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A B S T R A C T

The COVID-19 pandemic disrupted regular global activities in every possible way. This pandemic, caused by
the transmission of the infectious Coronavirus, is characterized by main symptoms such as fever, fatigue, cough,
and loss of smell. A current key focus of the scientific community is to develop automated methods that can
effectively identify COVID-19 patients and are also adaptable for foreseen future virus outbreaks. To classify
COVID-19 suspects, it is required to use contactless automatic measurements of more than one symptom. This
study explores the effectiveness of using Deep Learning combined with a hardware-emulated system to identify
COVID-19 patients in Sri Lanka based on two main symptoms: cough and shortness of breath. To achieve this,
a Convolutional Neural Network (CNN) based on Transfer Learning was employed to analyze and compare
the features of a COVID-19 cough with other types of coughs. Real-time video footage was captured using
a FLIR C2 thermal camera and a web camera and subsequently processed using OpenCV image processing
algorithms. The objective was to detect the nasal cavities in the video frames and measure the breath cycles
per minute, thereby identifying instances of shortness of breath. The proposed method was first tested on
crowd-sourced datasets (Coswara, Coughvid, ESC-50, and a dataset from Kaggle) obtained online. It was then
applied and verified using a dataset obtained from local hospitals in Sri Lanka. The accuracy of the developed
methodologies in diagnosing cough resemblance and recognizing shortness of breath was found to be 94% and
95%, respectively.
. Introduction

COVID-19 is a worldwide pandemic caused by the highly contagious
ARS-CoV-2 virus (Organization, 2022b). This was first discovered
n Wuhan, China, in December 2019. Hence this disease has had a
etrimental effect on nearly every aspect of the global economy and
ocial structure (Nation, 2022). When a person sneezes, speaks, coughs,
r breathes, the minuscule droplets discharged from the nose or mouth
ransmit the virus. This virus has diverse forms that are now spreading
ver the world (Organization, 2022a).

During the time this study was carried out, numerous variants of
his virus were spreading worldwide. Variants of Concern (VOC) and
ariants of Interest (VOI) are two classifications for identified variants.
he World Health Organization (WHO) classifies the VOC as Alpha,
eta, Gamma, Delta, and Omicron, and it labels the VOI as Eta, Iota,
appa, Lambda, and Mu (Organization, 2022c). COVID-19 patients
ave reported a wide range of symptoms. According to for Disease
ontrol and Prevention (2021), the symptoms are the same irrespective
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of the varieties. Similarly, for other respiratory virus infections, such as
the common cold or influenza, individuals may experience symptoms
such as fever, tiredness, cough, loss of taste or smell, nausea, and short-
ness of breath. These shared symptoms make it crucial to accurately
differentiate between respiratory illnesses to determine the specific
virus causing the infection. In addition to the number of fatalities,
this pandemic has had a significant negative impact on the global
economy (Donthu and Gustafsson, 2020).

The negative impact on the global economy led to the closure of
several businesses, factories, and other workplaces. Even during the
period of this study, many companies were continuing the struggle
to recover their footing. Although some businesses adopted the Work
from Home (WFH) concept to sustain operations, many more faced
challenges due to their operational procedures, making it difficult to
adapt to remote work. Consequently, the businesses that could not
operate remotely resumed their operations despite the pandemic. This
decision inadvertently contributed to the rapid spread of the virus
and a significant increase in reported cases. In Sri Lanka, clusters
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formed within garment factories, organizations, and shopping malls
were responsible for over 95% of the reported cases (Covid19.gov.lk,
2021).

Given the timely importance of preventing the spread of this virus
and ending the pandemic, a variety of research is being undertaken
all over the world in response to the various challenges that have
arisen as a result of it Benfante et al. (2021), del Rio et al. (2020)
and Chaguza et al. (2022). Hence, not only the scholarly community
allocated substantial financial resources and manpower for research
and development to curb this ongoing endemic and future endemics,
but also Economic giants initiated vaccination programs incurring an
average expenditure of USD 7.7 billion for research and development
efforts. The objective was to expedite the development of technologies
that could effectively combat the endemic.

To this end, this paper also presents a study of a contactless method
to analyze cough sounds and shortness of breath using Deep learning
(DL) together with a hardware-emulated system to classify COVID-19
suspects in Sri Lanka. DL is an upcoming and powerful technology
used to implement foreseeable applications providing a technical flavor
to control this deadly disease. Given that DL can be enhanced by
incorporating hardware, numerous research has been conducted in
the healthcare industry to tackle the COVID-19 outbreak using DL
technology.

Similar studies had been carried out for the early identification of
COVID-19 patients using DL and hardware-emulated systems. for Eg.,
the study in Le et al. (2021) proposed an IoT-enabled Depth Wise
Separable Convolution Neural Network (DWS-CNN) with Deep Support
Vector Machine (DSVM) to diagnose and classify COVID-19. This paper
analyzes Chest X-ray images to classify them as binary or multiple-
class labels of COVID-19. This classification process involved data
acquisition, Gaussian Filtering, feature extraction, and classification.
This system has achieved an accuracy of above 98% for both binary and
multiple classifications. Similarly, a study by T. Ozturk et al. proposes a
DL model to detect COVID-19 patients by analyzing Chest X-ray images.
This created system relies on DarkNet technology for accurate forecast-
ing of convolutional layers. The goal of this research is to determine
radiology as a means of verifying the scan procedure. Radiologists have
assessed the heat maps generated by automated models. To test the
functionality of the created method, developers have used five-fold
cross-validation. The highest level of accuracy has been achieved and
reported for both binary and multi-class classifications (Ozturk et al.,
2020).

S. Vaid, et al. carried out another study in Vaid et al. (2020) to
improve the accuracy of the reported COVID-19-positive cases and to
predict the virus using Chest X-ray images using DL models. This system
employs a Convolutional Neural Network (CNN) to detect structural
defects and illness classification that was crucial in revealing hidden
patterns. This system used public datasets available on the internet.
Similarly, in Apostolopoulos and Tzani (2020), I. Apostolopoulos and
T. Mpesiana also proposed a transfer learning model that leverages
the power of pre-trained VGG19 and MobileNet v2 models to ana-
lyze Chest X-ray images. The objective was to predict and identify
patients with pneumonia and COVID-19 automatically. The authors
used two datasets, containing chest X-ray images of patients infected
with normal pneumonia and COVID-19, obtained from open sources.
The study employed tenfold cross-validation to assess the performance
of the presented techniques. Both VGG19 and MobileNet v2 exhibited
higher accuracy rates for binary classification. Whilst the first dataset
demonstrated the highest accuracy for the multi-class classification, the
MobileNet v2 was employed in the second dataset to obtain optimum
accuracy in binary and multi-class classification.

According to Panwar et al. (2020), it has been concluded that
a robust COVID-19 screening model requires DL-NN. The proposed
framework uses CXR images and is based on nCOV-net. The dataset
includes CXR images of COVID-19-positive and healthy patients. To as-

sess the efficacy of the proposed approach, random sampling is applied
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to both the training and testing datasets. Finally, the unique projected
technique for binary classification shows a high level of accuracy.

Consequently, the early and effective identification of COVID-19
patients has become one of the crucial requirements. As emphasized
in the UN sustainability goals, leveraging ICT technologies can signifi-
cantly enhance ‘‘good health and well-being’’. Addressing this problem,
the scientific contribution of this study can be outlined as follows: (1.)
Introducing a contactless method for analyzing cough sounds to discern
their resemblance to a COVID-19-positive cough. (2.) Implementing a
contactless approach to analyze a person’s respiratory rate and identify
signs of shortness of breath using DL and IoT-based technologies for the
detection of COVID-19 patients. (3.) Identifying and utilizing the most
suitable DL model tailored to the specific context of Sri Lanka. Those
interested in further advancing this study can contribute by visiting the
GitHub repository available here.

2. Background study

Artificial Intelligence (AI) with emulated hardware systems is
widely used nowadays for different purposes. Almost all industries are
increasingly moving towards AI combined with emulated hardware
solutions as technology develops to address their problems (Jiang et al.,
2022; Punla and C. Farro, 2022; Yamasinghe et al., 2022; Chandio
et al., 2022). As a result of the Coronavirus’s spread, several studies
are currently being conducted around the world to address this issue
using AI.

2.1. Use of deep learning models for cough classification

Cough is a common symptom of most respiratory system-related
diseases (NA, 2020). Furthermore, AI models have been developed to
detect different respiratory diseases such as pneumonia and Tuberculo-
sis (Monge-Álvarez et al., 2019; Botha et al., 2018).

Similarly, when considering COVID-19, cough is one of the most
common symptoms with more than 59% of the symptomatic patients
experiencing it. It is common for COVID-19 to impact the respiratory
system, which can change how someone breathes, coughs, and speaks.
According to the ZOE COVID Symptom Study app, persistent cough can
be an early symptom of COVID-19. A patient may be diagnosed with
the virus even if they do not have a chronic cough.

People diagnosed with the Coronavirus can also be asymptomatic.
However, the Massachusetts Institute of Technology (MIT) claims that
even asymptomatic patients can be diagnosed by analyzing cough
sounds. Several research studies have been undertaken and are still be-
ing conducted to analyze cough sounds to identify COVID-19 patients.

An AI framework created by J. Laguarta, F. Hueto, and B. Subirana
extracts biomarker characteristics from cough recordings to pre-screen
for COVID-19. In this system, the Mel Frequency Cepstral Coefficient is
used to modify cough recordings before they are input into a Convo-
lutional Neural Net(CNN)-based architecture with a Poisson biomarker
layer and three pre-trained ResNet50’s working in parallel to produce
a binary pre-screening diagnostic. Despite starting from scratch with a
machine learning model to identify Covid-19 patients by cough, they
fell short of their goals due to a lack of accuracy. As a result, they
put it to the test using an existing AI model that was meant to assess
Alzheimer’s disease and found it to be more accurate. This system
performs the analysis using a mobile application and only considers
the cough when arriving at the final decision (Laguarta et al., 2020).

A similar study conducted by A. Imran et al. introduced a mo-
bile application to pre-screen for COVID-19 using cough sounds. The
system classifies the cough into three categories: negative, positive,
and inconclusive. It derives this classification by comparing the patho-
morphological changes in the respiratory system caused by COVID-19
infection to those caused by other respiratory illnesses. As with the pre-
viously mentioned study, it considers the cough as the sole factor when

determining the conclusion (Imran et al., 2020). The study ‘‘Virufy’’,

https://github.com/Rashy98/InCov-Chamber.git
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Table 1
Summary of available systems that detect potential COVID-19 patients by analyzing cough sounds.

Author/s Dataset Accuracy Consider other symptoms (except cough)

Laguarta et al. (2020) Crowdsourced
COVID-19 dataset

Symptomatic - 94.2%
Asymptomatic - 83.2%

X

Imran et al. (2020) Data collected using a
mobile application

92% X

Chaudhari et al. (2020) Crowdsourced
COVID-19 dataset

77.1%
(ROC-AUC)

X

Pal and Sankarasubbu (2020) Crowdsourced
COVID-19 dataset

95.04% X

Ismail et al. (2020) Crowdsourced
COVID-19 dataset

91.2%
(ROC-AUC)

X

Quatieri et al. (2020) Crowdsourced
COVID-19 dataset

– X
Table 2
Summary of available systems that detect shortness of breath (O - included, X - Not included).

Author/s Privacy User experience No environmental impact Contactless Reusability Safety

Massaroni et al. (2019) X X O O O O
Wang et al. (2019) O O X O O X
Krug et al. (2016) O X X O O O
Luis et al. (2014) O X O X O O
Panahi et al. (2020) O O X X O O
Liu et al. (2021) O O O X O O
Understanding (2022) O O O X X O
Mukhtar et al. (2021) O O O O O X
Laguarta et al. (2020) O O O O O X
carried out by G. Chaudhari et al. shows that an AI-based method can
identify possible COVID-19 patients via crowd-sourced cough audio
clips. This system has obtained a ROC-AUC of 77.1%. Just as the prior
study, it employs a mobile application to record the cough sound and
considers the cough as the sole factor when concluding (Chaudhari
et al., 2020).

Another approach, developed by A. Pal and M. Sankarasubbu, uses
an AI framework to analyze cough sounds to identify COVID-19 pa-
tients. The coughing sound is further divided into four categories:
healthy, asthma, bronchitis, and COVID-19. For both COVID-19 neg-
ative and positive cough identification, this approach has achieved
accuracies of greater than 89%. However, this system has only con-
sidered 328 coughs from 150 patients to carry out the study (Pal
and Sankarasubbu, 2020). M. Al Ismail, S. Deshmukh, and R. Singh
proposed to test the theory and quantitatively describe the observed
alterations to detect COVID-19 from voice. A dynamical system model
for the oscillation of the vocal folds is used for this purpose, and a newly
developed ADLES algorithm is used to produce vocal fold oscillation
patterns directly from recorded speech. This is another system that
only considers coughs to detect whether a person is infected with the
Coronavirus (Ismail et al., 2020).

T. Quatieri, T. Talkar, and J. Palmer have also presented a frame-
work for identifying COVID-19 vocal biomarkers through speech pro-
duction techniques such as breathing, vocalizations, and pronunci-
ation (Quatieri et al., 2020). In the study, Mukhtar et al. (2021)
an SW-420 sensor was utilized to detect cough and its variations
throughout the study. To detect cough, the system employs Doppler
radar, continuous-wave (CW) radar, and vibration detection, with the
hardware or sensor mounted to the front of the person’s neck, which
makes the person uncomfortable.

Unfortunately, most published research is limited to non-open-
source datasets, hence it is difficult to assess the capacity of these
algorithms to detect COVID-19 using arbitrary cough recordings. Ta-
ble 1 depicts a summarized description of the papers. Models trained
on clinical data have a significant chance of failing to generalize,
specifically when testing data using crowd-sourced data and collecting

audio samples in a variety of settings, often with background noise.

3

2.2. Background of detecting shortness of breath

The utilization of contact-based methods for monitoring respira-
tion rate has been associated with a slew of issues. Consequently,
researchers have redirected their efforts towards developing a novel
contactless approach, which involves capturing video footage of the
patient’s chest, to monitor the human respiratory rate. Based on the
published research to date, it is evident that for contactless energy to
operate accurately, either the movement of the chest or the person’s
breath must be considered.

As given in Table 2, subsequently, multiple systems have been
introduced, each with its limitations as documented in the literature.
Carlo Massaroni et al. in Massaroni et al. (2019) used an RGB camera
to record video of the subject’s chest movement, adhering to the ap-
proach in research. Additionally, the system utilized the color intensity
produced by the individual as input. However, the reading may vary
based on the subject’s clothing, as garments with multiple colors may
not consistently reflect the same intensity of color. Furthermore, the
system is built on the assumption that slim-fit clothing allows for the
complete transfer of chest wall movement to the side, whereas loose-
fit clothing only permits partial transfer. Further, as most people are
uncomfortable with video filming their chest, this could result in a
privacy concern.

Wang et al. (2019) used cutting-edge physics in their research. The
system utilized the Doppler effect and air turbulence. According to
the authors, the system emitted a sound wave to identify the Doppler
effect caused by exhaling airflow. As a result, to eliminate external
airflow and noise, the system requires tightly-confined space. Even
though it can be kept in a closed environment, it cannot be integrated
with a system with other hardware components due to the noise that
may be produced. As a result, there is a chance that the outcome
will be inaccurate. In the case of the study conducted by Johannes
W. Krug et al. in Krug et al. (2016), a laser must be pointed at the
person’s chest. Because people’s heights vary, it may be necessary to
adjust. In addition, the authors state that ‘‘the test individual must
wear skin-tight clothing’’. As a result, it also caused the same problem
incurred in Massaroni et al. (2019) and failed to provide a pleasant user

experience.
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Fig. 1. Component overview — COVID-19 cough classification.
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Even though developing a smart sensor is effective, it still needs
o be in contact with the person, according to research by Luis et al.
2014). As mentioned by the authors, the device is also designed to
e used while the participant is lying in bed since it is not possible
o use the system in other environments. The same challenge related
o contact-based approaches was presented in the study conducted by
. Panahi et al. as shown in Panahi et al. (2020). Furthermore, as the
uthors pointed out, humidity might impact the system. Consequently,
here can be misleading readings because the test subject may be
weaty. Aside from these drawbacks, contact-based technology is not
ppropriate during a pandemic.

In the study by Liu et al. (2021), the apparatus is mounted on a bed
o obtain readings of respiratory rates. As a result, this technique was
eliant on a second surface that is in direct contact with the test subject.
nfortunately, the sensor does not come into direct contact with the
erson, and it is unable to be employed in a pandemic situation due
o its reliance on the other surface. A novel solution for integrating

thermistor into the facemask was presented in the study by R.
hattacharaya et al. in Bhattacharya et al. (2017). This approach is
ore suitable for individual use. However, it is unrealistic to anticipate

hat this mask will be affordable to all the company’s employees. Given
he need to change the face masks regularly (at least once a week), the
hermistor cannot operate for an extended period. Aside from that, this
ethod does not have a monitoring capability where the organization

an monitor the employee’s respiration rate.
Even though the study proposed by Alkali et al. (2014) maintains

contactless approach, the hardware component must be placed suffi-
iently close to the person’s nasal area. Therefore, the end that is ex-
osed to the person may contain virus particles transmitted through an
nfected person. Hence, it is not safe to use during a global pandemic.

In the study by Min et al. (2010), an ultrasonic module is com-
ined with many other sensors to provide a contactless technique to
onitor the respiratory rate. Ultrasonic sound, on the other hand, can
otentially harm the human ear. As a result, it cannot be considered
safe system to use regularly. Further, the system should maintain a
inimum distance of 100 cm, as stated by the authors. As a result, the

ystem may take up more space.
Yet with regard to the technical difficulties and privacy concerns,

his study discusses a contactless method utilizing two cameras, i.e.,
hermal and web, mounted together for detecting shortness of breath
n 30 s. Further discussion can be found in Section 3.2.

. Materials and methods

This chapter explains the materials and procedures used in this
tudy in two sections: cough classification and shortness of breath
etection.
 d

4

.1. Cough classification

The process of cough classification comprises two stages: Cough
etection and Cough Resemblance. Initially, the audio of a person’s
ough is captured for a duration of 5 s using the ’sound-device’ Python
ibrary, for a single channel. Next, the audio is converted into a
el-spectrogram (Understanding, 2022), which serves as the basis for

etermining the presence of a cough (referred to as cough detection). If
cough is identified in the audio, the spectrogram is further analyzed

o assess its resemblance to COVID-19-positive coughs (referred to as
ough resemblance). This procedure is illustrated in Fig. 1. More details
f the two stages are discussed in the subsequent sub-sections.

Cough detection is carried out via transfer learning on a CNN. To
hoose the best outcome, three pre-trained models: VGG-16, Efficient-
et, ResNet, and Inception-V3, were used and tested in this study. All

hese models are configured with similar parameters. Overall, all these
odels are trained with a training dataset of 2704 and a validation set

f 676 spectrograms as explained in Section 3.1.1.
The more important step in Cough Classification is cough resem-

lance, which aims to determine whether the captured cough is positive
r negative for COVID-19. This step specifically focuses on the spec-
rograms that were identified as containing a cough during the cough
etection phase. Similar to cough detection, cough resemblance utilizes
ransfer learning, employing the same pre-trained models for analysis.

.1.1. Data collection
The cough classification process involves the utilization of two

onvolutional Neural Networks (CNNs): one for cough detection and
he other for cough resemblance.

Consequently, two distinct datasets were employed for this pur-
ose. The first dataset, referred to as the cough detection dataset, was
btained from open-source datasets such as Coswara (Github, 2022a)
rom the Indian Institute of Science, Coughvid (Orlandic et al., 2022)
rom EPFL Switzerland, and the ESC-50 dataset (Github, 2022b). The
econd dataset, known as the cough resemblance dataset, was created
y combining data from Coswara, Coughvid, and Kaggle datasets.
etailed descriptions of the datasets are included in Table 3. For cough
etection, the ESC-50 dataset that contains 50 classes of environmental
udio recordings was utilized. This dataset provided audio samples
abeled as ‘‘coughing’’, which were used for training the neural network
o identify the presence of coughs in the audio. A total of 3380 audio
iles were utilized in the cough detection phase, with the training and
alidation sets split in an 80:20 ratio. This resulted in 2704 training
udio files and 676 validation audio file samples.

In the context of cough resemblance, the Coswara dataset (as shown
n Table 4) contained 343 samples with the COVID-19 positive au-

io files labeled as ‘positive mild’, ‘positive moderate’, and ‘positive
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Table 3
Dataset classification (Training and Testing set) for both components in this system.

Total Training set Testing set

Cough detection 3380 2704 676
Cough resemblance 3000 2400 600

Table 4
Detailed classification of the data used for cough resemblance.

Dataset Status Number

Coswara COVID-19 Negative Healthy 710
No_resp_illness_exposed 120
Resp_illness_not_identified 80
Recovered_full 40

COVID-19 Positive positive_mild 102
Positive_moderate 123
Positive_asymp 118

Coughvid COVID-19 Negative Healthy 550
COVID-19 Positive COVID-19 808

Kaggle COVID-19 Positive Positive 349
Total - Positive 1500
Total - Negative 1500
Total 3000

asymp’. Additionally, 950 files with different statuses were categorized
as COVID-19 negative audio files. Each entry in this dataset consisted
of two cough audio files: shallow cough and heavy cough. However,
for this study, only the heavy cough audio files were utilized.

To ensure a balanced training dataset, 808 audio recordings with
the label ‘COVID-19 Positive’ were assigned to the positive class, while
550 other audio files from the ‘Coughvid’ dataset were assigned to the
negative class. Furthermore, an additional 349 positive coughs were ob-
tained from Kaggle (Larxel, 2021). Overall, this study utilized a total of
3000 audio files for cough resemblance and 3380 for cough detection,
with an 80:20 ratio for training and validation. The distribution of the
data used for cough resemblance is also visualized in Fig. 2.

In addition to the data collected from the aforementioned sources,
a specific focus of this study was to assess the cough resemblance
within the Sri Lankan population. To achieve this, a set of 54 audio
files containing cough sounds was obtained from members of the Sri
Lankan community. The dataset (Liyanarachchi et al., 2023) can be
accessed for further reference and examination (dataset). Classification
of these cough audios is shown in Fig. 3. The audio files collected
for these datasets were pre-processed to obtain Mel-spectrograms as
spectrograms are being analyzed in this study. All these spectrograms
were then resized to 224 × 224 pixels since this study uses CNN to
chieve its outcomes.

The authors noted a few limitations when considering the available
atasets. A main limitation was the small number of COVID-19-positive
ough samples. However, given the current state of affairs regarding the
ropagation rate of the diseases, it is also recon that there was no safe
ay to get the data from the doctors or a third party on our own. Thus

he larger part of the data had to be obtained through crowd-sourced
nline datasets.

.1.2. Pre-processing data
As mentioned previously, the datasets used in this component con-

ain labeled audio files. As the initial step, the dataset used for the
NN to get a cough resemblance was divided into ‘healthy’ and ‘pos-

tive’. Similarly, the other dataset used for cough detection was di-
ided into the ‘cough’ and ’non-cough’ categories. Subsequently, Mel-
pectrograms were generated from the audio files of both datasets.
o accomplish this, the Librosa and Matplotlib Python libraries were
tilized. All spectrograms were converted to RGB format and resized
o 224 × 224 dimensions. However, when these datasets were input

into the CNNs, the Mel-spectrograms were converted to a NumPy array
containing the features and the label.
5

Fig. 2. Training dataset classification of cough resemblance.

Fig. 3. Testing set classification of Sri Lankan data.

3.1.3. Metrics
The metrics discussed in Table 5 are recorded in relation to the

CNNs’ categorization tasks for both cough detection and cough re-
semblance computation models. The performance of these models is
evaluated using the following metrics for classifications.

• Precision - Positive predictive value - Precision is the degree to
which your model is precise/accurate in terms of how many of
the predicted positives are actually positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃∕𝑇𝑃 + 𝐹𝑃 (1)

https://www.kaggle.com/datasets/rashinikavindya/covid19-cough-recording-sri-lankan-dataset
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Table 5
Specific Metrics for classification tasks of CNNs.

Cough detection Cough resemblance

True Positive - TP Cough identified correctly Correctly identified COVID-19 positive patient
False Negative - FN Cough identified incorrectly Incorrectly identified COVID-19 positive patient
True Negative - TN Non-cough identified correctly Correctly identified COVID-19 negative patient
False Positive - FP Non-cough identified incorrectly Incorrectly identified COVID-19 negative patient
• Recall – True positive rate

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕𝑇𝑃 + 𝐹𝑁 (2)

• F1 score - Used to find the balance between Recall & Precision

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)∕(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (3)

where, TP — True Positive, FP — False Positive, and FN — False
Negative.

3.1.4. Transfer learning
Transfer learning is the process of using a previously learned model

to solve a new problem. Large datasets are frequently used to train pre-
trained models. The weights calculated by these models can be used
on new models which lack large datasets. It is possible to utilize these
models directly to make predictions on new tasks or to incorporate
them into the process of training for a new model. Incorporating
pre-trained models into a new model reduces training time and general-
ization error. There are six common steps to follow when implementing
transfer learning:

1. Get a pre-trained model
2. Create the base model
3. Freeze layers
4. Add new trainable layers
5. Training the new layers on the dataset
6. Improve the model using fine-tuning.

Four separate pre-trained models were considered for this system
via the ‘Keras’ Python library. The CNNs considered for this system
were VGG16, Inception v3, ResNet, and Efficient-Net. These CNNs were
used for both cough detection and cough resemblance models. Some hy-
perparameters were shared across all CNNs. All the convolutional layers
of these models were activated by the Rectified Linear Unit (ReLU). To
mitigate overfitting, a Dropout layer was added to the neural network
with two hidden layers. The Adam optimizer, known for its efficiency
and flexibility, was utilized with a learning rate of 0.0001. All the
layers of the CNNs were configured to be non-trainable, and the two
models were completed with a Binary cross-entropy loss function. The
shared hyperparameters in the context of neural networks include the
Rectified Linear Unit (ReLU) activation function, which introduces non-
linearity by mapping negative values to zero and preserving positive
values. Dropout, another technique, aids in regularization by randomly
setting a fraction of input units to zero during training, promoting more
robust and generalized representations. The Adam optimizer combines
the strengths of AdaGrad and RMSProp by adaptively adjusting the
learning rate for each parameter. Additionally, a learning rate of 0.0001
was selected for improved efficiency and flexibility in determining
the step size during optimization iterations. These hyperparameters
collectively contribute to the efficacy of training and regularization of
neural networks.

The following is a brief overview of the pre-trained models em-
ployed and how they were applied in this study:

• VGG16 is a Convolutional Neural Network model that has
achieved an accuracy of 92.7% of top-5 test accuracy in ImageNet
(a dataset containing 14 million images in 1000 classes) (Si-
monyan and Zisserman, 2014). This model uses input RGB images
of a fixed size of 224 × 224. In this study, this model was initially
6

fine-tuned with Keras and is used in both components, Cough
detection and Cough resemblance computation. The output layers
were made non-trainable by freezing the weights, and other
trainable parameters in each layer were similarly made not to be
trained or altered when my dataset was fed.

• Inception-v3 is a convolutional neural network design from the
Inception family that includes Label Smoothing, Factorized 7 × 7
convolutions, and the inclusion of an auxiliary classifier to trans-
port label information deeper down the network, among other
improvements (Szegedy et al., 2016). For the process of iden-
tifying the best pre-trained model for the two models in this
study, the Inception v3 pre-trained model was also used. To avoid
over-fitting and to make sure that the model does not memorize
the exact details of the training images, we also employed data
augmentation for the training dataset.

• EfficientNet was the other pre-trained model that was used in
this study for the purpose of training the two models. This is a
convolutional neural network design and scaling method that uses
a compound coefficient to consistently scale all depth, width, and
resolution dimensions (Panwar et al., 2020). A new output layer
with two nodes corresponding to ‘cough’ and ‘non-cough’ in the
cough detection model and ‘positive’ and ‘healthy’ in the cough
resemblance model was added to this model.

• ResNet (He et al., 2016) is a pre-trained model commonly used
in deep learning for computer vision tasks. It uses residual blocks
to enable the training of much deeper networks, which in turn
helps to improve the accuracy of the model. In this study, ResNet
was used as one of the pre-trained models for training two sep-
arate models, one for cough detection and the other for cough
resemblance. The ResNet model was fine-tuned for the task by
adding a new output layer with two nodes, one for ‘cough’ and
the other for ‘non-cough’ in the cough detection model, and one
for ‘positive’ and the other for ‘healthy’ in the cough resemblance
model. The pre-trained ResNet model was modified and retrained
using a transfer learning approach to make accurate predictions
for the specific tasks at hand.

3.1.5. Testing
Both functional and non-functional testing was carried out as fol-

lows:

• Functional Testing: The functional testing process for the cough
detection system involved different stages. Initially, unit testing
was performed to ensure the proper functioning of individual
components such as cough recording, spectrogram generation,
cough detection, and cough resemblance. These components were
tested separately and were found to be working as expected. Next,
integration testing was conducted to combine and test the cough
detection and cough resemblance components in combination,
ensuring their seamless functionality in conjunction. Regression
testing was conducted after each code modification to ensure
the stability and functionality of existing features. This type of
testing is essential to maintain system stability during continuous
improvement. System testing, the final stage, involved joining the
completed components together and testing the complete system
as one unit to verify the attainment of desired results. Overall,
the testing process encompassed unit testing, integration testing,
regression testing, and system testing to ensure the accuracy and

effectiveness of the cough detection system.
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Table 6
Average execution time and peak memory consumption.

Function Functionality Average peak size (MB) Average time elapsed (ms)

Spectrogram creation Create the spectrogram using the previously recorded audio
file.

167.95 2499.56

Cough resemblance Load the two models used in the system. Check if a cough is
present in the audio. Provide the final result of whether or
not the cough is COVID-19 positive.

141.79 1136.81
Fig. 4. Scatter plot for functional performance.
• Non-Functional Testing: The reliability of the system was tested
to ensure consistent output, specifically in determining if the
recorded cough is COVID-19 positive or not, while performance
testing involved evaluating execution time and memory consump-
tion for functions related to spectrogram creation and cough
resemblance, with results summarized in Table 6 and represented
visually in Figs. 4(a) and 4(b).

3.2. Shortness of breath detection

Shortness of Breath is the second component of this study of de-
tecting COVID-19-positive patients. It is found that shortness of breath
is a vital symptom of COVID-19. Hence detecting this symptom was
considered in this study. An overview of this component is depicted in
Fig. 5.

The steps outlined below are used to detect shortness of breath in
this study.

• Identifying the nostril area
• Detecting the inhalation and exhalation
• Counting the number of thermal color changes.
• Comparing the obtained count with the respiration rate of a

healthy person

3.2.1. Hardware component
As for the hardware components in this part of the study, a camera

setup was used. A thermal camera and a standard web camera are
mounted on top of each other and the focus of these two cameras should
be almost identical in every way. In this study, a web camera with a
resolution of 1280 × 720 pixels and a FLIR C2 camera was used. The
setup of the two cameras is depicted in Fig. 6

3.2.2. Capturing breathing pattern
Initially, the two cameras capture the person’s face using the Python

libraries; ‘Dlib’ and OpenCV. This ‘Dlib’ library includes a pre-trained
machine learning model that includes 68 facial landmarks. The model

‘‘shape predictor 68 face landmarks.dat’’ was loaded into the system

7

at the very beginning. This file was then used to create an instance of
Dlib’s shape predictor class, which contains all of the functionality for
identifying and extracting facial features. The 𝑥 and 𝑦 coordinates of the
facial landmarks were then determined using the processed frame and
the previously recognized face. The received file was then converted
to a Numpy array, which contains the 𝑥 and 𝑦 coordinates of facial
landmarks. These coordinates are given in Fig. 7.

Even though the facial landmark identification and processing were
done using a standard web camera, these frames, however, do not
carry any information concerning the person’s respiration. Therefore, a
thermal camera was employed to gather such specifics. However, due
to the lack of rich features in the thermal camera footage, extracting
features (Nostril region) was infeasible. Though there are numerous
alternative methods available for extracting information from a thermal
image, the consistency was uncertain due to the person’s movements.

Consequently, to provide a better alternative, the proposed system
used both cameras to extract key characteristics from the thermal
image. The steps are as follows,

• The web camera was utilized to recognize and locate the 𝑥 and 𝑦
coordinates

• The 𝑥 and 𝑦 coordinates of the nostril area were extracted.
• Then the extracted 𝑥 and 𝑦 coordinates of the nostril area are

added to the frame obtained from the thermal camera

However, even if the relevant starting and ending points for the
nostril area are 32 and 36, respectively (Refer Fig. 7), achieving a
proper view is unlikely. As a workaround, the facial landmark number
30 is used as the beginning point.

3.2.3. Detecting the inhalation and exhalation
When the footage from the FLIR C2 thermal camera was examined,

it was observed that during a person’s breathing, it exhibits a tem-
perature difference in green at the nasal area as depicted in Fig. 8.
According to the calibration of the FLIR thermal camera, the green hue
represents relatively low temperatures. On the other hand, there is no
thermal color difference in the nose area during exhalation because the
temperature of the exhaled air is the same as the person’s body temper-
ature. As a summary, the appearance of green color pixels is interpreted
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Fig. 5. Component overview — Shortness of breath detection.
Fig. 6. Shortness of breath detection — Hardware setup.

s a human inhale and the disappearance of the same-colored pixels
s an exhale. Consequently, the total number of complete breathing
ycles was calculated by counting the number of color changes on the
xtracted region of the FLIR C2 thermal camera.

.2.4. Counting the number of thermal color changes
The RGB color-modeled image was first converted into an HSV

Hue, Saturation, Value) color-modeled image. The HSV color scale
roduces a numerical representation of the image that corresponds to
he color names. Using these numerical values, a program can easily
dentify and extract areas for a given color. However, after several
est runs, it was discovered that the thermal color change can vary
rom green to yellowish green depending on the temperature of the
nvironment. Hence, the standard HUE values were inadequate to
etect color changes. To develop a solution, various experiments were
arried out under typical room temperature in the coastal area of Sri
anka by varying the boundary hue values. This area was selected,
ecause the number of patients in the coastal area was high and the
preading ratio was also high. Finally, the upper boundary hue value
as determined to be 110, while the lower boundary hue value was

ound to be 30 for this study. A binary image was then generated by
roviding the aforementioned two boundary values, along with the
SV color-modeled images. As illustrated in Fig. 9, the pixels within
8

Fig. 7. Facial landmarks from ‘Dlib’ Library.

Fig. 8. Thermal color difference during inhalation.

the boundary were then converted to white (pixel value change to 255),
while the rest of the pixels were converted to black (pixel value change
to 0).

http://dlib.net
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Fig. 9. Thermal and binary views of the Nostril during an inhalation.

Algorithm 1 Algorithm to count the thermal color differences
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 ← 0
𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ← 0
while 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 < 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 + 30𝑠𝑒𝑐𝑜𝑛𝑑𝑠 do

𝑚𝑎𝑥_𝑝𝑖𝑥 ← 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑝𝑖𝑥𝑒𝑙_𝑜𝑓 _𝑏𝑖𝑛𝑎𝑟𝑦_𝑖𝑚𝑎𝑔𝑒
if 𝑚𝑎𝑥_𝑝𝑖𝑥 == 255 then

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 ← 255
else

if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 == 255 then
𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ← 𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 + 1

end if
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 ← 0

end if
end while

Finally, Algorithm 1 was used to count the respiratory cycles. As it
ust first determine the maximum pixel value existing in the binary

mage, the binary image which has pixel values of 0 or 255, 255 would
ssign to 𝑚𝑎𝑥_𝑝𝑖𝑥, if a white region is present. Otherwise, the value
ill be set to 0. Then, if the 𝑚𝑎𝑥_𝑝𝑖𝑥 value equals 255, then the value

255 is assigned to the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 variable. It is necessary to retain
information from the previous frame in order to recognize the transition
from inhalation to exhale Because a single inhalation process contains
multiple frames. The loop was then resumed, and the program would
keep the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 variable value unchanged until there is a white
region in the image.

At the very first movement of the exhalation, the value of the
𝑚𝑎𝑥_𝑝𝑖𝑥 variable was replaced by 0 as there was no white region present
in the frame. Yet, the value of the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 variable is still set to
255. In this situation, the if condition of the 5th line becomes false and
the 𝑒𝑙𝑠𝑒 part in line 7 is executed. Within the 𝑒𝑙𝑠𝑒 condition in line 7, it
checks the value of the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 variable. Since the current frame
does not contain a white region (𝑚𝑎𝑥_𝑝𝑖𝑥 set to 0) and the previous
frame has had a white region (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 set to 255), it indicates
a transformation of color. In this way, the system identifies the trans-
formation from inhalation to exhalation. Since the program is focused
on counting the total number of inhalations, this transformation needs
to be counted. Therefore, within the nested, if condition, the value of
the 𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 variable is increased by one. Then immediately the
value of the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑓𝑟𝑎𝑚𝑒 is set to 0 denoting continuations of the
exhalation process. Note that all these computations were carried out
based on the first frame as the exhalation. However, for the inhalation
process, there are multiple frames regarding a single exhalation and
the value of the 𝑚𝑎𝑥_𝑝𝑖𝑥 is set to 0. Therefore, the outermost and the
nested 𝑖𝑓 conditions will fail throughout the exhalation. As a result,
the value of the 𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 variable would not be updated until
the person’s exhalation is complete. The values were changed as the
individual begins to inhale again and the value of the 𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 will
be incremented by one at the very first movement of the exhale. This

process continues until the loop stop after 30 s, and at the end of
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Table 7
Accuracy comparison for cough detection.

Model Average Accuracy(%)

VGG-16 98.0
ResNet 97.4
Inception V3 93.6
EfficientNet 87.0

Table 8
Accuracy comparison for cough resemblance.

Model Average Accuracy (%)

ResNet 93.17
VGG-16 92.4
EfficientNet 86.4
Inception V3 82.7

Table 9
Summary of tested scenarios for cough resemblance.

Test case Symptomatic/Asymptomatic Nationality Result Confidence

COVID Patient Symptomatic Sri Lankan Positive 90.73%
COVID Patient Asymptomatic Sri Lankan Positive 91.30%
COVID Patient Symptomatic Indian Positive 85.10%
COVID Patient Asymptomatic Indian Positive 91.31%
A healthy person – Sri Lankan Healthy 98.27%
A healthy person – American Healthy 99.14%

the loop, the 𝑏𝑟𝑒𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 variable can be used to get the number of
complete breathing cycles of the person for 30 s.

3.2.5. Comparing with the respiration rate of a healthy person
The obtained reading of the respiration rate must then be compared

to the average respiration rate of a healthy person in the final stage.
According to Hopkins Medicine, a healthy adult’s average rate of
breathing is between 12 and 16 breaths per minute.

4. Simulation implementation and testing

The training and testing for all models in this study were conducted
on a MacOS device with a 6-Core Intel Core i7 processor and a memory
of 16 GB.

4.1. Cough classification

As mentioned in Section 2, three pre-trained models were exper-
imented with to get the highest validation accuracy for both cough
detection and resemblance. Tables 7 and 8 show the comparison of
the four models for Cough detection and Cough resemblance respec-
tively. Moreover, the training and validation accuracy plots for cough
resemblance are depicted in Fig. 11. The outputs show that although
the accuracies of these trained models are high, some of them have
overfitted data. This resulted in the models not being able to generalize
well to new data. Therefore, after analyzing the comparison of these
models, the model with the highest accuracy, i.e., the VGG-16 model
for cough detection and ResNet for cough resemblance was selected. As
depicted in Tables 7 and 8, the models achieved accuracies of 98% and
94% respectively for the two sub-components (see Fig. 10).

Tables 10 and 9 shows several test cases that represent the full
dataset for the two components, detection, and resemblance respec-
tively that were carried out with the models that were fine-tuned and
developed using the ResNet model.

4.2. Shortness of breath detection

After following the steps discussed in Section 2 the implementation

was tested using 20 people. The sample set is explained in Fig. 12.
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Fig. 10. Classification report — Cough resemblance (ResNet).
Fig. 11. Training and validation accuracy plots of the three CNNs for Cough Resemblance; X-axis: Number of Epochs, Y-axis: Accuracy.
Fig. 12. Testing sample for shortness of breath.
This component was tested independently for all the steps described
n Section 2.2 of this paper. The nostril identification was 95% accurate,
urthermore, 100% accuracy was attained for inhalation and exhala-
ion detection. Finally, it was obtained a 90% accuracy for thermal
hange count with 18 successful test cases. All of these observations
re based on the above-mentioned test sample and were carried out at
n average room temperature in Sri Lanka’s coastal region.
10
5. Results & discussion

5.1. Results

5.1.1. Cough classification
Cough detection classifies a given audio as ‘cough’ or ‘non-cough’

while cough resemblance classifies it as ‘positive’ or ‘healthy’. The three
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Table 10
Summary of tested scenarios for cough detection.

Test Case Expected Actual Confidence

A female cough Cough Cough 98.02%
A male cough Cough Cough 99.73%
No sound at all Non-cough Non-cough 99.22%
A female talking Non-cough Non-cough 94.89%
A male talking Non-cough Non-cough 95.03%
Dog barking Non-cough Non-cough 92.96%

Fig. 13. ROC and AUC curve for cough resemblance.

pre-trained models; VGG-16, InceptionV3, EfficientNet, and ResNet
were tested for these two components. Given that, VGG-16 was found to
be the most reliable for cough detection with 98% accuracy and ResNet
for cough resemblance 93%. The Receiver Operating Characteristic
(ROC) curves along with their Area Under the Curve (AUC) for the
three models tested for cough resemblance is depicted in Fig. 13. Given
that, as explained in Table 9, it was found that a potential COVID-
19 patient, either symptomatic or asymptomatic can be detected by
analyzing cough sounds with 93% accuracy.

Furthermore, during this study, it was also found that DL using
CNNs can have a substantial impact on the automatic detection and
extraction of key elements from spectrograms obtained from audio
recordings containing coughs, which is relevant to the diagnosis of
COVID-19.

Moreover, this study yielded a set of findings about a person’s cough
and the forced cough sound of a COVID-19 patient. It was revealed
that by using CNN and Python libraries for pre-processing, a person’s
cough can be distinguished from other natural sounds by assessing their
frequency fluctuations. It was also discovered that both symptomatic
and asymptomatic COVID-19 patients could be identified by analyzing
force cough sounds.

Another fact that was identified in the proposed study is that
transfer Learning using the pre-trained model VGG16 showed the maxi-
mum accuracy for cough detection while ResNet showed the maximum
accuracy for cough resemblance with a limited dataset. On the other
hand, it was also found that the confidence of the predictions slightly
reduces when there is background noise. However, since the training
dataset was crowdsourced, most of these audios contained background
noises and were trained accordingly.

Moreover, there is research conducted to analyze cough to detect
potential COVID-19 suspects. However, research such as Ismail et al.
(2020) attaches a sensor to the front of the neck to get the oscilla-
tions to detect cough patterns. In contrast to that study, the proposed

system uses a fully contactless approach. Other than that, there are
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Table 11
Sub-component accuracies of Shortness of breath detection component.

Process Accuracy

Capturing breathing pattern 100%
Identifying the nostril area 95%
Detecting inhalation and exhalation 100%
Counting thermal color changes 90%

researches conducted which have developed mobile applications as pre-
screening methods by analyzing cough sounds (Laguarta et al., 2020;
Imran et al., 2020; Chaudhari et al., 2020; Pal and Sankarasubbu,
2020; Brown et al., 2020; Alsabek et al., 2020; Lella et al., 2021).
When reviewing these researches, the majority of them did suggest that
asymptomatic patients can be recognized by analyzing cough sounds,
which is validated by this study as well.

Some of the limitations found during the study were the limitation
and the quality of the dataset; because the dataset used for this is
crowd-sourced, there is a risk of the data being mislabeled. Moreover,
the dataset collected from the Sri Lankan patients was also of low-
quality audio files because the audio were collected through doctors
(with the consent of the patients) using a mobile phone. Nonetheless,
this component contributes to the possibility of an effective way of
identifying COVID-19-positive patients and this will assist to minimize
the spread of the disease.

5.1.2. Shortness of breath detection
After following the methodology as mentioned in Section 2, several

significant results were obtained for this section. The accuracy of the
outcomes of each of the preceding phases is shown in Table 11. As
summarized in the table the study can conclude that this component
has the capability of identifying a person with shortness of breath with
an accuracy of 93%.

Moreover, during this study, it was found that it is possible to
obtain the respiratory rate of a person in a contactless approach without
affecting a person’s privacy. Furthermore, it was found that a person’s
inhalation and exhalation can be recognized distinctly using thermal
footage that captures the person’s face. Aside from that, it was dis-
covered that image processing techniques such as thresholding can be
utilized to obtain the Region Of Interest of real-time footage. Moreover,
it was also found that it is more time efficient to detect this in real-time
than using an AI model. In conclusion, it was discovered that a person
can be identified as a potential COVID-19 patient by detecting shortness
of breath and obtaining the person’s respiratory rate using real-time
thermal footage.

6. Conclusion and future works

With the spread of the Coronavirus throughout the world, the
need for automatic identification of possible COVID-19 suspects arose.
As described throughout this paper, this study was able to employ
DL together with hardware emulated techniques to identify possible
COVID-19 patients using cough classification and shortness of breath
without contact with the patient. Both of these components were
successfully implemented and yielded an accuracy of 94% for cough
classification and 93% for shortness of breath detection using a crowd-
sourced dataset and a data set collected from Sri Lankan hospitals.
Additionally it was also found that ResNet model was working well
with 94% accuracy for early detection of COVID-19 patients in Sri
Lankan Context. Moreover, during this study, it was found that COVID
patients can be early detected by anosmia, i.e., the inability to smell
anything, as a symptom. Even though detecting the anosmia condition
was out of scope for this study, during the paper was in review, the
authors were able to test anosmia conditions, and the test results
showed that promising 97% accuracy in classifying COVID-19 patients
during its preliminary stages. Furthermore, the methods developed in
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this study hold potential for application beyond COVID-19. The dataset
used and the code for the implemented techniques have been published
and made available in relevant repositories for further research and
utilization. During the study, there were some limitations in the data
sets that hindered the accuracy of the models. Particularly, the cleaning
process was very challenging because the gathered data sets were
crowd-sourced. Hence, there was a risk of the data being mislabeled
and such data had to be omitted. Moreover, the low-quality audio
files collected from Doctor’s mobile phones (with the consent of the
patients), was also impacted for accuracy. Such things will be corrected
in future implementations. Additionally, a comprehensive dataset from
the Sri Lankan Context will be obtained in order to examine cor-
relations between various factors, including gender, age, occupation,
etc.

CRediT authorship contribution statement

Rashini Liyanarachchi: Conceptualization, Methodology, Soft-
ware, Validation, Writing – original draft. Janaka Wijekoon:
Conceptualization, Supervision, Writing – original draft. Manu-
jaya Premathilaka: Conceptualization, Methodology, Software,
Validation. Samitha Vidhanaarachchi: Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

References

Alkali, A., Saatchi, R., Elphick, H., Burke, D., Evans, R., 2014. Noncontact respiration
rate monitoring based on sensing exhaled air. Malays. J. Fundam. Appl. Sci. 9,
http://dx.doi.org/10.11113/mjfas.v9n3.97.

Alsabek, M.B., Shahin, I., Hassan, A., 2020. Studying the similarity of COVID-19
sounds based on correlation analysis of MFCC. In: 2020 International Conference
on Communications, Computing, Cybersecurity, and Informatics (CCCI). pp. 1–5.
http://dx.doi.org/10.1109/CCCI49893.2020.9256700.

Apostolopoulos, I., Tzani, B., 2020. Covid-19: Automatic detection from X-Ray images
utilizing transfer learning with convolutional neural networks. Australas. Phys. Eng.
Sci. Med. / Support. Australas. Coll. Phys. Sci. Med. Australas. Assoc. Phys. Sci.
Med. 43, http://dx.doi.org/10.1007/s13246-020-00865-4.

Benfante, A., Messina, R., Piccionello, I., Di Liberti, R., Principe, S., Scichilone, N.,
2021. The impact of SARS-COV2 pandemic on the management of IPF patients:
Our narrative experience. Pulm. Pharmacol. Ther. 69, 102038. http://dx.doi.org/
10.1016/j.pupt.2021.102038, URL https://www.sciencedirect.com/science/article/
pii/S109455392100050X.

Bhattacharya, R., Bandyopadhyay, N., Kalaivani, S., 2017. Real time Android app
based respiration rate monitor. In: 2017 International Conference of Electronics,
Communication and Aerospace Technology (ICECA), Vol. 1. pp. 709–712. http:
//dx.doi.org/10.1109/ICECA.2017.8203633.

Botha, G.H.R., Theron, G., Warren, R.M., Klopper, M., Dheda, K., van Helden, P.D.,
Niesler, T.R., 2018. Detection of tuberculosis by automatic cough sound analysis.
Physiol. Meas. 39 (4), 045005. http://dx.doi.org/10.1088/1361-6579/aab6d0.

Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D.,
Xia, T., Cicuta, P., Mascolo, C., 2020. Exploring automatic diagnosis of COVID-
19 from crowdsourced respiratory sound data. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
http://dx.doi.org/10.1145/3394486.3412865.

Chaguza, C., Coppi, A., Earnest, R., et al., F., 2022. Rapid emergence of SARS-CoV-2
omicron variant is associated with an infection advantage over delta in vaccinated
persons. MedRxiv http://dx.doi.org/10.1101/2022.01.22.22269660, URL https:
//www.medrxiv.org/content/early/2022/01/25/2022.01.22.22269660.

Chandio, A., Gui, G., Kumar, T., Ullah, I., Ranjbarzadeh, R., Roy, A.M., Hussain, A.,
Shen, Y., 2022. Precise single-stage detector. http://dx.doi.org/10.48550/ARXIV.
2210.04252, URL https://arxiv.org/abs/2210.04252.

Chaudhari, G., Jiang, X., Fakhry, A., Han, A., Xiao, J., Shen, S., Khanzada, A., 2020.
Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of
COVID-19 from cough. http://dx.doi.org/10.48550/ARXIV.2011.13320, URL https:
//arxiv.org/abs/2011.13320.
12
Covid19.gov.lk, 2021. COVID-19 Sri Lanka update | coronavirus related news Sri Lanka.
URL https://covid19.gov.lk/covid-19-stats.html.

Donthu, N., Gustafsson, A., 2020. Effects of COVID-19 on business and research.
J. Bus. Res. 117, 284–289. http://dx.doi.org/10.1016/j.jbusres.2020.06.008, URL
https://www.sciencedirect.com/science/article/pii/S0148296320303830.

for Disease Control, C., Prevention, 2021. Coronavirus disease 2019 (COVID-19) –
symptoms. URL https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/
symptoms.html.

2022a. Github - iiscleap/coswara-data: data repository of project coswara_2022. URL
https://github.com/iiscleap/Coswara-Data.

2022b. Github - karolpiczak/esc-50: esc-50: dataset for environmental sound
classification. URL https://github.com/karolpiczak/ESC-50.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778. http://dx.doi.org/10.1109/CVPR.2016.90.

Imran, A., Posokhova, I., Qureshi, H.N., Masood, U., Riaz, M.S., Ali, K., John, C.N.,
Hussain, M.I., Nabeel, M., 2020. AI4COVID-19: AI enabled preliminary diagnosis for
COVID-19 from cough samples via an app. Inform. Med. Unlocked 20, 100378. http:
//dx.doi.org/10.1016/j.imu.2020.100378, URL https://www.sciencedirect.com/
science/article/pii/S2352914820303026.

Ismail, M.A., Deshmukh, S., Singh, R., 2020. Detection of COVID-19 through the
analysis of vocal fold oscillations. http://dx.doi.org/10.48550/ARXIV.2010.10707,
URL https://arxiv.org/abs/2010.10707.

Jiang, B., Chen, S., Wang, B., Luo, B., 2022. MGLNN: Semi-supervised learning via
multiple graph cooperative learning neural networks. Neural Netw. 153, 204–214.
http://dx.doi.org/10.1016/j.neunet.2022.05.024, URL https://www.sciencedirect.
com/science/article/pii/S0893608022001988.

Krug, J.W., Odenbach, R., Boese, A., Friebe, M., 2016. Contactless respiratory monitor-
ing system for magnetic resonance imaging applications using a laser range sensor.
Curr. Dir. Biomed. Eng. 2 (1), 719–722. http://dx.doi.org/10.1515/cdbme-2016-
0156.

Laguarta, J., Hueto, F., Subirana, B., 2020. COVID-19 artificial intelligence diagnosis
using only cough recordings. IEEE Open J. Eng. Med. Biol. 1, 275–281. http:
//dx.doi.org/10.1109/OJEMB.2020.3026928.

Larxel, 2021. Covid-19 cough audio classification. URL https://www.kaggle.com/
datasets/andrewmvd/covid19-cough-audio-classification.

Le, D.-N., Murugan, V., Gupta, D., Khanna, A., Rodrigues, J., Shankar, D., 2021. IoT
enabled depthwise separable convolution neural network with deep support vector
machine for COVID-19 diagnosis and classification. Int. J. Mach. Learn. Cybern.
12, 1–14. http://dx.doi.org/10.1007/s13042-020-01248-7.

Lella, K.K., PJA, A., 2021. Automatic COVID-19 disease diagnosis using 1D convo-
lutional neural network and augmentation with human respiratory sound based
on parameters: cough, breath, and voice. AIMS Public Health 8 (2), 240–264.
http://dx.doi.org/10.3934/publichealth.2021019.

Liu, Q., Kenny, M., Nilforooshan, R., Barnaghi, P., 2021. An intelligent bed sensor
system for non-contact respiratory rate monitoring. http://dx.doi.org/10.48550/
ARXIV.2103.13792, URL https://arxiv.org/abs/2103.13792.

Liyanarachchi, R., Wijekoon, J., Premathilaka, M., Vidhaanarachchi, S., 2023. COVID-19
cough recording dataset (Sri Lankan). http://dx.doi.org/10.34740/KAGGLE/DSV/
4901461, URL https://www.kaggle.com/dsv/4901461.

Luis, J.A., Roa Romero, L.M., Gómez-Galán, J.A., Hernández, D.N., Estudillo-
Valderrama, M.Á., Barbarov-Rostán, G., Rubia-Marcos, C., 2014. Design and
implementation of a smart sensor for respiratory rate monitoring. Sensors 14 (2),
3019–3032. http://dx.doi.org/10.3390/s140203019, URL https://www.mdpi.com/
1424-8220/14/2/3019.

Massaroni, C., Presti, D., Formica, D., Silvestri, S., Schena, E., 2019. Non-contact
monitoring of breathing pattern and respiratory rate via RGB signal measurement.
Sensors 19, 2758. http://dx.doi.org/10.3390/s19122758.

Min, S.D., Kim, J.K., Shin, H.S., Yun, Y.H., Lee, C.K., Lee, M., 2010. Noncontact
respiration rate measurement system using an ultrasonic proximity sensor. IEEE
Sens. J. 10 (11), 1732–1739. http://dx.doi.org/10.1109/JSEN.2010.2044239.

Monge-Álvarez, J., Hoyos-Barceló, C., San-José-Revuelta, L.M., Casaseca-de-la
Higuera, P., 2019. A machine hearing system for robust cough detection
based on a high-level representation of band-specific audio features. IEEE Trans.
Biomed. Eng. 66 (8), 2319–2330. http://dx.doi.org/10.1109/TBME.2018.2888998.

Mukhtar, H., Rubaiee, S., Krichen, M., Alroobaea, R., 2021. An IoT framework for
screening of COVID-19 using real-time data from wearable sensors. Int. J. Environ.
Res. Public Health 18 (8), http://dx.doi.org/10.3390/ijerph18084022, URL https:
//www.mdpi.com/1660-4601/18/8/4022.

NA, 2020. Learn about cough. URL https://www.lung.org/lung-health-diseases/
warning-signs-of-lung-disease/cough/learn-about-cough.

Nation, U., 2022. Everyone included: social impact of covid-19 | disd_2022. URL
https://www.un.org/development/desa/dspd/everyone-included-covid-19.html.

Organization, W.H., 2022a. Coronavirus disease (covid-19): how is it transmitted?_2022.
URL https://www.who.int/news-room/questions-and-answers/item/coronavirus-
disease-covid-19-how-is-it-transmitted.

https://www.kaggle.com/datasets/rashinikavindya/covid19-cough-recording-sri-lankan-dataset
https://github.com/Rashy98/InCov-Chamber.git
http://dx.doi.org/10.11113/mjfas.v9n3.97
http://dx.doi.org/10.1109/CCCI49893.2020.9256700
http://dx.doi.org/10.1007/s13246-020-00865-4
http://dx.doi.org/10.1016/j.pupt.2021.102038
http://dx.doi.org/10.1016/j.pupt.2021.102038
http://dx.doi.org/10.1016/j.pupt.2021.102038
https://www.sciencedirect.com/science/article/pii/S109455392100050X
https://www.sciencedirect.com/science/article/pii/S109455392100050X
https://www.sciencedirect.com/science/article/pii/S109455392100050X
http://dx.doi.org/10.1109/ICECA.2017.8203633
http://dx.doi.org/10.1109/ICECA.2017.8203633
http://dx.doi.org/10.1109/ICECA.2017.8203633
http://dx.doi.org/10.1088/1361-6579/aab6d0
http://dx.doi.org/10.1145/3394486.3412865
http://dx.doi.org/10.1101/2022.01.22.22269660
https://www.medrxiv.org/content/early/2022/01/25/2022.01.22.22269660
https://www.medrxiv.org/content/early/2022/01/25/2022.01.22.22269660
https://www.medrxiv.org/content/early/2022/01/25/2022.01.22.22269660
http://dx.doi.org/10.48550/ARXIV.2210.04252
http://dx.doi.org/10.48550/ARXIV.2210.04252
http://dx.doi.org/10.48550/ARXIV.2210.04252
https://arxiv.org/abs/2210.04252
http://dx.doi.org/10.48550/ARXIV.2011.13320
https://arxiv.org/abs/2011.13320
https://arxiv.org/abs/2011.13320
https://arxiv.org/abs/2011.13320
https://covid19.gov.lk/covid-19-stats.html
http://dx.doi.org/10.1016/j.jbusres.2020.06.008
https://www.sciencedirect.com/science/article/pii/S0148296320303830
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://github.com/iiscleap/Coswara-Data
https://github.com/karolpiczak/ESC-50
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.imu.2020.100378
http://dx.doi.org/10.1016/j.imu.2020.100378
http://dx.doi.org/10.1016/j.imu.2020.100378
https://www.sciencedirect.com/science/article/pii/S2352914820303026
https://www.sciencedirect.com/science/article/pii/S2352914820303026
https://www.sciencedirect.com/science/article/pii/S2352914820303026
http://dx.doi.org/10.48550/ARXIV.2010.10707
https://arxiv.org/abs/2010.10707
http://dx.doi.org/10.1016/j.neunet.2022.05.024
https://www.sciencedirect.com/science/article/pii/S0893608022001988
https://www.sciencedirect.com/science/article/pii/S0893608022001988
https://www.sciencedirect.com/science/article/pii/S0893608022001988
http://dx.doi.org/10.1515/cdbme-2016-0156
http://dx.doi.org/10.1515/cdbme-2016-0156
http://dx.doi.org/10.1515/cdbme-2016-0156
http://dx.doi.org/10.1109/OJEMB.2020.3026928
http://dx.doi.org/10.1109/OJEMB.2020.3026928
http://dx.doi.org/10.1109/OJEMB.2020.3026928
https://www.kaggle.com/datasets/andrewmvd/covid19-cough-audio-classification
https://www.kaggle.com/datasets/andrewmvd/covid19-cough-audio-classification
https://www.kaggle.com/datasets/andrewmvd/covid19-cough-audio-classification
http://dx.doi.org/10.1007/s13042-020-01248-7
http://dx.doi.org/10.3934/publichealth.2021019
http://dx.doi.org/10.48550/ARXIV.2103.13792
http://dx.doi.org/10.48550/ARXIV.2103.13792
http://dx.doi.org/10.48550/ARXIV.2103.13792
https://arxiv.org/abs/2103.13792
http://dx.doi.org/10.34740/KAGGLE/DSV/4901461
http://dx.doi.org/10.34740/KAGGLE/DSV/4901461
http://dx.doi.org/10.34740/KAGGLE/DSV/4901461
https://www.kaggle.com/dsv/4901461
http://dx.doi.org/10.3390/s140203019
https://www.mdpi.com/1424-8220/14/2/3019
https://www.mdpi.com/1424-8220/14/2/3019
https://www.mdpi.com/1424-8220/14/2/3019
http://dx.doi.org/10.3390/s19122758
http://dx.doi.org/10.1109/JSEN.2010.2044239
http://dx.doi.org/10.1109/TBME.2018.2888998
http://dx.doi.org/10.3390/ijerph18084022
https://www.mdpi.com/1660-4601/18/8/4022
https://www.mdpi.com/1660-4601/18/8/4022
https://www.mdpi.com/1660-4601/18/8/4022
https://www.lung.org/lung-health-diseases/warning-signs-of-lung-disease/cough/learn-about-cough
https://www.lung.org/lung-health-diseases/warning-signs-of-lung-disease/cough/learn-about-cough
https://www.lung.org/lung-health-diseases/warning-signs-of-lung-disease/cough/learn-about-cough
https://www.un.org/development/desa/dspd/everyone-included-covid-19.html
https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted


R. Liyanarachchi, J. Wijekoon, M. Premathilaka et al. Engineering Applications of Artificial Intelligence 125 (2023) 106709
Organization, W.H., 2022b. [Link]. URL https://www.who.int/health-topics/coronavir
us#tab=tab_1.

Organization, W.H., 2022c. Tracking sars-cov-2 variants_2022. URL https://www.who.
int/en/activities/tracking-SARS-CoV-2-variants/.

Orlandic, L., Teijeiro, T., Atienza, D., 2022. The COUGHVID crowdsourcing dataset:
A corpus for the study of large-scale cough analysis algorithms. URL https:
//zenodo.org/record/4498364#.YUm8mC0RrRY.

Ozturk, T., Talo, M., Yildirim, A., Baloglu, U., Yildirim, Ö., Acharya, U.R., 2020.
Automated detection of COVID-19 cases using deep neural networks with X-ray
images. Comput. Biol. Med. 121, http://dx.doi.org/10.1016/j.compbiomed.2020.
103792.

Pal, A., Sankarasubbu, M., 2020. Pay attention to the cough: Early diagnosis of COVID-
19 using interpretable symptoms embeddings with cough sound signal processing.
http://dx.doi.org/10.48550/ARXIV.2010.02417, URL https://arxiv.org/abs/2010.
02417.

Panahi, A., Hassanzadeh, A., Moulavi, A., 2020. Design of a low cost, double triangle,
piezoelectric sensor for respiratory monitoring applications. Sens. Bio-Sens. Res. 30,
9. http://dx.doi.org/10.1016/j.sbsr.2020.100378.

Panwar, H., Gupta, P., Siddiqui, M.K., Morales-Menendez, R., Singh, V., 2020.
Application of deep learning for fast detection of COVID-19 in X-Rays using
nCOVnet. Chaos Solitons Fractals 138, 109944. http://dx.doi.org/10.1016/j.chaos.
2020.109944.

Punla, C.S., C. Farro, R., 2022. Are we there yet?: An analysis of the competencies of
BEED graduates of BPSU-DC. Int. Multidiscip. Res. J. 4 (3), 50–59.
13
Quatieri, T.F., Talkar, T., Palmer, J.S., 2020. A framework for biomarkers of COVID-19
based on coordination of speech-production subsystems. IEEE Open J. Eng. Med.
Biol. 1, 203–206. http://dx.doi.org/10.1109/OJEMB.2020.2998051.

del Rio, C., Collins, L.F., Malani, P., 2020. Long-term health consequences of COVID-19.
JAMA 324 (17), 1723. http://dx.doi.org/10.1001/jama.2020.19719.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. http://dx.doi.org/10.48550/ARXIV.1409.1556, URL https://
arxiv.org/abs/1409.1556.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the
inception architecture for computer vision. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2818–2826. http://dx.doi.org/10.1109/
CVPR.2016.308.

2022. Understanding the mel spectrogram. URL https://medium.com/analytics-vidhya/
understanding-the-mel-spectrogram-fca2afa2ce53.

Vaid, S., Kalantar, R., Bhandari, M., 2020. Deep learning COVID-19 detection bias:
accuracy through artificial intelligence. Int. Orthop. 44, http://dx.doi.org/10.1007/
s00264-020-04609-7.

Wang, T., Zhang, D., Wang, L., Zheng, Y., Gu, T., Dorizzi, B., Zhou, X., 2019. Contactless
respiration monitoring using ultrasound signal with off-the-shelf audio devices.
IEEE Internet Things J. 6 (2), 2959–2973. http://dx.doi.org/10.1109/JIOT.2018.
2877607.

Yamasinghe, N., Ranasinghe, Y., Dissanayake, Y., Wijekoon, J.L., Panchendrarajan, R.,
2022. IMask: An IoT-based intelligent mask to identify and track COVID-19
suspects. In: 2022 IEEE International Conference on Smart Internet of Things
(SmartIoT). pp. 7–14. http://dx.doi.org/10.1109/SmartIoT55134.2022.00011.

https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://zenodo.org/record/4498364#.YUm8mC0RrRY
https://zenodo.org/record/4498364#.YUm8mC0RrRY
https://zenodo.org/record/4498364#.YUm8mC0RrRY
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.1016/j.compbiomed.2020.103792
http://dx.doi.org/10.48550/ARXIV.2010.02417
https://arxiv.org/abs/2010.02417
https://arxiv.org/abs/2010.02417
https://arxiv.org/abs/2010.02417
http://dx.doi.org/10.1016/j.sbsr.2020.100378
http://dx.doi.org/10.1016/j.chaos.2020.109944
http://dx.doi.org/10.1016/j.chaos.2020.109944
http://dx.doi.org/10.1016/j.chaos.2020.109944
http://refhub.elsevier.com/S0952-1976(23)00893-X/sb42
http://refhub.elsevier.com/S0952-1976(23)00893-X/sb42
http://refhub.elsevier.com/S0952-1976(23)00893-X/sb42
http://dx.doi.org/10.1109/OJEMB.2020.2998051
http://dx.doi.org/10.1001/jama.2020.19719
http://dx.doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
http://dx.doi.org/10.1007/s00264-020-04609-7
http://dx.doi.org/10.1007/s00264-020-04609-7
http://dx.doi.org/10.1007/s00264-020-04609-7
http://dx.doi.org/10.1109/JIOT.2018.2877607
http://dx.doi.org/10.1109/JIOT.2018.2877607
http://dx.doi.org/10.1109/JIOT.2018.2877607
http://dx.doi.org/10.1109/SmartIoT55134.2022.00011

	COVID-19 symptom identification using Deep Learning and hardware emulated systems
	Introduction
	Background Study
	Use of Deep Learning Models for Cough Classification
	Background Of Detecting Shortness Of Breath

	Materials and Methods
	Cough Classification
	Data collection
	Pre-Processing data
	Metrics
	Transfer Learning
	Testing

	Shortness of Breath Detection
	Hardware Component
	Capturing Breathing Pattern
	Detecting the Inhalation and Exhalation
	Counting the Number of Thermal Color Changes
	Comparing with the Respiration Rate of a Healthy Person


	Simulation Implementation and Testing
	Cough Classification
	Shortness of Breath Detection

	Results & Discussion
	Results
	Cough Classification
	Shortness of Breath Detection


	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


