

Neural Network based automated hot water mixture

F.N.M Firsan1, G.M Herath2 and T.D Thilakanayake3

1School of Civil and Mechanical Engineering, Curtin University Kent St,

Bentley WA 6102, Australia
2,3Faculty of Engineering, Sri Lanka Institute of Information Technology

New Kandy Rd., Malabe 10115, Sri Lanka

ABSTRACT

In the present day and age, most residential spaces comprise a shower system and generally a

conventional system of hot water showers. Throughout history, showering has developed as an essential

need in a person’s life. Nevertheless, a typical hot water shower system comprises delays in hot water

mixing and usually requires an average of 2 to 4 minutes to mix the cold and hot water to deliver the

appropriate shower temperature. The delay in mixing provides less comfort and poor satisfaction affecting

people’s lifestyles. Due to these disadvantages, a system incorporating artificial Intelligence can be

utilized to enhance the performance of mixing which can offer an automated hot water mixture system

with improved efficiency and effectiveness. Recently, significant research has been focused on utilizing

deep learning technology due to its multiple breakthroughs in fabricating a broad range of automated

novel applications since Neural Networks comprise the capacity to learn from data to offer efficient and

accurate systems. In this research project, the hot water mixture is employed by an Artificial Neural

Network model integrated with the combination of an embedded system of the proposed system of hot

water mixture. Furthermore, the proposed system comprises temperature and flow sensors along with

controllable flow valves. The tested system indicated acceptable accuracy between the actual and desired

output flow rate and temperature.

KEYWORDS: neural networks, deep learning, hot water mixture, embedded system

1 INTRODUCTION

Throughout history, showering has evolved into an essential need for people. The primary reason

showering was considered a fundamental need is to maintain a satisfactory degree of hygiene and other

positive effects with respect to people’s health. Hot shower systems have developed and improved

throughout history to improve the quality of showering. However, the existing conventional hot water

shower control systems cause a delay of approximately 1 to 2 minutes in hot water mixing.

In general, there are two fundamental shower control systems. The pressure balance shower

system comprises one lever which performs the on/off function, and the water temperature can be

regulated even though the volumetric flow of water cannot be controlled with this type of system

(Shower Systems Explained). When the valve of this system is turned on, it cannot be adjusted to the

desired position since the valve can only function in completely open or closed positions. Moreover, the

output volume of water cannot be regulated, nevertheless, an adjustable shower head may be employed

to alter the pressure. On the other hand, the thermostatic shower system comprises two levers, where one

lever is capable of controlling the water temperature (thermostatic valve) and the other lever regulates

the volume of water with the inclusion of an on/off function (volume control valve). This system enables

the user to set the temperature permanently so that whenever the shower functions it provides the water

temperature to the given value. However, when both basic shower systems are analyzed it can be said

that they comprise drawbacks and lack versatility.

Therefore, this study offers a system of Artificial Intelligent hot water mixture that provides an

improved duration of hot water mixing and a reliable system with increased versatility to improve the

lifestyles of people by delivering a comfortable shower experience. The study prioritizes the

development of a hot water mixture system providing people with an easy-to-use and versatile system to

bring comfort to their lifestyle. The primary objective of this study is to fabricate an automated hot water

mixture system by implementing Neural Networks to provide the user the ability to input the desired

shower temperature and flow rate to the automated hot water mixture system. In addition, a good

automatic control mixture must be established, in simple terms, the proposed system must be an advanced

and user-friendly system. Moreover, the secondary objectives were to construct a comparison utilizing

learning strategies of Artificial Neural Networks (ANN), collect data to train the ANN model, develop

the script of data collection and ANN model, and lastly develop the overall algorithm to function the

automated system. Furthermore, utilizing Deep Neural Network technology provides a faster rate of hot

water mixing as computations occur rapidly to provide the best possible results and since this technology

comprises the capacity to learn, the hot water mixing system can be improved over time by integrating

more features and functions to the system. Hence, when constructing a comparison between Neural

Network and conventional methods, Neural Network offers more advantages to the system. Therefore,

the study examined the ways of utilizing current shower control systems to introduce an innovative and

novel approach.

 The study design comprises implementing a Neural Network based system by utilizing a significant

amount of dataset to train the Neural network model successfully to acquire the best-performing model by

employing several techniques, particularly hyperparameter optimization. The results of the best-

performing models were then utilized by the microcontroller to provide the necessary instructions to the

controllable flow valve when the user inputs the desired temperature and flow rate. This enables good

automatic control and versatility for the user to insert the desired temperature and flow rate.

1.1 Literature background

Artificial Neural Networks (ANN) contain units of computation called neurons(Charu C.

Aggarwal, 2018). Every input to a neuron consists of a scaled weight that affects the unit computation

of that function. The propagation of computed values is transferred from the input to output neurons

utilizing weights as the intermediary parameter in an ANN which evaluates the function of inputs.

The learning process generally occurs by adjusting the weights connected with the neurons and these

weights are adjusted in an ANN in response to errors from predicted results.

The objective of adjusting the weights was to reshape the computed function in order to secure more

accurate predictions in future iterations. Hence, weights are altered delicately in a mathematically

validated pathway to minimize the error in the particular computation of a model. With successful

alterations to the weights between a myriad of input and output pairs of neurons, the function computed

by ANN gets refined over a period of time to provide further accurate predictions. For example, in this

research project, the ANN was trained with a significant amount of datasets, as eventually, it will be able

to predict and provide the desired output flow rate and temperature accurately when a user inputs his

desired temperature and flow rate whereas in most situations the desired values are outside the dataset

provided to the model that has been trained. This key ability to accurately evaluate or compute functions

of concealed inputs by training with a specific dataset which consists of a finite collection of input and

output pairs is known as model generalization. The prime effectiveness of all deep learning models is

acquired by their potential to generalize their learning process from visible training data to concealed

examples or situations.

The experiments and computations for a particular fine-tuned neural network will not be suitable

for another neural network. This is because it may consist of different input and output parameters, and

a distinct complexity, and the objective of the results required may vary. Hence, for a given neural

network, many parameters exist that are in need of optimization to acquire the best solution. A few of

the common parameters to be tweaked in the neural network are, the number of hidden layers, number of

neurons, batch size, and epoch number (Antonio Guili et.al, 2019). These listed parameters are limited

as the number of parameters to be optimized will vary significantly, depending on the complexity of the

neural networks. Furthermore, these parameters that are to be optimized in the neural network are

defined as hyperparameters. This term is provided in order to distinguish between the system parameters

of the network such as weights and biases. During the process of training, Hyperparameter tuning is the

approach of discovering the optimal set of hyperparameters used to obtain improved cost functions

(reduced cost functions). There are several hyperparameter tuning methods offered by Python in the form

of libraries that may be utilized to fine-tune the hyperparameters of an ANN model such as Hyperband,

Keras Tuner and Scikit optimize. These libraries aid in tuning the hyperparameters to obtain a set of best

models that can be utilized to train the ANN model with the relevant dataset.

In any Hyperparameter tuner, the initial hyperparameter that will be considered is the number of

hidden layers, and by constructing more layers the depth of the neural network may increase and

eventually form a deep neural network that provides the ability to further examine complex

features(Agrawal, 2021). Therefore, for simple problems, one or two hidden layer networks will work

relatively well whereas for more complicated problems the number of hidden layers can be increased

until the point of overfitting the training dataset is reached. Following this hyperparameter, the number

of neurons in each existing hidden layer must be considered. The number of neurons is typically

determined by the sort of input and output task required. In general, a fundamental size is to establish a

pyramid-like pattern of neuron numbers, that is fewer neurons in each adjacent layer (Geron, 2019).

However, this concept was discarded as utilizing the same number of neurons in each hidden layer

performs fairly well or even better in the majority of the cases. Nevertheless, all of this depends on the

dataset as it can provide an idea to construct the neurons in the hidden layers. Similar to the number of

layers, the number of neurons may also be increased gradually to the point where the network begins to

overfit, but this approach may be tedious and it is more efficient and straightforward to survey a model

with more hidden layers and neurons first and thereafter to utilize options such as early stopping and

regularization strategies to avoid overfitting. A scientist named Vincent Vanhoucke called this approach

the “stretch pants approach” (Vanhoucke et al., 2011). This indicates that, instead of spending time to

examine pants that precisely match the size, utilizing large stretch pants which will narrow down to the

required size is more efficient. This approach avoids bottlenecking layers which can possibly ruin the

model architecture and performance.

Likewise, the hyperparameter called learning rate is a salient hyperparameter that controls how

one regulates variations of the model with respect to the computed error each time the weights of the

model are updated (Patterson, Josh, and Gibson, 2017). The basic concept of identifying a reasonable

learning rate is to train the network for several hundred iterations, initially with a low learning rate and

slowly increasing it to a larger value. Subsequently, the best learning rate discovered through this process

can be utilized to train the network again whereas, the Optimizer dictates how the network may be updated

such as weights depending on the loss function (Chollet François, 2019). Several optimizers are available

to offer high-performance to train models of deep learning. For example, stochastic gradient descent,

AdaGrad, Adam, and AdaDelta (Soydaner, 2020).

Batch size may also have a substantial impact on the performance and time taken for the training

of the model. A paper by Dominic Masters and Carlo Luschi in 2018, deduced that utilizing small batches

typically between 2 to 32 was recommended since small batches supported providing better models in a

short training period (Masters & Luschi, 2018). Nevertheless, a paper written in 2017 by Elad Hoffer et

al. and Priya Goyal et al. illustrated a high probability of utilizing large batch sizes typically up to 8192,

employing a variety of techniques such as increasing the learning rate, by warming it up from low to

high learning rate value which is guided to a short period of training and without any generalization

gaps. (Hoffer et al., 2017). Hence, two approaches are available either to utilize a large batch by warming

up the learning rate and afterward if the training seems to be unstable or the performance of the model is

unacceptable then it is recommended to try utilizing a smaller batch size instead.

Lastly, the objective of the activation function is to introduce nonlinearity to each neuron. Many

activations functions are available for selection such as ReLU, Sigmoid, and variants of ReLU (such as

Leaky ReLU). Moreover, it is important to choose the ideal activation function for the neural network

model since they are used on all neurons available in the neural network of the given model and

backpropagation utilizes their derivates. Consequently, the function and its derivative must comprise

less computational complexity (Agrawal, 2021).

2 EXPERIMENTAL PROCEDURE

2.1 Development stage

The primary phase of the study was to perform an in-depth and detailed study of research findings

related to the topic. The discovered research was then examined carefully to obtain a fundamental

understanding and visual of the study. The research sources comprised books, articles, or papers that

provide principal ideas, designs, and novel strategies and how engineering techniques are employed to

overcome the complications that emerge in the existing research findings. The priority of the findings

was mainly on the shower control systems, Neural networks, and microcontrollers.

The research findings were then utilized to develop ideas on constructing the hot water mixture

system design by employing existing components and technologies, particularly from previous related

works. The design was developed employing AUTOCAD software and Figure 1 illustrates the design

of the automated hot water mixture system.

𝑖

Figure 1 Automated hot water mixture design

After the design was developed, the priority was given to constructing the Neural Network

architecture by investigating the parameters of the hot water mixture system, and by identifying the input

and output parameters of the system the architecture of the Neural Network was fabricated. The

parameters for the ANN input layer were considered as output temperature and output flow rate. The

parameters of the output layer were considered as hot and cold water flow rates and temperatures. Figure

2 illustrates the architecture of the constructed ANN model here the number of neurons in the first

hidden layer was declared as 𝑛(1) and the term 𝑙 denotes the number of hidden layers in the ANN model.

The values of the number of neurons in hidden layers and the number of hidden layers were given in

the arbitrary form. This was due to the hyperparameter optimization technique utilized in the script

development stage to identify these hyperparameter values.

𝑖

Figure 2 Architecture of Artificial Neural Network model

2.2 ANN and physical model implementation stage

The list of components selected is illustrated in Table 1. These components are essential to fabricate

the model required for data collection and the final proposed system of the study.

Table 1 List of selected components of the final model of study

Component name Model Number

Microcontroller Raspberry Pi 4 Model B (2gb ram)

Power Supply Switch mode power supply (SMPS)

Servo motor DS3230 Metal gear servo

Temperature Sensor DHT22/AM2302

Flow sensor YF-S201 hall effect sensor

Ball valve SLON two pieces ball valve

The system is based on an Artificial Neural Network model, and in order to train the model, a

significant amount of dataset must be acquired to obtain accurate predictions. Initially, an automatic and

custom flow valve must be designed and tested prior to the collection of datasets. The custom flow

comprises two key components, which are the servo motor and the ball valve. Figure 3 illustrates the

fabrication of the automated flow valve which includes the other essential components such as brackets

and metal plates for mounting purposes to ensure the proper functioning of the automated flow valve.

Figure 3 Automated flow valve

Due to the novel approach being performed by employing an Artificial Intelligence embedded

system integrated into a hot water mixture system, the relevant dataset was not readily available. Hence,

to collect relevant and accurate data, the hot water mixture system was fabricated, and data was acquired

by executing the developed data collection script to collect the data at the main locations of a pipeline

which are hot, cold, and output lines.

The data collection script typically comprises the setup of the temperature sensors, flow rate

sensors, and servo motors. After the setup, the primary loop of the script was developed to acquire

readings at 3 main locations of the system which are hot water temperature and flow rate (hot pipeline),

cold water temperature and flow rate (cold pipeline), output water temperature and flow rate (output

pipeline). When the script was executed, the instruction was given to both servo motors at hot and cold

pipelines to rotate between the specified range of 30 to 90 degrees. Then at each iteration, the servo

motor regulates the volume of water flowing in both hot and cold pipelines, and the temperature and

flow rates at input pipelines were measured after 3 seconds of waiting time after the servo motors rotate.

The output temperature and flow rates were measured after 4 seconds of waiting which includes the

delay of the readings measured by the hot and cold flow sensors since the sensors read the pulse within

the 1-second timeframe when the counter is activated and deactivated. Hence the system was functioning

to collect data until the script was terminated. Furthermore, the readings were written to a file after the

completion of each iteration of the primary loop. In addition, the file consists of a comma-separated value

(CSV) format.

The overall fabricated model of the study is illustrated in Figure 4 which indicates the arrangement

of the key devices. Where the custom automated flow valves are initially installed, followed by the

temperature and flow sensors in each input pipeline. The flow sensors comprise threaded ends to be

easily installed in the hot water mixture system. However, the installation of the temperature sensors

was relatively complex comprising fixing a T joint connector and fitting an end cap which was drilled at

the center to enable the wires to reach out of the system and be connected to the Raspberry Pi.

Furthermore, the temperature sensor was installed perpendicular to the flow inside the T joint connector.

Figure 4 Fabricated physical model of study

The Neural network script was developed gradually, and the collected dataset was utilized to train

the model. Before training the model, a crucial step was involved in obtaining the best hyperparameters

for the model (O’Malley et al., 2019). This was employed by utilizing hyperparameter optimization

techniques offered by Keras API. The tuner known as Hyperband was employed in this study along with

the Random Search tuner to perform hyperparameter optimization. The best tuner was selected by

monitoring the training loss (must be low) of the model since the hyperparameters found from both tuner

algorithms are distinct and as a result, provide models with different performances. Hence, the best model

was acquired from the tuner which provided the least training loss and then the best model with the ideal

set of hyperparameters was trained. The set of hyperparameters this study prioritized to obtain was the

number of hidden layers, the number of neurons in those hidden layers, the optimizer, and the dropout.

Moreover, several other combinations of hyperparameters were experimented with prior to the final

selection of the hyperparameters such as activation functions and learning rate. After the training

procedure, the best model was evaluated with the test data, and predictions were made to examine the

performance of the model. Furthermore, visualization strategies were utilized to visualize the

performance of the model in a graph, particularly the graphs of training and validation losses. The library

utilized to visualize was matplotlib.

2.3 Physical model testing stage

A relationship between valve angles and flow rates was established using the data from the

acquired data collection process. The respective data of hot and cold angles and flow rates were read

utilizing the pandas library. The variables were called to establish two linear equations for the regression

graphs utilizing the polyfit function. The linear equation comprises the angles of hot and cold being the

independent variables and hot and cold flow rates as the dependent variables. From the equation, the

gradients and intercepts were obtained. Hence, when the user inputs the desired temperature and flow

rate, the model predicts the hot and cold water flow rates and temperatures considering the new user

inputs as new instances. The predicted flow rates are utilized to find the angle required to turn in the hot

and cold pipelines. Then the data of hot and cold angles are utilized by the Raspberry Pi to send the control

signal to the servo motor in the form of pulses to rotate to the angle computed, which will result in

delivering the desired output flow rate and temperature. The accuracy of delivering the desired parameters

depends on the performance of the Neural Network model.

3 RESULTS AND DISCUSSION

3.1 Data collection

Tests conducted with the customized automatic flow valve to check for proper rotation of the ball

valve indicated positive results where both automated flow valves rotated to the specified angle

accurately. The data collected from the physical model was successful and a sample of the data collected

is illustrated in Table 2.

Table 2 Results of data collected of study

Hot Angle

(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

Cold angle

(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

Hot flow

(𝑙/𝑚𝑖𝑛)

Cold

Flow

(𝑙/𝑚𝑖𝑛)

Output

Flow

(𝑙/𝑚𝑖𝑛)

Hot

temp

℃

Cold

Temp

℃

Output

Temp

℃

53 33 3.6 3.6 7.267 41 27.2 34.1

71 69 3.333 3.467 6.867 41.4 27.2 34.2

39 69 3.733 3.467 7.133 41.6 27.2 34

66 37 3.467 3.6 7 42.4 27.2 35.1

76 71 2.133 3.333 5.533 41.8 27.2 34.4

69 81 2.533 1.73 4.2 42.2 27.2 33.1

40 75 3.733 1.6 5.4 42.2 27.2 37.6

68 44 3.467 3.733 7 47.5 27.2 41.8

88 36 0 4.133 4.067 47.5 27.2 34.5

The sample of collected data in Table 2 indicates the results were within acceptable bounds for

flow rate readings with respect to the ball valve angle. However, there were some data points with

inaccurate measurements. This can be possibly improved by increasing the waiting time between the

devices to measure the reading during each iteration of the loop, which means after the ball valves rotate,

a settling time of water must be taken into consideration. The waiting time considered in this study for

each iteration was roughly 8 seconds and a total of 3000 datasets were collected here for 1 hour only

450 datasets can be collected. Furthermore, during data collection, other factors must also be considered

such as giving rest for the system since the devices can possibly fail or overwork, and in this study, a

heater unit was utilized as a hot water source as the heating unit also requires substantial time to rest.

3.2 Artificial Neural Network training

The dataset was utilized to successfully train the ANN model and prior to the training, the

Hyperband tuner of KerasTuner library was employed to find the best hyperparameters ideal for this

study’s ANN model. In addition, the Hyperband tuner algorithm was selected over RandomSearch

algorithm due to better training and validation loss provided by Hyperband tuner algorithm.

Unfortunately, due to KerasTuner library being released in 2019, false information was provided with

respect to the number of neurons in the hidden layers. However, other hyperparameters tuned were

provided correctly as illustrated in Table 3.

Table 3 Summary of selected hyperparameters

Hyperparameter Selected choice or value

Number of hidden layers 8

Optimizer adam

Loss Mean Absolute Error (MAE)

Activation function ReLU

Output layer Activation function Linear

Dropout in first hidden layer 0.4

Dropout in other hidden layers 0.2

The choices in the tuner search space for optimizer were given as adam, adagrad and rmsprop and

the dropout choice was given between 0.1 to 0.5 in the tuner search space. As illustrated in Table 3 the

Hyperband tuner algorithm selected adam and other hyperparameters to be the most appropriate choice

or value for this ANN model. Furthermore, the loss and activation function were not tuned since this

study comprises a regression model and the type of activation function and loss function were considered

as provided in Table 3. After acquiring the best model from the tuner the best model was trained for 120

epochs to monitor the training and validation loss as illustrated in Figure 5.

Figure 5 Graph of training and validation loss

The training loss in the last epoch which is 120th epoch was 1.0104 and the validation loss was

0.9354. The graph illustrated in Figure 5 indicates that the training loss (top) and validation loss (bottom)

are alleviating and both losses were gradually converging with each other from the starting epoch during

training. A factor must also be considered that the tuning algorithm implemented provides us with the

best model to train with. Hence, when the best model obtained was trained the degree of convergence

would be less visible. A possible reason the validation loss is less than the training loss is due to the

training loss being consistently reported over the period of a complete epoch whereas the validation

loss is evaluated over the validation set only once the current training epoch is completed. This suggests

on average, training losses are measured half an epoch earlier. Furthermore, the training loss fluctuates

less roughly after 90 epochs. Therefore, the trained model obtained can be considered good when

comparing the average difference of both losses was fairly minor. The model was evaluated on the test

data to examine the performance and the test loss from the evaluation was 0.938. This indicates that the

training loss is relatively higher than the test loss which conveys that there is room for improvement in

the ANN model. The most probable reason for the results of the training, validation, and test loss was

due to the accuracy or noise comprised in the dataset collected. In addition, the overall dataset was split

into 20% tests and the test data were split into half to utilize for validation data.

Several strategies were employed to calculate the accuracy since the model is of regression type,

the accuracy cannot be computed automatically from the compile method from the Sequential model

since it is only available for classification problems. Therefore, the percentage deviation was computed

after computing the predicted values of the ANN model with the test data and Figure 6 illustrates the

comparison of actual and predicted results along with the deviation of the predicted result with respect

to the actual result where the deviations were within 5% range for many of the results illustrating good

predictions by the ANN model.

Figure 6 Results of predictions and percentage deviation

3.3 Testing the automated hot water mixture system

The results of the tested system are shown in Figure 7, where the user can input the temperature

and flowrate of required and the angles are computed to deliver the user desired parameters by sending

the control instruction to the servo motor via the Raspberry Pi.

Figure 7 Testing the system of automated hot water mixture

The tests performed on the final system indicated that the ANN model performs well for a certain

range of temperatures and flow rates. Table 4 illustrates the time taken for the key procedures of the

study where data collection is the time taken to collect the data required for Neural Network training of

this study, The training time is the average time utilized to train the best model acquired from the

hyperparameter optimization process followed by the training process. Furthermore, the convergence

time is the time required for the system to converge the existing output temperature to the required user

temperature and lastly, the response time is the duration the user has to wait for the final automated

system to deliver the flow rate and temperature. In summary, the Neural Network approach offers a faster

response time which comprises a significant percentage difference of 161% (13 seconds and 120

seconds) in hot water mixing than the existing conventional methods.

Table 4 Comparison between the research study approach and conventional methods

 Neural Network Conventional methods

Data collection (hours) ≥7 hours -

Training time (seconds) 25 minutes -

Convergence time <10 seconds -

Response time <13 seconds 60-120 seconds

4 CONCLUSION

The main goal of this study was to develop a system of Neural Network based automated hot

water mixture to reduce the time taken for hot water mixing by the current conventional systems of hot

water showers.

The procedure required to develop a path to employ an Artificial Intelligent embedded system

consisting of automated and controllable flow valves along with sensors to compute the water

temperature and flow rate. The Neural network model performance was significantly dependent on the

data collection process and development of the ANN model by utilizing strategies for instance

Hyperband tuning algorithm as a hyperparameter optimization technique.

The physical model was successfully fabricated which comprises the salient implementations for

instance the fabrication of the custom automated flow valve, the setup, and installation of DHT22 series

temperature and YF-S201 flow sensors along with the overall pipework fabrication which includes the

valve sockets, T joint, and elbow connections. Moreover, the key findings identified from the study were:

the inversely proportional relationship developed between the angle and flow rate of hot and cold water

in experimental results, and the relationship between the predicted and actual results acquired from the

trained ANN model.

In conclusion, acceptable results were attained due to the performance of the Neural Network

model and providing predictions to compute the angles essential to rotate the controllable flow valves in

instances where the desired shower temperature and flow rate are input by the user. This process was

viable due to the successful collection of datasets from the physical model. Although, certain

complications arose during the process of data collection, it can be deduced that a substantial amount

of the data collected was within the accepted bounds. Moreover, some potential benefits were identified

such as achieving stable temperature with fewer fluctuations and providing good control for users to

enter the desired temperature and flow rate, and faster response rates achieved in contrast to

conventional methods. In addition, this study employed a system that ensures user-friendliness and

comprises an advanced intelligent system to offer versatility to the system of automated hot water

mixture.

REFERENCES

Agrawal, T. (2021). Hyperparameter Optimization in Machine Learning. In Hyperparameter

Optimization in Machine Learning. https://doi.org/10.1007/978-1-4842-6579-6

Antonio Guili; Amita Kapoor; Sujit Pal. (2019). Deep Learning with TensorFlow 2 and Keras:

Regression, ConvNets, GANs, RNNs, NLP, and More with TensorFlow 2 and the Keras API.

O’Reilly Media, Inc.

Charu C. Aggarwal. (2018). Neural Networks and Deep Learning. A Textbook. Springer.

https://doi.org/10.7551/mitpress/13811.003.0007

Chollet François. (2019). Chollet - 2018 - Deep learning with Python. In Manning (Vol. 53, Issue 9).

http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep Learning with Python.pdf
Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd Editio).

O’Reilly Media, Inc.

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization

gap in large batch training of neural networks. Advances in Neural Information Processing

Systems, 2017-December, 1732–1742. https://arxiv.org/abs/1705.08741v2

Masters, D., & Luschi, C. (2018). Revisiting Small Batch Training for Deep Neural Networks.

https://arxiv.org/abs/1804.07612v1

O’Malley, Tom and Bursztein, Elie and Long, James and Chollet, Fran\c{c}ois and Jin, Haifeng and

Invernizzi, L. and others. (2019). KerasTuner. https://keras.io/keras_tuner/

Patterson, Josh and Gibson, A. (2017). Deep Learning: A Practitioner’s Approach. O’Reilly.

Shower Systems Explained. (n.d.). Retrieved November 13, 2021, from

https://luxehomebydouglah.com/blog/shower-systems-explained/

Soydaner, D. (2020). A Comparison of Optimization Algorithms for Deep Learning. International

Journal of Pattern Recognition and Artificial Intelligence, 34(13).

https://doi.org/10.1142/S0218001420520138
Vanhoucke, V., Senior, A., & Mao, M. (2011). Improving the speed of neural networks on CPUs. Proc.

Deep Learning and …, 1–8. http://research.google.com/pubs/archive/37631.pdf

http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep
http://research.google.com/pubs/archive/37631.pdf

