoff predictions, namely, Differential Evolution
algorithm based ANFIS (ANFIS-DE), Particle Swarm Opti-
mization based ANFIS (ANFIS-PSO), and Genetic Algo-
rithm based ANFIS (ANFIS-GA) [53]. Investigating and
contrasting these models in hydrology is strongly advised
because the different algorithms have various advantages and
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distinct methods for complex modelling phenomena. The
investigations in hydrology, particularly rainfall-runoff mod-
elling, are still in the early stages. Hence, the computational
analysis has to be comprehensively conducted for a better
outcome. Therefore, this research study aims to contribute to
scientific society by achieving the following objectives.

1) Designing and developing an accurate, low computa-
tional complex machine learning model for rainfall-
runoff forecasting. (The Cascaded-ANFIS)

2) Conducting comprehensive experiments to support the
proposed algorithm using six regression algorithms
(Linear regression, Ridge regression, Lasso regression,
Long Short-Term Memory (LSTM), Grated Recurrent
Unit (GRU), and Recurrent Neural Networks (RNN))
using an important river basin in Sri Lanka

3) Predict the future water levels for the near-future
(2022 - 2030) and mid-future (2031 - 2050) using
Shared Socio-economic pathways (SSP245 and
SSP585) and then analyze the flood events in the future.

II. PROJECTING ALGORITHM - CASCADED-ANFIS
In 1993, Jang [76] unveiled the Adaptive Network-based
Fuzzy Inference System (ANFIS), a versatile and ingenious
hybrid system. Fuzzy inference systems (FIS) and neural
networks (NN) perform flawlessly together in ANFIS [29].
The ANFIS system benefits from NN and FIS’s collabora-
tion by utilizing their advantages. The system’s conversion
to straightforward if-then rules is another crucial benefit of
this network. ANFIS’s if-then control structure gives it the
capacity to handle non-linear functions. It is shown that
ANFIS has been applied in several study fields and yields
generally effective outcomes. It is usually known that ANFIS
may be used with many algorithms to reduce training phase
error. For instance, the least square approach and gradient
descent can increase the efficiency of finding the optimal
parameters.

This research shows that ANFIS functions similarly to the
fuzzy system that Takagi and Sugeno presented in 1985 [30].
The forward section’s consequence factors are determined
using a least-squares method.

Input, membership function, fuzzification, defuzzifica-
tion, normalization, and output are the five general layers
that makeup ANFIS. An additional explanation is based on
Figure 1 and assumes that the ANFIS system has two inputs,
x, and y, while the output is denoted as f in Equation (1)
and (2).

f1 = p1x + q1y+ r1, assume x = A1, y = B1 (1)

f2 = p2x + q2y+ r2, assume x = A2, y = B2 (2)

Fuzzy sets A1 and B1 are used here, and design parameters
pi, qi, and ri are used where i = 1, 2. The membership makes
up the top layer of the ANFIS structure. This layer’s nodes
are adaptable. For each input, membership ratings are created
in this layer. The following equations can be used to explain

the functionality:

O1,i = µAi(x) i = 1, 2 (3)

O1,j = µBj(y) j = 1, 2 (4)

Nodes’ linguistic labels are shown as Ai and Bi
when x and y are the inputs. The grades of the membership
for a set A (A1,A2,B1 and B2) are µAi(x), and µBj(y),
respectively, which are adaptive. For instance, the following
equation is used when the bell-shaped is employed.

µAi(x) =
1

1 +

{( x−ci
ai

)2
}bi (5)

In this case, the bell-shaped function’s corresponding
parameters are ai, bi, and ci. Simple multiplication is carried
out in the following layer, which comprises fixed nodes.
Following is a presentation of the layer’s mathematical
expression.

O2,i = wi = µAi(x) × µBi(x) i = 1, 2 (6)

A fixed node normalization layer comes after that. This
layer is where the output from the second layer is normalized.
The operation is demonstrated by the equation below.

O3,i = w =
wi

w1 + w2
i = 1, 2 (7)

Here, wi displays the firing power of node i.
Creating the normalized output from the third layer can

be more straightforward than the fourth. The outcome of this
adaptive layer may be shown using the equation below.

O4,i = wfi = wi(pi + qi + ri) i = 1, 2 (8)

Only one fixed node makes up the final layer. This node
adds up all the inputs that are received. Ultimately, the com-
plete result can be extracted by applying the equation below.

O5,i =

2∑
i=1

wifi =
wif1 + w2f2
w1 + w2

(9)

Since back-propagation and least squares techniques
improve the method’s accuracy and speed up convergence,
ANFIS has a more substantial capacity for learning. As pre-
viously stated, this system uses six tunable parameters (while
a bell shape is used). The primary goal of this ANFIS system
is to tune these settings to get the lowest cost. The first layer’s
parameters will be adjusted through back-propagation, and
the fourth layer’s parameters will be adjusted by the least
squares technique [34].

With two main inputs and one main output, the
Cascaded-ANFIS algorithm is a repeated ANFIS algorithm.
The critical difference between the Cascaded-ANFIS algo-
rithm and the classic ANFIS algorithm is that the output of the
conventional ANFIS technique is used as the input for future
applications of the traditional ANFIS method. Figure 2 is a
valuable tool for presenting the building of this method.
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FIGURE 1. General adaptive network-based fuzzy inference system.

FIGURE 2. The general structure of the Cascaded-ANFIS algorithm.

The Cascaded-ANFIS algorithm comprises two major
parts: the pair selection method and the training method. The
Pair Selection module solves the first considerable issue with
ANFIS. The Pair Selection module solves the first signif-
icant issue with ANFIS. However, the inner layers of the
ANFIS model use fuzzy, merely like the standard ANFIS
technique. Membership functions convert numerical data into
fuzzy members and are used to achieve fuzzification.

However, the original method uses each characteristic
to build a robust model, equally valid for noisy data sets.
The novel Cascaded-ANFIS method manages computational
complexity through its Training.

The pair Selection takes advantage of sequential feature
selection (SFS). This technique employs a 2-input, 1-output
ANFIS model to find the best match for each input. The train-
ing module also makes use of the 2-input ANFIS model. The
ANFIS module may receive the input variables directly since
they are connected to the preceding module’s best match,
which results in current outputs and Root Mean Squared
Error (RMSE) for each data pair. The expected error is then
contrasted with the RMSE. There is now an error with a
pre-determined aim as well. The procedure can be finished
if the goal error is attained. If not, the algorithm advances to
the next iteration.

This article for implementation provides a thorough
introduction to the Cascaded-ANFIS algorithm with
pseudo-code [31], [32], [69].

III. METHODOLOGY
A. PROBLEM FORMULATIONS
The following relationship shown in Equation 10 was mod-
elled using the Cascaded-ANFIS algorithm. The relationship
was trained using the ground-measured rainfall at ith station
and water level. Subscript t in Equation 10 denotes the time
domain of the R-R relationship.

WaterLevelt = f (RainFalli,t ) (10)

However, it is well noted that time domains can be shifted
from rainfall to runoff from that rainfall due to the catchment
characteristics like river length, catchment area, land use
patterns, and soil type. The travel time of a particular rainfall
event has to be clearly understood.

Figure 3 develops the flowchart for the developed
Cascaded-ANFIS model. As shown in the Figure, the rainfall
data is used as the primary input of the system. Then the input
data are re-arranged with a delay of one day and two days.
The inputs were then removed based on the computation of
the correlation between each input and the output of the flow
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FIGURE 3. The overall structure of the Cascaded-ANFIS implementation
using the selected inputs.

level. A minimal correlation of 0.40 between an input and an
output was used in this case. The selection methodology of
inputs is discussed in later sections.

B. COMPARATIVE ANALYSIS TO IDENTIFY THE BEST
ALGORITHM
Six regression algorithms (Linear Regression, Ridge Regres-
sion, Lasso Regression, Long Short-Term Memory (LSTM),
Grated Recurrent Unit (GRU), andRecurrent Neural Network
(RNN)) together with the Cascaded-ANFIS algorithm were
used to formulate the R-R relationship. These ML algorithms
were considered in this study due to a few specific reasons,
such as algorithms being similar and easy implementation.
Moreover, they are low in weight and can be processed in a
general computer without GPU support. Table 1 shows the
parameter values considered for tuning hyper parameters of
Ridge, Lasso, LSTM, GRU, and RNN tuning. These param-
eters were selected based on trial and error methods. Each
parameter is tested with the datasets used in this study and
employs the optimum value.

The Cascaded-ANFIS used three Gaussian membership
functions for each input in the system. The whole cascades
were ten to achieve satisfactory accuracy and error value.

C. THE MAHAWELI RIVER SUB-CATCHMENT ANALYSIS
Localized floods can be observed in sub-catchments
in Figure 5 without showcasingmajor floods downstream due
to the catchment characteristics. Therefore, the downstream
river gauge may not observe any flood situation. However,
upstream sub-catchments might have experienced localized
floods. Therefore, it is essential to cluster larger catchments

TABLE 1. Parameter settings of the algorithms used in this study.

into sub-catchments and then analyze them separately. This
scenario was analyzed in this research work and formulated
Equation 10 for sub-catchments.

D. FLOOD IDENTIFICATION
According to the desinventar dataset of natural disasters [78],
there has been significant damage due to flooding in
Sri Lanka. In most cases, the damage has increased due to
unexpected heavy rainfall and poor irrigation management.
The database reveals that in the past events from 2005 to
2018, there was at least one death due to flooding. The
highest number of deaths, injured and missing personals were
recorded in 2017, with 67, 73, and 63, respectively.

Historical water levels were analyzed to define threshold
water levels to identify floods in the basin. Here, water levels
were considered because the authorities recorded the data as
water levels instead of the water flows. If the water levels or
stream flows exceed the threshold, that flow may be a flood.
However, this can be confirmed with the ground-measured
discharge data and by comparing flood data to the catch-
ment. Nevertheless, many countries do not have these flood
databases, so there can be some issues with the accuracy [79].

E. SHARED SOCIO-ECONOMIC PATHWAYS (SSP) CLIMATE
DATA EXTRACTION
IPCC’s sixth report [60] presented a new set of scenarios
based on greenhouse gas emissions to project the future
climates until 2100. Practitioners who engage with future
climate data may investigate climate changes across a range
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of quite diverse futures thanks to the availability of climate
forecasts for numerous Shared Socio-Economic Pathways
(SSPs). These SSPs are titled SSP1, SSP2, SSP3, SSP4, and
SSP5 under several Socioeconomic Pathways. SSPs describe
potential future growth pathways for human cultures. A set of
models combine assumptions on the ambitions for reducing
the impact of climate change with predictions about how
population, education, energy usage, technology, and other
factors may evolve over the next century. Various conceivable
future climates, from a pessimistic high-carbon scenario to
a low-carbon one that satisfies the goals of the 2015 Paris
Agreement, are described in the climate change forecasts
from these scenarios [25], [26].

The Representative Concentration Pathways, or RCPs,
or earlier projections of greenhouse gas concentration, are
improved upon by SSP-based scenarios. To investigate the
consequences of various emission trajectories or emissions
concentrations, RCPs were explicitly created for the commu-
nity of climate modellers. It is challenging to relate social
trends such as population growth, educational attainment, and
government policies to climate objectives like limiting global
warming to below 2 ◦C since the socioeconomic factors used
to establish RCPs need to be standardized. To address this,
SSPs outline how societal decisions might alter Radioactive
Forcing towards the end of the century. As a result, SSPs were
built on RCPs to enable a uniform comparison of societal
decisions and the degrees of climate change they cause. These
SSP data are used in various recent research studies such
as flood forecasting [35], land use optimization [36], and
prediction of air pollution for the future [37]. Climate change
research [37]. According to these studies, the reliability of
SSP data is much higher than the RCP data. Therefore,
this study employed SSP projections for daily rainfall data
acquisition [27], [28]. Here, two SSP scenarios have been
used for the data acquisition, such as SSP2-4.5 and SSP5-8.5.
SSP2-4.5 redevelops the low carbon impact globally, while
SSP5-8.5 is the high carbon scenario.

F. BIAS CORRECTION
The extracted rainfall data under SSP2-4.5 and SSP5-8.5
were corrected using linear bias correction factors. Usually,
the data extracted from climate models may have some sys-
tematic errors [61]. Therefore, the model’s extracted climate
data are corrected for bias using the ground-measured climate
data. Various bias correction techniques are available [62];
however, the linear bias correction method was selected in
this research work. Equation 11 gives the simple mathemati-
cal formulation for linear bias correction. More details on this
can be found in Chaturanika et al. [63].

RF∗
sim(d) = RFsim ×

µm(RFobsd))
µm(RFhis(d))

(11)

where RF, d, µm, his, obs, and sim are rainfall, daily, long-
term monthly mean, raw SSP data, observed/measured data,
and raw RCM forecast. The symbol ∗ denotes the bias-
corrected datasets.

G. PROJECTED WATER LEVELS AND FLOODS
Bias-corrected SSP rainfall data were fed to the developed
R-R relationship in Equation 10. Based on these future
rainfalls under two SSP scenarios, the stream flows in the
means of water levels were predicted for future years. These
predicted water levels for the whole catchment were tested
for the extreme values in the time series and then iden-
tified localised and downstream floods. These predicted
floods are given for the near future (from 2022-2030) and
mid-future (2031-2050).

IV. CASE STUDY
Sri Lanka is a country blessed with water resources. How-
ever, heavy monsoon rainfall drives many rivers into floods,
and annual floods are quite often [64]. Sri Lanka has many
rivers, tanks and lakes, and these watersheds are flooded
during the monsoon periods. Several deaths and excessive
structural damage are annually reported due to extreme
weather conditions. Sri Lanka has 103 rivers, and the total
length of the rivers is around 4500 km. The longest river in
Sri Lanka is the Mahaweli River. It is 335 km long and covers
a 10488 km2 river basin which covers almost one-fifth of
the total area of the island [65], [66]. The river has several
branches along the way to the sea. 40% of the total electricity
demand of Sri Lanka is provided by the hydropower gen-
erated by the Mahaweli River. Nevertheless, the Mahaweli
River is known to provide a vast water supply for the cul-
tivation of crops such as rice and vegetables [67]. Several
Mahaweli River developments have been for hydroelectric
generation and irrigation purposes. Many dams were con-
structed along the river to enhance energy generation, which
led to flood risk changes. Kothmale dam was one of those
constructed to generate electricity; however, indirectly, it has
mitigated the floods downstream [68]. The Mahaweli River
was selected for this research study due to its importance
in many utilities and its frequent floods in the northeastern
monsoon period (from December to February).

A. STUDY AREA AND SUB-CATCHMENTS
The Mahaweli River starts from the central hills of Sri Lanka
with several small creeks. AgraOya fromHorton Plains is one
of the starting creeks of theMahaweli River. The river reaches
the Bay of Bengal on the southwestern side of Trincomalee
Bay. The bay includes the first of several submarine canyons,
making Trincomalee one of the finest deep-sea harbours in
the world. As part of the Mahaweli Development program,
the river and its tributaries are dammed at several locations
to allow irrigation in the dry zone, with almost 1,000 km2

(386 sq mi) of land irrigated. Figure 5 develops the primary
catchment and sub-catchments, whereas Figure 4 shows the
catchment of the Mahaweli River basin.

Two sub-catchments were identified along two tributaries
of the Mahaweli River. The catchment above Peradeniya (for
Kothmala Oya and other parts upstream creeks of Mahaweli
River) is given in sub-figure (a). In contrast, the catchment
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FIGURE 4. Study area of the Mahaweli river catchment map.

above Thaldena for Badulu Oya is given in sub-figure (b)
in Figure 5. The sub-catchment at Peradeniya is in the wet
zone of the country; thus, heavy rainfall can be experienced.
However, the sub-catchment at Thaldena is in the wet and
intermediate zone. Thus, the rainfall in that sub-catchment
is not as high as that at Peradeniya. However, these two
sub-catchments are essential in terrain, land use, and urban-
ization. In addition, two flow gauges can also be found in
these two sub-catchments.

B. DATA
Figure 4 shows rain gauges for theMahaweli River basin. Due
to the unavailability of complete data in most of the years,
the daily rainfall data from 2000 to 2017 were purchased
from the Department of Meteorology, Sri Lanka. The missing
data percentage for the selected years was less than 1%. The
rain gauges were selected to represent the whole catchment
covering as much as its area. In addition, the stream flow
gauge at Manampitiya was selected to model the R-R rela-
tionship. This is the most downstream stream flow gauge
available. The water levels at the station were purchased from
the Department of Irrigation, Sri Lanka. Furthermore, two
water level measuring stations were identified for the selected
two sub-catchments: Pereadeniya and Thaldena (refer to
Figure 5). The water levels for these two stations were also
purchased for the same period from the Department of Irriga-
tion, Sri Lanka.

FIGURE 5. Sub catchment study areas; (a) Catchment map at the
Peradeniya sub-catchment; (b) Catchment map at the Thaldena sub
catchment.
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A descriptive analysis of the dataset used in this analy-
sis are shown in Table 2. There were 6207 data samples
in the dataset. The selected dataset was divided at a ratio
of 7:3 for the training and testing. These sub-dataset samples
were used to train and test the algorithms used in this study.
The water levels are presented in centimetres, whereas the
rainfalls aremillimetres.Moreover, several homogeneity tests
were conducted, such as the Standard normal homogeneity
test (SNHT), Buishand range (BR) test, Pettitt test, and von
Neumann ratio (VNR) test to evaluate the dataset before
employing it in training models.

Due to the missing data in a significant time frame, few
rainfall stations were omitted in the evaluation of the case
study. The missing data were presented in Huruluwewa,
Dambuluoya, Ulhitiya, Minipe LB, and Rantembe. There-
fore, as shown in Table 2, 13 rainfall station data were con-
sidered as the inputs.

The correlation calculation in subsection III-C is given in
Table3. The selected outputs are highlighted with a minimum
of 0.4 correlation. Twelve inputs were selected using the
correlation method to train the R-R model. The trial and
error method made the selection based on the correlation.
At a correlation value of 0.40, the maximum accuracy was
obtained. Then the general structure of the Cascaded-ANFIS
was used to generate the final outputs of predicted water
levels. Additionally, according to the literature, it is con-
sidered negligible if a correlation is 0.30 or below. There-
fore, 0.40 and above values were considered safe marginal
inputs in the system [80].

C. RECENT FLOODS FOR THE RIVER BASIN
Figure 6 shows the annual water level measurements at each
of the observation points, such as the primary catchment
of Mahaweli River (Mannampitiya) and sub-catchments of
Mahaweli River (Peradeniya and Thaldena). It can be seen
that Mannampitiya water outlets record a higher level of
water when compared with the sub-catchments. As indicated
by the figure (refer to the rectangular section), the water levels
on some of the days of 2011 (21.8 m on 10/01/2011), 2012
(25.6 m on 18/12/2012 and 21.7 m on 27/12/2012), and 2014
(26.9 m on 27/12/2014) were higher than 20m. These can be
identified as flood thresholds to theManampitiya river gauge.

Sub-catchments Pereadeniya and Thaldena showcased
some higher water levels comparable to the higher water
levels at Manampitiya; however, some differences can also
be observed (refer to Table 4). Thaldena has not showed a
significantly higher water level in 2012. Still, higher water
levels were observed at Manampitiya during the same time
(t1, t2, and t3 in sub-figure (a) in Figure 6). Similar trends
can be observed in Peradeniya too. Therefore, the analysis
of sub-catchments for floods is highly justified. Comparable
observations have led the authors to define flood thresholds
for Peradeniya and Thaldena. The threshold for Peradeniya
was considered 6 m, while 3 m was considered for Thaldena.
The flood events were identified in Peradeniya and presented

as t1, t2, and t3 in sub-figure (b) in Figure 6 (6.7 m on
03/06/2013, 6.9 m on 14/09/2013, and 6.7 m on 26/12/2014).
In comparison, two incidents were identified for Thaldena
and presented as t1 and t2 in sub-figure (c) Figure 6 (3.1 m
on 02/02/2011 and 3.5 m on 26/12/2014).

V. EXPERIMENTAL RESULTS
A. EVALUATION PARAMETERS
The algorithm performances were then tested by several met-
rics, including root mean square error (RMSE), bias, Nash-
Sutcliffe efficiency (NSE), Kling- Gupta Efficiency (KGE),
and correlation coefficient (R). These performance evaluating
metrics are given in Equations (12), (13), (14), and (15).

RMSE =

√√√√1
q

q∑
t=1

(u(t) − ū(t))2 (12)

bias =

∑k
j=1 u(t) − ū(t)∑k

j=1 u(t)
(13)

NSE = 1 −

∑k
j=1(u(t) − ū(t))2∑k
j=1(u(t) − v̄(t))2

(14)

R =

∑
(v(t) − v̄(t))(u(t) − ū(t))√∑

(v(t) − v̄(t))2
∑

(u(t) − ū(t))2
(15)

where u(t) is the predicted parameter, ū(t) is the mean of
predicted parameterv(t) is the measured parameter, k is the
population size, and v̄(t) is the mean of the measured param-
eter. The correlation coefficient (R) redevelops the goodness
of fit. It varies from -1 to 1; the best is when it becomes 1. Bias
tells the differences between predicted to measured values.
The ideal bias value is 0, and 1 becomes the worst. NSE
calculates the perfectness of the match between actual and
prediction. The results of the NSE can vary between minus
infinity being the worst and 1 being the ideal [75]. KGE is a
combined calculation of three primary parameters: NSE, bias,
and coefficient of variation. Recently it has been used rapidly
in hydrological model performance calculations [74].

B. PERFORMANCE EVALUATION
The river in this case study is the longest in Sri Lanka.
According to the geographical experts in Sri Lanka, it is
considered that the maximum time duration of travelling
water from the start to the end of the river is less than three
days. However, there are several reservoirs and dams along
the river. Hence, we have considered 1-day, 2-day, and 3-day
lags to include all corresponding scenarios in the calculation.

1) CORRELATION OF COEFFICIENTS CALCULATION FOR THE
PRIMARY CATCHMENT
The primary catchment of the Mahaweli River consists of
13 rain gauges, all of which were used to predict the water
level at Manampitiya. As mentioned in the previous sections,
the experiment was designed to identify the best R-R predic-
tion algorithm. Figure 7 shows the coefficient of correlation
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FIGURE 6. Historical water level measurements from the year 2000 to 2015: (a) at the Manampitiya water level
measurement station, (b) at the Peradeniya water level measurement station, and (c) at the Thaldena water level
measurement station. Here, the flood incidents according to the historical data are presented as t1, t2, and t3.
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TABLE 2. Descriptive analysis of the data for the Mahaweli River basin.

TABLE 3. Correlations between inputs and the flow levels.

TABLE 4. Water levels at river gauges.

of the predicted water to the ground-measured water level at
the Manampitiya river gauge.

Figure 8 develops the prediction accuracy under combined
scenarios initially identified as per Table 3 for the predicted
water levels at Manampitiya.

2) CORRELATION OF COEFFICIENTS CALCULATION FOR
SUB-CATCHMENTS
Figure 9 and 10 shows the prediction accuracy of water levels
for each algorithm for the sub-catchments Peradeniya and
Thaldena.

Additionally, other parameters were used to evaluate the
results, such as Bias, NSE, RMSE, and KGE. The evaluation
results are presented in Table 5.

C. PROJECTED WATER LEVELS AT MANAMPITIYA
Figures 11 illustrate the projected future water levels at
Manampitiya under the two SSP scenarios for the near
future (2022-2030) and mid-future (2031-2050). These
results project some exciting interpretations. None of the
scenarios develops extreme flood situations for any year
from 2022 to 2050. This is very surprising. This can be
due to several reasons, including the future data quality and
bias correction technique. However, these strange results
imply that the researchers conducted some extensive pro-
jected flood analysis based on the ground-measured flow
situations. In addition, the R-R model can be implemented
for Representative Concentration Pathways (RCPs) and then
analyze the differences.

VI. DISCUSSION
A. MODEL EVALUATIONS
According to the sub-figure (i) in Figure 7, it can be seen
herein that the GRU algorithm with an R of 0.9301 per-
formed the best prediction. In addition, the LSTM algorithm
with 2-day back rainfall data (t-2 scenario) performed as
the second best with 0.9265 (refer to the sub-figure (l) in
Figure 7). Interestingly, as per sub-figure (b) in Figure 7, the
Cascaded-ANFIS algorithm showcased its highest R-value
at 0.9140 for 1-day back rainfall data (t-1 scenario). However,
it can be clearly understood that three scenarios separately
cannot be used to model the R-R relationship. In other words,
the rainfall which occurs two days back for the most upstream
location can reachManampitiya on the current day. Similarly,
rainfall received one day back in another location can reach
Manampitiya on the current day. Therefore, a combination of
these three scenarios has to be considered.

As in the selected rainfall gauge analysis, it was clear
that the results were more consistent and accurate. The
Cascaded-ANFIS algorithm-based prediction model had
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FIGURE 7. Mahaweli catchment water level prediction and observed values with calculated correlation coefficient (R): 0-days (current day inputs), 1-day
(the current day and past 1-day inputs), and 2-day (the current day and past one and 2-day inputs).
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FIGURE 8. Prediction accuracy for water levels combined scenarios at
Manampitiya: (a) Cascaded-ANFIS test predictions for selected inputs;
(b) LSTM test predictions for selected inputs; (c) GRU test predictions for
selected inputs; (d) RNN test predictions for selected inputs.

an R of 0.933 for selected inputs (refer to the sub-
figure (a) in Figure 8). GRU, LSTM, and RNN showed
R values of 0.9133, 0.9120, and 0.8915, respectively, and

FIGURE 9. Prediction accuracy for water levels at Peradeniya;
(a) Cascaded-ANFIS test predictions; (b) LSTM test predictions;
(c) GRU test predictions; (d) RNN test predictions.

were outperformed by Cascaded-ANFIS. Therefore, the
Cascaded-ANFIS algorithm can be used effectively to pre-
dictions of water levels.
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FIGURE 10. Prediction accuracy for water levels at Thaldena;
(a) Cascaded-ANFIS test predictions; (b) LSTM test predictions;
(c) GRU test predictions; (d) RNN test predictions.

The sub-catchment correlation coefficient analysis in
Figures 9 and 10 shows that the Cascaded-ANFIS algorithm
has outperformed the other three algorithms in predicting

TABLE 5. The evaluation results of the study; Percent bias value (Bias),
Root Mean Squared Error (RMSE), Nash-Sutcliffe efficiency (NSE),
Kling-Gupta efficiency (KGE), and Correlation Coefficient (R).

water levels at the sub-catchment level. In Figure 10, the cor-
relation coefficients were found to be 0.9188 for Cascaded-
ANFIS, 0.8894 for LSTM, 0.9082 for GRU, and 0.8594 for
RNN. Therefore, the water level prediction for the Thaldena
sub-catchment also succeeded by the prediction model devel-
oped based on the Cascaded-ANFIS algorithm.

The proposed algorithm shows the least RMSE with 0.66.
The proposed algorithm also scored the highest NSE and
KGE values, with 0.87 and 0.90. The second-best perfor-
mances were shown by the GRU algorithm having RMSE,
NSE, and KGE as 0.79, 0.83, and 00.88. When considering
the bias factor of the predicted outputs, the Cascaded-ANFIS
model shows a significantly low value of 1.52. This low
score for the bias provides a certification that the model can
predict the water levels with higher accuracy and lower bias.
The overall results are shown in Table 5. It is also clear that
the Linear, Ridge, and Lasso algorithms’ performances are
significantly miniature compared to the other LSTM, GRU,
RNN, and Cascaded-ANFIS algorithms.

B. FORECASTING OF THE RIVER WATER LEVEL
Let the predictions be accurate (assumed). Then, there is
a severe issue in the water levels, thus the river flow at
Manampitiya. The average water levels for Manampitiya are
around 10m (from its historical data). However, the projected
water levels are around 6 m (60% of the average). Therefore,
drought conditions can be projected. The predicted outcomes
of the trained model can be a result of the dataset. The
dataset provides a short range of rainfall data. Therefore,
more than the sample size may be needed to train a perfect
R-R model. However, this cannot be considered a conclusion
of this study. Even though the prediction accuracy is good in
the Cascaded-ANFIS model, future data quality is critical in
a solid prediction. Therefore, Figures 11 cannot be treated as
a conclusion of this study.

However, these water levels were presented in Figure 12
shows the forecasting of water levels at Manampitiya for the
projected rainfalls. From the year 2031 to 2050, forecasting
is shown in sub-figures (c) and (d) in Figure 12 respectively
for SSP2-4.5 and SSP5-8.5. The X-axis contains 365 ticks
representing days of the year, and the scale bar on the right
side of Figure 12 showcases the intensity of the water level.
During the northeaster monsoon (December to February), the
water levels can be observed at higher levels, as predicted at
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FIGURE 11. Projected future water levels: (a) for near-future at SSP2-4.5; (b) for near-future at SSP5-8.5; (c) for mid-future at
SSP2-4.5; (b) for mid-future at SSP5-8.5.
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FIGURE 12. Water level predictions in a graphical way: (a) SSP2-4.5 for the year 2022 to 2030; (b) SSP5-8.5 for the year 2022 to 2030;
(c) SSP2-4.5 for the year 2031 to 2050;(d) SSP5-8.5 for the year 2031 to 2050. Here, the color map notation indicate as: Red = Highest,
Purple = Lowest. The black and white boxes indicate the regions of interest of lowest and highest water levels, consequently.
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Manampitiya. However, the SSP5-8.5 scenario has projected
lower water levels for mid-year, reaching less than 1m. These
can be droughts. However, the SSP5-8.5 is a higher scenario
for fossil-fueled development. This observation cannot be
seen in the SSP2-4.5 scenario. The key observations are
indicated using black and white squares where black being
lower water level periods and white being higher water level
periods. Nevertheless, as discussed, more research is needed
for a solid conclusion on future water levels.

VII. CONCLUSION
An R-R prediction model was developed using the
Cascaded-ANFIS algorithm for the Mahaweli River, the
longest river in Sri Lanka. The R-R model was developed
for the sub-catchment levels as well. The dataset used in the
case study was well evaluated using four different methods
of homogeneity tests Standard normal homogeneity test
(SNHT), Buishand range (BR) test, Pettitt test, and von
Neumann ratio (VNR) test. The algorithm was tested against
six regression algorithms used in most past studies: Linear
regression, Ridge regression, Lasso regression GRU, LSTM,
and RNN. The results were comparatively studied using cor-
relation coefficient, bias, RMSE, NSE, and KGE. The highest
correlation coefficient was recorded by the Cascaded-ANFIS
when utilizing the selected rainfall gauges to train the models
having 0.933 where Linear, Ridge, Lasso, GRU, LSTM, and
RNN showed the R values of 0.6811, 0.6811, 0.6734, 0.9133,
0.9120, and 0.8915, respectively.

Moreover, the bias value of the proposed algorithm is
significantly low (1.52) compared with the other algorithms.
The Cascaded-ANFIS model scored 0.66, 0.87, and 0.90 for
RMSE, NSE, and KGE, respectively. These results outper-
formed the other algorithms used in this study.

According to the overall results, it can be concluded
herein that the Cascaded-ANFIS algorithm-based predic-
tion model has outperformed the other six algorithms. The
second-best algorithm that performed well in prediction was
the GRU algorithm. However, the Cascaded-ANFIS algo-
rithm has advantages compared to the black-box regres-
sion models, such as lightweight, lower computational cost,
easy real-time implementation, and efficiency. Therefore, the
Cascaded-ANFIS algorithm can predict the water levels of
various catchments under the requirement of measured rain-
falls and water levels. More importantly, the model can be
developed under mixed rainfall input along the timeline due
to the upstream waterś travel time to the riverś downstream.

Overall the predictionmodel based on the Cascaded-ANFIS
algorithm predicts accurate results using the ground-
measured rainfalls. The future water levels were projected
under two SSP scenarios for the Manampitya station. How-
ever, promising results were only found under the near future
and mid-future SSP rainfalls. None of the years was projected
to have unacceptable floods (by looking at the records).
Therefore, this research does not provide any conclusions
about the future projected water levels. More research is
needed for a solid outcome for future water levels.
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