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ABSTRACT 

Early detection of machine failure is crucial in every industrial setting as it may prevent 

unexpected process downtimes as well as system failures. However, machine learning (ML) models are 

increasingly being utilized to forecast system failures in industrial maintenance, and among them, 

multilabel classification techniques act as efficient methods. Therefore, this study analyzed machine 

failure data with five types of machine failures. Initially, a feature selection approach was also carried 

out in this study to determine the variables which directly cause machine failure. Furthermore, multilabel 

k-nearest neighbours (MLkNN), multilabel adaptive resonance associative map (MLARAM), and 

multilabel twin support vector machine classifier (MLTSVM) in adapted algorithms, Binary Relevance, 

ClassifierChain, and LabelPowerSet in problem transformation approaches, and Random Label Space 

Partitioning with Label Powerset (RakelD) in ensemble classifiers were employed. To train these 

models, both the original data set as well as data frame after the feature selection was used, and hamming 

loss, accuracy, macro, and micro averages were calculated for each of these classifiers. According to the 

results, MLkNN in adapted algorithms and LabelPowerset in problem transformation approaches 

performed better than other classifiers used in this study. Therefore, it can be concluded that MLkNN 

and LabelPowerset could be used to classify multilabel with positive results.   

KEYWORDS: adapted algorithms, ensemble classifiers, feature selection, machine failure, 

machine learning, multilabel classification, problem transformation. 

1 INTRODUCTION 

The loss of production time due to machinery breakdown is a major concern for any business that 

relies on manufacturing. Failure of a machine occurs when some aspect of an industrial asset does not 

operate as designed, leading to reduced performance or an outright shutdown. This failure of equipment 

can have a wide range of consequences, from insignificant to catastrophic, including increased repair 

costs, unscheduled downtime, lost productivity, and problems for the workers' health and safety, as well 

as an effect on production and the delivery of services. Machine failure can happen due to many reasons, 

such as operator mistakes, improper use, inadequate regular and preventative maintenance, unreliable 

culture, physical damage, and heating up. Therefore, it is important to predict the machine's failure in 

advance to reduce the unnecessary costs that may incur. 

However, in recent years few studies have been done to predict machine failure using different 

techniques. Traditional approaches to fault diagnosis (Corne, Vervisch, Derammelaere, Knockaert, & 

Desmet, 2018; Glowacz et al., 2017; Irhoumah et al., 2018; Sapena-Bano et al., 2018 ) rely on elaborate 

mathematical models, including supervised diagnosis or processing system dynamic models 

(AntoninoDaviu & Popaleny, 2018; Bessous, Chemsa, & Sbaa, 2018; Brandt, Gutten, Koltunowicz, & 

Zukowski, 2018; Ullah, McDonald, Martin, Benarous, & Atkinson, 2019 ). With the dawn of state-of- 

the art technologies, industrial settings have started to employ machine learning (ML) techniques to 

predict the faults in machines. In order to improve the standard approach to compound-fault 

identification in rotating machinery, Wang, Zhang, Li, and Wu (2020) created a novel ensemble extreme 

learning machine (EELM) network by merging binary classifiers. They proposed an extreme learning 

machine (ELM) for clustering and multilabel classification and concluded that the EELM-based fault 

diagnosis approach provides the best overall performance through their results. Using Motor current 
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signature analysis (MCSA)- Fourier transforms (FFT), Bessous, Sbaa, and Megherbi (2019) examined 

the  failures in squirrel cage induction motors (SCIMs) caused by rolling element bearings (REBs). In 

addition, a new indication built on top of the MCSA- discrete wavelet transform (DWT) method was 

created, and the two methods were compared in depth. In the end, they found that MCSA-DWT provided 

reliable data on SCIM health. 

Kankar, Sharma, and Harsha (2011) concentrated on ball-bearing fault diagnosis utilizing 

artificial neural networks (ANN) and support vector machines (SVM). The original vibration features 

were extracted, and their dimensionality was reduced using statistical approaches. From their findings, 

it was apparent that these ML algorithms can be employed for a fully automated bearing fault diagnosis 

system. Ferreira and Warzecha (2017) developed a multi-criteria framework for classifying up to ten 

machine conditions with a focus on experimental processes. They measured the voltages and currents 

in a synchronous machine. Using a sparse Linear Discriminant Analysis technique, they filtered the 

signals and extracted the key features they had previously identified. Scatter plots in three dimensions 

(with a symbol for each machine state) were used to illustrate the findings. After further examination, 

they determined that this technique can be applied to the diagnosis of a wide variety of machine faults.  

Delgado-Arredondo et al. (2017) established a method for fault detection in induction motors in 

steady-state operation based on the analysis of acoustic sound and vibration signals. The signal was 

broken down into its component intrinsic mode functions using the complete ensemble empirical mode 

decomposition. In addition to identifying additional frequencies related to the defects, their proposed 

approach resulted in improved fault detectability outcomes compared to other published publications.  

In their research, Feng, Jones, Chen, and Fang (2018) examined how various multilabel 

classification techniques performed in the failure classification problem. They tested eight different 

methods of classification on five different programs containing over eight thousand different bugs. 

Compared to single-label methods, the experimental results demonstrated that multilabel approaches 

yield higher accuracy. To determine if a specific code piece is impacted by many scents, Guggulothu 

and Moiz (2020) proposed and explored the usage of multilabel classification (MLC) techniques. After 

converting two code smell datasets from the literature into a multilabel dataset (MLD), it was discovered 

that the two MLC approaches took into account the association between the smells and improved 

performance for the 10-fold cross-validation with ten iterations.  

Tan et al. (2021) analyzed the performance of different cutting-edge multilabel classification 

algorithms for fault diagnosis of maritime machinery using single-fault data. They used a dataset derived 

from a Frigate simulator that had been validated against real data to experimentally verify the efficacy 

of their approach. Their experiments validated the viability of the proposed approach, which can aid in 

making informed choices regarding the use of multilabel classification for simultaneous fault diagnosis 

of marine systems. In order to diagnose many defects simultaneously and assess the fault severity in 

noisy environments, Dineva et al. (2019) used a new method for multilabel classification. Electrical 

signature analysis and conventional vibration data were utilized for modelling, and the efficacy of 

different multilabel classification models was examined. They conducted experiments to verify the 

suggested method's viability under a variety of fault circumstances, including imbalance and 

misalignment.  

The preceding summary of the literature, however, reveals that there have been relatively few 

studies published on the investigation of the multilabel prediction performance of contemporary 

classifier algorithms. In addition, there is limited interpretation when it comes to choosing the best 

classifier for use in the industry. Therefore, this study aims to find suitable multilabel classifiers for 

machine failure prediction. Section 2 of this paper discusses the materials and methods that have been 

used, and in section 3, the results obtained are discussed in detail. Section 4 includes the conclusion of 

this study. 

2 MATERIALS AND METHODS 

2.1 Data 

This study used data related to a machine failure, and data was retrieved from an online data 

repository (Matzka, 2020). The original dataset is comprised of 10 000 records that describe the 

following machine features.  
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1) Product ID - Describes the product quality using the letter notation of L (50% of all products), 

M (medium value of 30%) and H (high values of 20%), along with a variant-specific serial number.  

2) UID - A unique id to identify the products.  

3) Air temperature (in Kelvin) - Air temperature was generated using a random walk process 

that was normalized to a standard deviation of 2 K around 300 K.  

4) Process temperature (in Kelvin) - Generated by adding the air temperature plus 10 K to a  

random walk process with a standard deviation of 1 K.  

5) Rotational speed (rotations per minute) - Calculated using a 2860 W power and a normally 

distributed noise as a background.  

6) Torque (Newton Meters) - Torque values were considered without having negative values   

with a normal distribution around 40 Nm with a stand deviation of 10 Nm.  

7) Tool wear (minutes) - The high-quality variations H, M, and L add 5/3, 2 minutes to the 

process, causing the used tool to deteriorate.  

 

In addition to the above machine features, machine failures have been recorded considering five 

independent failure types as follows.  

 

1) Tool wear failure (TWF) - The tool wear failure is recorded when a tool fails or is replaced 

between a time of 200-240 minutes. 

2) Heat dissipation failure (HDF) - If the difference in air and process temperatures is less than 

8.6 K and the tool's rotational speed is less than 1380 rpm, heat dissipation results in a process failure.  

3) Power failure (PWF) - Power failures are recorded if the power is below 3500W or above 

9000W. Power is the product of torque and rotational speed (in rads-1).  

4) Overstrain failure (OSF) - Overstrain failures are recorded when the product of the tool wear 

and torque exceeds 11,000 minNm for the L-type products, 12,000 minNm for M-type products and 

13,000 for H-type products, respectively. 

5) Random failures (RNF) - Each process has a chance of 0.1% to fail despite the process 

parameters that are defined as random failures. 

 

If at least one of the above failure modes were recorded, the machinery failure label has been 

recorded as ‘1’, which will indicate the malfunction of the machine. Figure 1 depicts the original form 

of the data frame. 

 

 
Figure 1. Original data frame  

2.2 Data Preprocessing and Exploration 

Firstly, UDI and product Id variables were removed due to the lack of predictive power. The 

machinery failure variable was also removed, and TWF, HDF, PWF, OSF, and RNF were retrieved as 

the target columns. After that, data were checked for the availability of null values, and it was found that 

there were no such records. The type variable, which was originally a categorical variable, was converted 

to numeric values using one-hot encoding technique. However, the data were scaled using the 

minmaxscaler from the sklearn library (Pedregosa et al., 2011) since the column values were in different 

numerical ranges. After scaling, data exploration was performed to understand the data distribution. For 
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this purpose, a correlation heat map was used, and correlation among the variables was visualized. In 

addition, highly correlating features that had a score greater than 0.7 were removed from the data. To be 

more precise about the removing variables, a feature selection was also conducted using the selectKBest 

method from the sklearn library (Pedregosa et al., 2011).  

2.3 Multilabel Classification Techniques 

Due to the inclusion of several target columns, this research problem was trained according to 

multilabel classification techniques. Multilabel classification techniques have the ability to provide 

multiple outputs compared to traditional classification methods (Herrera, Charte, Rivera, & Jesus, 2016). 

Firstly, the data were split so that 75% of the data were assigned for the training split while the rest of 

the data were allocated to the testing set. After using the train-test split approach, methodologies of 

problem transformation adapted algorithms, and ensemble methods were used to model the data. For 

this, the scikit-multilearn, which is library developed especially for handling multilabel classification 

tasks, was used (Szymański & Kajdanowicz, 2017). 

 

1) Adapted algorithms – These algorithms focus on modifying cost/decision functions to adapt 

single-label classification algorithms to the multilabel case (Szymański & Kajdanowicz, 2017). This 

study implemented the multilabel k-nearest neighbours (MLkNN),  multilabel adaptive resonance 

associative map (MLARAM), and multilabel twin support vector machine classifier (MLTSVM) for 

machine failure prediction. 

• MLkNN – This algorithm has been developed under adapted algorithms. In MLkNN, the nearest 

examples to a test class are found using k-Nearest Neighbors, and assigned labels are chosen using 

Bayesian inference (Zhang & Zhou, 2007).  

• MLARAM – This classifier approach focuses on accelerating classification by including an 

additional Adaptive Resonance Theory (ART) layer for grouping learned prototypes into substantial 

clusters. In this scenario, activating only a small portion of the prototypes can replace activating all of 

them, significantly reducing the classification time (Benites & Sapozhnikova, 2015).  

• MLTSVM – This is a useful advancement of the twin support vector machine (TWSVM) for 

multilabel classification. This classifier determines multiple non-parallel hyperplanes to capture the 

multilabel information embedded in data (Chen, Shao, Li, & Deng, 2016).  

 

2) Problem transformation approaches - Out of the problem transformation approaches, methods 

of Binary Relevance, ClassifierChain, and LabelPowerSet were utilized for training the data model in 

this research.   

• Binary Relevance - Using the same base classifier from the constructor, the binary relevance 

technique divides an L-label multilabel classification problem into L separate L-label binary 

classification problems (Szymański & Kajdanowicz, 2017). The output of the prediction is the union of 

all classifiers for each label.   

• ClassifierChain - This algorithm (Read, Pfahringer, Holmes, & Frank, 2009) treats each label 

as a link in a conditioned chain of problems involving single-class classification (Szymański & 

Kajdanowicz, 2017).   

• LabelPowerset - In this approach to multilabel classification, a multilabel problem is  

transformed into a multi-class problem using a single multi-class classifier that has been trained on all 

unique label combinations found in the training data (Szymański & Kajdanowicz, 2017).  

 

3) Ensemble classifiers - The application of ensemble classification schemes by ensembles of 

classifiers results in the generation of an array of multilabel base classifiers. In this study, only Random 

Label Space Partitioning with Label Powerset (RakelD) was applied. Tsoumakas, Katakis, and Vlahavas 

(2011) introduced RakelD as a library that has been created using an ensemble of classifiers. 

 

However, to observe whether there is an impact of the feature selection on the classification 

techniques, the models were trained using both the original data frame and the data frame after the feature 

selection was performed.  
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2.4 Model Evaluation Metrics  

Unlike the traditional approaches of binary classification and multi-class classification, multilabel 

classification has separate evaluatory metrics (Tsoumakas & Katakis, 2007). In this section, the metrics 

used to evaluate the results that were obtained are discussed.  

  

1) Hamming loss – Hamming loss that is given in Eq. (1) provides a fraction of labels that are 

incorrectly classified, which is used to evaluate the multilabel classification methods(Ganda & Buch, 

2018).  

 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 =  
1

𝑚
∑ |

𝑌𝑖 ∆ 𝑍𝑖

𝑀
|𝑚

𝑖=1                                                                       (1)       

  

2) Accuracy - The percentage of predicted correct labels to the total number of labels (predicted 

and actual) for each instance is known as accuracy, and it can be calculated as in Eq. (2) (Ganda & 

Buch, 2018).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑚
∑ |

𝑌𝑖 ∩ 𝑍𝑖

𝑌𝑖 ∪ 𝑍𝑖
|𝑚

𝑖=1                                                                                                           (2)  

  

3) Macro average and micro average - Generally, the receiver operating characteristic curve 

(ROC)-area under the curve (AUC) score is generated by calculating ROC-AUC from the prediction 

scores. The ROC curve is a graphical method for evaluating a test's ability to distinguish between labels 

(Akobeng, 2007). The ROC curve can be created by calculating the test's sensitivity and specificity at 

every possible cut-off point and then plotting those results against 1-specificity (Akobeng, 2007). A 

ROC curve can also be considered the average of a test's sensitivity over all feasible specificity values 

or vice versa (Mandrekar, 2010). In macro ROC-AUC, for each label, it computes the metrics and 

determines the unweighted mean. Label imbalance is not taken into account in this. The micro 

ROCAUC score considers each label in the label indicator matrix when calculating metrics on a global 

scale.  

In this analysis, both the macro ROC-AUC score and micro ROC-AUC score metrics were tested 

using the one versus rest method.  

3 RESULTS AND DISCUSSION  

After training the data models using the methods described in section 2.3, the results were 

recorded considering the standards of hamming loss, accuracy, macro average, and micro average. The 

results obtained for the original data model before applying feature selection are depicted in Table 1.  

  

Table 1. Multilabel Evaluation Metric Scores for the Classifiers Before Applying Feature Selection 

Approach 

type  
Classifier  

Hamming loss  Accuracy  Macro 

average 

Micro 

average  

Adaptation 

approach  

MLkNN  0.0052  0.973  0.8826  0.9700  

MLARAM  0.2020  0.019  0.5620  0.5712  

MLTSVM  0.0078  0.964  0.5620  0.5712  

Problem 

transformation   

Binary Relevance  0.0064  0.902  0.8498  0.9630  

LabelPowerset  0.0064  0.970  0.9022  0.9640  

ClassifierChain  0.0064  0.970  0.8826  0.8930  

Ensemble of 

classifiers  
RakelD  0.0064  0.970  0.8328  0.9602  

Other than the MLARAM model, the rest of the models have scored very low values for the 

hamming loss. From the adaptation approach, the MLkNN algorithm has the lowest hamming loss and 

higher scores for accuracy, macro average, and micro average. The LabelPowerset has the maximum 
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values for evaluation metrics among the problem transformation methods. In addition, RakelD has low 

scores for macro and micro averages compared to MLkNN and LabelPowerset methods.  

However, the multicollinearity among variables could not be overlooked when training these 

models. Therefore, a correlation heat map was also generated, as in Figure 2, and the features with a 

correlation which is greater than 0.7 were eliminated. According to the heat map, process temperature 

and torque variables are highly correlated with air temperature and rotational speed, respectively. To be 

more accurate about the dropping variables, a feature selection was also conducted using selectKBest 

method, and the results generated by this method also confirmed that process temperature and torque 

columns should be dropped from the data frame. Therefore, process temperature and torque columns 

were eliminated. 

 

 
Figure 2. Correlation heatmap describing the relationship among variables 

 

After removing process temperature and torque from the data set, the methods discussed in 

section 2.3 were reapplied, and the evaluation metrics were also calculated. Table 2 shows the results 

recorded for the respective metrics for each classification technique. 

 

Table 2. Multilabel Evaluation Metric Scores for the Classifiers After Applying Feature Selection 

Approach 

type  
Classifier  

Hamming 

loss  

Accuracy  Macro 

average  

Micro 

average  

Adaptation 

approach  

MLkNN  0.0050  0.970  0.8800  0.9700  

MLARAM  0.0190  0.202  0.5620  0.5712  

MLTSVM  0.0078  0.964  0.5620  0.5712  

Problem 

transformation   

Binary Relevance  0.0064  0.970  0.8400  0.9670  

LabelPowerset  0.0064  0.970  0.9000  0.9700  

ClassifierChain  0.0064  0.970  0.8800  0.9690  

Ensemble of 

classifiers  
RakelD  0.0064  0.970  0.8300  0.9692  

 

According to Table 2, it is clear that the MLARAM has a large hamming loss value and low 

scores for accuracy, macro average, and micro average. MLkNN method has attained the highest metric 

scores among the adaption techniques, even after eliminating two variables. Out of the problem 

transformation methods, the LabelPowerset has gained a low hamming loss score and high values for 

the other metrics. Even after applying feature selection, the scores for RakelD's macro and micro 

averages are low in comparison to those of the MLkNN and LabelPowerset methods.  

  When the models were trained without applying feature selection, the scores recorded for 

MLkNN and  LabelPowerset had optimal values. However, according to the results illustrated in Table 

1 and Table 2, it can be seen that the results for both these classifiers that were trained without applying 
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feature selection and trained after applying feature selection have similar metric values indicating 

negligible difference in performances.   

It was also noted that, during the feature selection phase, the removed torque column could be 

an essential feature when being considered from the perspective of machinery parts. As power is the 

product between torque and rotational speed, removing torque might directly affect the predictions, 

especially regarding power failures. Therefore, considering the features of the machinery, it is 

recommended to perform feature selection, being mindful of this point.  

Matzka (2020) has presented an explainable model and an explanatory interface using the 

original dataset used in this research work. In this study, the researcher has used explainable decision 

trees as well as normalized feature deviation as an explanatory interface. However, Matzka (2020) has 

found that in some circumstances, the decision trees offer no beneficial insights, while the normalized 

feature deviations offer explanations of low quality. In order to overcome these issues, our study focused 

on predicting machinery failures using multilabel classification techniques to provide early insights. 

These techniques are believed to be efficient since they offer users with possible failure type 

combinations, as opposed to predicting a failure without specifying which failure mode will occur. 

4 CONCLUSION  

In this research work, a multilabel classification approach was used to predict machinery 

failures. The original data set has five types of machine failures, and if at least one failure mode was 

recorded, the machine displayed a tendency to break down. This study performed a feature selection 

procedure to examine the variables which directly affect machine failure. Furthermore, seven multilabel 

classifiers were implemented using the original data set as well as the new data frame which was formed 

after applying feature selection. Hamming loss, accuracy, macro average, and micro average were 

calculated for each of these models in order to evaluate the performance. From the adapted algorithm 

approaches, MLkNN, MLARAM, and MLTSVM classifiers were used to train the data, where the 

MLkNN classifier performed better than the other two methods. The Binary Relevance, LabelPowerset, 

and ClassifierChain were used respectively from the problem transformation methods, where the 

LabelPowerset-based model produced substantially better results during the training phase. The RakelD 

classifier was selected from the ensemble of classifiers since it yielded the best results but performed 

poorly compared to the MLkNN and LabelPowerset classifiers. However, it is noted that feature 

selection did not significantly alter the scores obtained from evaluation metrics before and after they 

were applied. Even though the features of torque and process temperature were removed during the 

feature selection phase, there is a possibility for this to affect predictions considering the machinery 

state. Therefore, this study concludes the results with metric scores obtained before applying the feature 

selection. For future research, the techniques such as multilabel embeddings and label space clusters can 

be used to observe and compare the results. Alternatively, this study could be conducted by considering 

only the machinery failure column, which could be converted to a multi-class classification problem 

rather than a multilabel classification, and disciplines such as deep learning techniques can be utilized. 
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