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ABSTRACT 

In the present day and age, most residential spaces comprise a shower system and generally a 

conventional system of hot water showers. Throughout history, showering has developed as an essential 

need in a person’s life. Nevertheless, a typical hot water shower system comprises delays in hot water 

mixing and usually requires an average of 2 to 4 minutes to mix the cold and hot water to deliver the 

appropriate shower temperature. The delay in mixing provides less comfort and poor satisfaction affecting 

people’s lifestyles. Due to these disadvantages, a system incorporating artificial Intelligence can be 

utilized to enhance the performance of mixing which can offer an automated hot water mixture system 

with improved efficiency and effectiveness. Recently, significant research has been focused on utilizing 

deep learning technology due to its multiple breakthroughs in fabricating a broad range of automated 

novel applications since Neural Networks comprise the capacity to learn from data to offer efficient and 

accurate systems. In this research project, the hot water mixture is employed by an Artificial Neural 

Network model integrated with the combination of an embedded system of the proposed system of hot 

water mixture. Furthermore, the proposed system comprises temperature and flow sensors along with 

controllable flow valves. The tested system indicated acceptable accuracy between the actual and desired 

output flow rate and temperature. 
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1 INTRODUCTION 

Throughout history, showering has evolved into an essential need for people. The primary reason 

showering was considered a fundamental need is to maintain a satisfactory degree of hygiene and other 

positive effects with respect to people’s health. Hot shower systems have developed and improved 

throughout history to improve the quality of showering. However, the existing conventional hot water 

shower control systems cause a delay of approximately 1 to 2 minutes in hot water mixing. 

In general, there are two fundamental shower control systems. The pressure balance shower 

system comprises one lever which performs the on/off function, and the water temperature can be 

regulated even though the volumetric flow of water cannot be controlled with this type of system 

(Shower Systems Explained). When the valve of this system is turned on, it cannot be adjusted to the 

desired position since the valve can only function in completely open or closed positions. Moreover, the 

output volume of water cannot be regulated, nevertheless, an adjustable shower head may be employed 

to alter the pressure. On the other hand, the thermostatic shower system comprises two levers, where one 

lever is capable of controlling the water temperature (thermostatic valve) and the other lever regulates 

the volume of water with the inclusion of an on/off function (volume control valve). This system enables 

the user to set the temperature permanently so that whenever the shower functions it provides the water 

temperature to the given value. However, when both basic shower systems are analyzed it can be said 

that they comprise drawbacks and lack versatility. 

Therefore, this study offers a system of Artificial Intelligent hot water mixture that provides an 

improved duration of hot water mixing and a reliable system with increased versatility to improve the 

lifestyles of people by delivering a comfortable shower experience. The study prioritizes the 

development of a hot water mixture system providing people with an easy-to-use and versatile system to 

bring comfort to their lifestyle. The primary objective of this study is to fabricate an automated hot water 

mixture system by implementing Neural Networks to provide the user the ability to input the desired 

shower temperature and flow rate to the automated hot water mixture system. In addition, a good 

automatic control mixture must be established, in simple terms, the proposed system must be an advanced 

and user-friendly system. Moreover, the secondary objectives were to construct a comparison utilizing 



learning strategies of Artificial Neural Networks (ANN), collect data to train the ANN model, develop 

the script of data collection and ANN model, and lastly develop the overall algorithm to function the 

automated system. Furthermore, utilizing Deep Neural Network technology provides a faster rate of hot 

water mixing as computations occur rapidly to provide the best possible results and since this technology 

comprises the capacity to learn, the hot water mixing system can be improved over time by integrating 

more features and functions to the system. Hence, when constructing a comparison between Neural 

Network and conventional methods, Neural Network offers more advantages to the system. Therefore, 

the study examined the ways of utilizing current shower control systems to introduce an innovative and 

novel approach. 

  The study design comprises implementing a Neural Network based system by utilizing a significant 

amount of dataset to train the Neural network model successfully to acquire the best-performing model by 

employing several techniques, particularly hyperparameter optimization. The results of the best-

performing models were then utilized by the microcontroller to provide the necessary instructions to the 

controllable flow valve when the user inputs the desired temperature and flow rate. This enables good 

automatic control and versatility for the user to insert the desired temperature and flow rate. 

1.1 Literature background 

Artificial Neural Networks (ANN) contain units of computation called neurons(Charu C. 

Aggarwal, 2018). Every input to a neuron consists of a scaled weight that affects the unit computation 

of that function. The propagation of computed values is transferred from the input to output neurons 

utilizing weights as the intermediary parameter in an ANN which evaluates the function of inputs. 

The learning process generally occurs by adjusting the weights connected with the neurons and these 

weights are adjusted in an ANN in response to errors from predicted results. 

The objective of adjusting the weights was to reshape the computed function in order to secure more 

accurate predictions in future iterations. Hence, weights are altered delicately in a mathematically 

validated pathway to minimize the error in the particular computation of a model. With successful 

alterations to the weights between a myriad of input and output pairs of neurons, the function computed 

by ANN gets refined over a period of time to provide further accurate predictions. For example, in this 

research project, the ANN was trained with a significant amount of datasets, as eventually, it will be able 

to predict and provide the desired output flow rate and temperature accurately when a user inputs his 

desired temperature and flow rate whereas in most situations the desired values are outside the dataset 

provided to the model that has been trained. This key ability to accurately evaluate or compute functions 

of concealed inputs by training with a specific dataset which consists of a finite collection of input and 

output pairs is known as model generalization. The prime effectiveness of all deep learning models is 

acquired by their potential to generalize their learning process from visible training data to concealed 

examples or situations. 

The experiments and computations for a particular fine-tuned neural network will not be suitable 

for another neural network. This is because it may consist of different input and output parameters, and 

a distinct complexity, and the objective of the results required may vary. Hence, for a given neural 

network, many parameters exist that are in need of optimization to acquire the best solution. A few of 

the common parameters to be tweaked in the neural network are, the number of hidden layers, number of 

neurons, batch size, and epoch number (Antonio Guili et.al, 2019). These listed parameters are limited 

as the number of parameters to be optimized will vary significantly, depending on the complexity of the 

neural networks. Furthermore, these parameters that are to be optimized in the neural network are 

defined as hyperparameters. This term is provided in order to distinguish between the system parameters 

of the network such as weights and biases. During the process of training, Hyperparameter tuning is the 

approach of discovering the optimal set of hyperparameters used to obtain improved cost functions 

(reduced cost functions). There are several hyperparameter tuning methods offered by Python in the form 

of libraries that may be utilized to fine-tune the hyperparameters of an ANN model such as Hyperband, 

Keras Tuner and Scikit optimize. These libraries aid in tuning the hyperparameters to obtain a set of best 

models that can be utilized to train the ANN model with the relevant dataset. 

In any Hyperparameter tuner, the initial hyperparameter that will be considered is the number of 

hidden layers, and by constructing more layers the depth of the neural network may increase and 

eventually form a deep neural network that provides the ability to further examine complex 

features(Agrawal, 2021). Therefore, for simple problems, one or two hidden layer networks will work 

relatively well whereas for more complicated problems the number of hidden layers can be increased 

until the point of overfitting the training dataset is reached. Following this hyperparameter, the number 

of neurons in each existing hidden layer must be considered. The number of neurons is typically 



determined by the sort of input and output task required. In general, a fundamental size is to establish a 

pyramid-like pattern of neuron numbers, that is fewer neurons in each adjacent layer (Geron, 2019). 

However, this concept was discarded as utilizing the same number of neurons in each hidden layer 

performs fairly well or even better in the majority of the cases. Nevertheless, all of this depends on the 

dataset as it can provide an idea to construct the neurons in the hidden layers.     Similar to the number of 

layers, the number of neurons may also be increased gradually to the point where the network begins to 

overfit, but this approach may be tedious and it is more efficient and straightforward to survey a model 

with more hidden layers and neurons first and thereafter to utilize options such as early stopping and 

regularization strategies to avoid overfitting. A scientist named Vincent Vanhoucke called this approach 

the “stretch pants approach” (Vanhoucke et al., 2011). This indicates that, instead of spending time to 

examine pants that precisely match the size, utilizing large stretch pants which will narrow down to the 

required size is more efficient. This approach avoids bottlenecking layers which can possibly ruin the 

model architecture and performance. 

Likewise, the hyperparameter called learning rate is a salient hyperparameter that controls how 

one regulates variations of the model with respect to the computed error each time the weights of the 

model are updated (Patterson, Josh, and Gibson, 2017). The basic concept of identifying a reasonable 

learning rate is to train the network for several hundred iterations, initially with a low learning rate and 

slowly increasing it to a larger value. Subsequently, the best learning rate discovered through this process 

can be utilized to train the network again whereas, the Optimizer dictates how the network may be updated 

such as weights depending on the loss function (Chollet François, 2019). Several optimizers are available 

to offer high-performance to train models of deep learning. For example, stochastic gradient descent, 

AdaGrad, Adam, and AdaDelta (Soydaner, 2020). 

Batch size may also have a substantial impact on the performance and time taken for the training 

of the model. A paper by Dominic Masters and Carlo Luschi in 2018, deduced that utilizing small batches 

typically between 2 to 32 was recommended since small batches supported providing better models in a 

short training period (Masters & Luschi, 2018). Nevertheless, a paper written in 2017 by Elad Hoffer et 

al. and Priya Goyal et al. illustrated a high probability of utilizing large batch sizes typically up to 8192, 

employing a variety of techniques such as increasing the learning rate, by warming it up from low to 

high learning rate value which is guided to a short period of training and without any generalization 

gaps. (Hoffer et al., 2017). Hence, two approaches are available either to utilize a large batch by warming 

up the learning rate and afterward if the training seems to be unstable or the performance of the model is 

unacceptable then it is recommended to try utilizing a smaller batch size instead. 

Lastly, the objective of the activation function is to introduce nonlinearity to each neuron. Many 

activations functions are available for selection such as ReLU, Sigmoid, and variants of ReLU (such as 

Leaky ReLU). Moreover, it is important to choose the ideal activation function for the neural network 

model since they are used on all neurons available in the neural network of the given model and 

backpropagation utilizes their derivates. Consequently, the function and its derivative must comprise 

less computational complexity (Agrawal, 2021). 

2 EXPERIMENTAL PROCEDURE 

2.1 Development stage 

The primary phase of the study was to perform an in-depth and detailed study of research findings 

related to the topic. The discovered research was then examined carefully to obtain a fundamental 

understanding and visual of the study. The research sources comprised books, articles, or papers that 

provide principal ideas, designs, and novel strategies and how engineering techniques are employed to 

overcome the complications that emerge in the existing research findings. The priority of the findings 

was mainly on the shower control systems, Neural networks, and microcontrollers. 

The research findings were then utilized to develop ideas on constructing the hot water mixture 

system design by employing existing components and technologies, particularly from previous related 

works. The design was developed employing AUTOCAD software and Figure 1 illustrates the design 

of the automated hot water mixture system. 
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Figure 1 Automated hot water mixture design 

After the design was developed, the priority was given to constructing the Neural Network 

architecture by investigating the parameters of the hot water mixture system, and by identifying the input 

and output parameters of the system the architecture of the Neural Network was fabricated. The 

parameters for the ANN input layer were considered as output temperature and output flow rate. The 

parameters of the output layer were considered as hot and cold water flow rates and temperatures. Figure 

2 illustrates the architecture of the constructed ANN model here the number of neurons in the first 

hidden layer was declared as 𝑛(1) and the term 𝑙 denotes the number of hidden layers in the ANN model. 

The values of the number of neurons in hidden layers and the number of hidden layers were given in 

the arbitrary form. This was due to the hyperparameter optimization technique utilized in the script 

development stage to identify these hyperparameter values. 
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Figure 2 Architecture of Artificial Neural Network model 
 
 

2.2 ANN and physical model implementation stage 

The list of components selected is illustrated in Table 1. These components are essential to fabricate 

the model required for data collection and the final proposed system of the study. 

 

Table 1 List of selected components of the final model of study 
 

Component name Model Number 

Microcontroller Raspberry Pi 4 Model B (2gb ram) 

Power Supply Switch mode power supply (SMPS) 

Servo motor DS3230 Metal gear servo 

Temperature Sensor DHT22/AM2302 

Flow sensor YF-S201 hall effect sensor 

Ball valve SLON two pieces ball valve 

 

The system is based on an Artificial Neural Network model, and in order to train the model, a 

significant amount of dataset must be acquired to obtain accurate predictions. Initially, an automatic and 

custom flow valve must be designed and tested prior to the collection of datasets. The custom flow 

comprises two key components, which are the servo motor and the ball valve. Figure 3 illustrates the 

fabrication of the automated flow valve which includes the other essential components such as brackets 

and metal plates for mounting purposes to ensure the proper functioning of the automated flow valve. 



 

 

 

Figure 3 Automated flow valve 

 

Due to the novel approach being performed by employing an Artificial Intelligence embedded 

system integrated into a hot water mixture system, the relevant dataset was not readily available. Hence, 

to collect relevant and accurate data, the hot water mixture system was fabricated, and data was acquired 

by executing the developed data collection script to collect the data at the main locations of a pipeline 

which are hot, cold, and output lines. 

The data collection script typically comprises the setup of the temperature sensors, flow rate 

sensors, and servo motors. After the setup, the primary loop of the script was developed to acquire 

readings at 3 main locations of the system which are hot water temperature and flow rate (hot pipeline), 

cold water temperature and flow rate (cold pipeline), output water temperature and flow rate (output 

pipeline). When the script was executed, the instruction was given to both servo motors at hot and cold 

pipelines to rotate between the specified range of 30 to 90 degrees. Then at each iteration, the servo 

motor regulates the volume of water flowing in both hot and cold pipelines, and the temperature and 

flow rates at input pipelines were measured after 3 seconds of waiting time after the servo motors rotate. 

The output temperature and flow rates were measured after 4 seconds of waiting which includes the 

delay of the readings measured by the hot and cold flow sensors since the sensors read the pulse within 

the 1-second timeframe when the counter is activated and deactivated. Hence the system was functioning 

to collect data until the script was terminated. Furthermore, the readings were written to a file after the 

completion of each iteration of the primary loop. In addition, the file consists of a comma-separated value 

(CSV) format. 

The overall fabricated model of the study is illustrated in Figure 4 which indicates the arrangement 

of the key devices. Where the custom automated flow valves are initially installed, followed by the 

temperature and flow sensors in each input pipeline. The flow sensors comprise threaded ends to be 

easily installed in the hot water mixture system. However, the installation of the temperature sensors 

was relatively complex comprising fixing a T joint connector and fitting an end cap which was drilled at 

the center to enable the wires to reach out of the system and be connected to the Raspberry Pi. 

Furthermore, the temperature sensor was installed perpendicular to the flow inside the T joint connector. 



 

 

 
Figure 4 Fabricated physical model of study 

 

The Neural network script was developed gradually, and the collected dataset was utilized to train 

the model. Before training the model, a crucial step was involved in obtaining the best hyperparameters 

for the model (O’Malley et al., 2019). This was employed by utilizing hyperparameter optimization 

techniques offered by Keras API. The tuner known as Hyperband was employed in this study along with 

the Random Search tuner to perform hyperparameter optimization. The best tuner was selected by 

monitoring the training loss (must be low) of the model since the hyperparameters found from both tuner 

algorithms are distinct and as a result, provide models with different performances. Hence, the best model 

was acquired from the tuner which provided the least training loss and then the best model with the ideal 

set of hyperparameters was trained. The set of hyperparameters this study prioritized to obtain was the 

number of hidden layers, the number of neurons in those hidden layers, the optimizer, and the dropout. 

Moreover, several other combinations of hyperparameters were experimented with prior to the final 

selection of the hyperparameters such as activation functions and learning rate. After the training 

procedure, the best model was evaluated with the test data, and predictions were made to examine the 

performance of the model. Furthermore, visualization strategies were utilized to visualize the 

performance of the model in a graph, particularly the graphs of training and validation losses. The library 

utilized to visualize was matplotlib. 
 

 

 

 

 

 



2.3 Physical model testing stage 

A relationship between valve angles and flow rates was established using the data from the 

acquired data collection process. The respective data of hot and cold angles and flow rates were read 

utilizing the pandas library. The variables were called to establish two linear equations for the regression 

graphs utilizing the polyfit function. The linear equation comprises the angles of hot and cold being the 

independent variables and hot and cold flow rates as the dependent variables. From the equation, the 

gradients and intercepts were obtained. Hence, when the user inputs the desired temperature and flow 

rate, the model predicts the hot and cold water flow rates and temperatures considering the new user 

inputs as new instances. The predicted flow rates are utilized to find the angle required to turn in the hot 

and cold pipelines. Then the data of hot and cold angles are utilized by the Raspberry Pi to send the control 

signal to the servo motor in the form of pulses to rotate to the angle computed, which will result in 

delivering the desired output flow rate and temperature. The accuracy of delivering the desired parameters 

depends on the performance of the Neural Network model. 

3 RESULTS AND DISCUSSION 

3.1 Data collection 

Tests conducted with the customized automatic flow valve to check for proper rotation of the ball 

valve indicated positive results where both automated flow valves rotated to the specified angle 

accurately. The data collected from the physical model was successful and a sample of the data collected 

is illustrated in Table 2. 

 
Table 2 Results of data collected of study 

 

Hot Angle 

(𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 

Cold angle 

(𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 

Hot flow 

(𝑙/𝑚𝑖𝑛) 

Cold 

Flow 

(𝑙/𝑚𝑖𝑛) 

Output 

Flow 

(𝑙/𝑚𝑖𝑛) 

Hot 

temp 

℃ 

Cold 

Temp 

℃ 

Output 

Temp 

℃ 

53 33 3.6 3.6 7.267 41 27.2 34.1 

71 69 3.333 3.467 6.867 41.4 27.2 34.2 

39 69 3.733 3.467 7.133 41.6 27.2 34 

66 37 3.467 3.6 7 42.4 27.2 35.1 

76 71 2.133 3.333 5.533 41.8 27.2 34.4 

69 81 2.533 1.73 4.2 42.2 27.2 33.1 

40 75 3.733 1.6 5.4 42.2 27.2 37.6 

68 44 3.467 3.733 7 47.5 27.2 41.8 

88 36 0 4.133 4.067 47.5 27.2 34.5 

 

The sample of collected data in Table 2 indicates the results were within acceptable bounds for 

flow rate readings with respect to the ball valve angle. However, there were some data points with 

inaccurate measurements. This can be possibly improved by increasing the waiting time between the 

devices to measure the reading during each iteration of the loop, which means after the ball valves rotate, 

a settling time of water must be taken into consideration. The waiting time considered in this study for 

each iteration was roughly 8 seconds and a total of 3000 datasets were collected here for 1 hour only 

450 datasets can be collected. Furthermore, during data collection, other factors must also be considered 

such as giving rest for the system since the devices can possibly fail or overwork, and in this study, a 

heater unit was utilized as a hot water source as the heating unit also requires substantial time to rest. 

3.2 Artificial Neural Network training 

The dataset was utilized to successfully train the ANN model and prior to the training, the 

Hyperband tuner of KerasTuner library was employed to find the best hyperparameters ideal for this 



 

 

study’s ANN model. In addition, the Hyperband tuner algorithm was selected over RandomSearch 

algorithm due to better training and validation loss provided by Hyperband tuner algorithm. 

Unfortunately, due to KerasTuner library being released in 2019, false information was provided with 

respect to the number of neurons in the hidden layers. However, other hyperparameters tuned were 

provided correctly as illustrated in Table 3. 

 
Table 3 Summary of selected hyperparameters 

 

Hyperparameter Selected choice or value 

Number of hidden layers 8 

Optimizer adam 

Loss Mean Absolute Error (MAE) 

Activation function ReLU 

Output layer Activation function Linear 

Dropout in first hidden layer 0.4 

Dropout in other hidden layers 0.2 

 

The choices in the tuner search space for optimizer were given as adam, adagrad and rmsprop and 

the dropout choice was given between 0.1 to 0.5 in the tuner search space. As illustrated in Table 3 the  

Hyperband tuner algorithm selected adam and other hyperparameters to be the most appropriate choice 

or value for this ANN model. Furthermore, the loss and activation function were not tuned since this 

study comprises a regression model and the type of activation function and loss function were considered 

as provided in Table 3. After acquiring the best model from the tuner the best model was trained for 120 

epochs to monitor the training and validation loss as illustrated in Figure 5. 
 
 

 
Figure 5 Graph of training and validation loss 

 

The training loss in the last epoch which is 120th epoch was 1.0104 and the validation loss was 

0.9354. The graph illustrated in Figure 5 indicates that the training loss (top) and validation loss (bottom) 

are alleviating and both losses were gradually converging with each other from the starting epoch during 

training. A factor must also be considered that the tuning algorithm implemented provides us with the 

best model to train with. Hence, when the best model obtained was trained the degree of convergence 

would be less visible. A possible reason the validation loss is less than the training loss is due to the 

training loss being consistently reported over the period of a complete epoch whereas the validation 

loss is evaluated over the validation set only once the current training epoch is completed. This suggests 

on average, training losses are measured half an epoch earlier. Furthermore, the training loss fluctuates 



less roughly after 90 epochs. Therefore, the trained model obtained can be considered good when 

comparing the average difference of both losses was fairly minor. The model was evaluated on the test 

data to examine the performance and the test loss from the evaluation was 0.938. This indicates that the 

training loss is relatively higher than the test loss which conveys that there is room for improvement in 

the ANN model. The most probable reason for the results of the training, validation, and test loss was 

due to the accuracy or noise comprised in the dataset collected. In addition, the overall dataset was split 

into 20% tests and the test data were split into half to utilize for validation data. 

Several strategies were employed to calculate the accuracy since the model is of regression type, 

the accuracy cannot be computed automatically from the compile method from the Sequential model 

since it is only available for classification problems. Therefore, the percentage deviation was computed 

after computing the predicted values of the ANN model with the test data and Figure 6 illustrates the 

comparison of actual and predicted results along with the deviation of the predicted result with respect 

to the actual result where the deviations were within 5% range for many of the results illustrating  good 

predictions by the ANN model. 

 

Figure 6 Results of predictions and percentage deviation 
 

3.3 Testing the automated hot water mixture system 

The results of the tested system are shown in Figure 7, where the user can input the temperature 

and flowrate of required and the angles are computed to deliver the user desired parameters by sending 

the control instruction to the servo motor via the Raspberry Pi. 



 

 

 

 
Figure 7 Testing the system of automated hot water mixture 

 

The tests performed on the final system indicated that the ANN model performs well for a certain 

range of temperatures and flow rates. Table 4 illustrates the time taken for the key procedures of the 

study where data collection is the time taken to collect the data required for Neural Network training of 

this study, The training time is the average time utilized to train the best model acquired from the 

hyperparameter optimization process followed by the training process. Furthermore, the convergence 

time is the time required for the system to converge the existing output temperature to the required user 

temperature and lastly, the response time is the duration the user has to wait for the final automated 

system to deliver the flow rate and temperature. In summary, the Neural Network approach offers a faster 

response time which comprises a significant percentage difference of 161% (13 seconds and 120 

seconds) in hot water mixing than the existing conventional methods. 

 

Table 4 Comparison between the research study approach and conventional methods 
 

 Neural Network Conventional methods 

Data collection (hours) ≥7 hours - 

Training time (seconds) 25 minutes - 

Convergence time <10 seconds - 

Response time <13 seconds 60-120 seconds 

4 CONCLUSION 

The main goal of this study was to develop a system of Neural Network based automated hot 

water mixture to reduce the time taken for hot water mixing by the current conventional systems of hot 

water showers. 

The procedure required to develop a path to employ an Artificial Intelligent embedded system 

consisting of automated and controllable flow valves along with sensors to compute the water 

temperature and flow rate. The Neural network model performance was significantly dependent on the 

data collection process and development of the ANN model by utilizing strategies for instance 

Hyperband tuning algorithm as a hyperparameter optimization technique. 

The physical model was successfully fabricated which comprises the salient implementations for 

instance the fabrication of the custom automated flow valve, the setup, and installation of DHT22 series 

temperature and YF-S201 flow sensors along with the overall pipework fabrication which includes the 

valve sockets, T joint, and elbow connections. Moreover, the key findings identified from the study were: 

the inversely proportional relationship developed between the angle and flow rate of hot and cold water 

in experimental results, and the relationship between the predicted and actual results acquired from the 

trained ANN model. 

In conclusion, acceptable results were attained due to the performance of the Neural Network 

model and providing predictions to compute the angles essential to rotate the controllable flow valves in 

instances where the desired shower temperature and flow rate are input by the user. This process was 

viable due to the successful collection of datasets from the physical model. Although, certain 

complications arose during the process of data collection, it can be deduced that a substantial amount 

of the data collected was within the accepted bounds. Moreover, some potential benefits were identified 

such as achieving stable temperature with fewer fluctuations and providing good control for users to 



enter the   desired temperature and flow rate, and faster response rates achieved in contrast to 

conventional methods. In addition, this study employed a system that ensures user-friendliness and 

comprises an advanced intelligent system to offer versatility to the system of automated hot water 

mixture. 
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