

An Autonomous Multiple Robot

Registration and Control System: Design

Implementation and Performance

Evaluation

Udugoda Uduporawage Samantha Kumara Rajapaksha

Reg.No: DP17910378

Doctor of Philosophy (Ph.D.)

Department of Information Technology

Sri Lanka Institute of Information Technology

November, 2022

DECLARATION

I hereby declare that the thesis entitled “An Autonomous Multiple Robot

Registration and Control System: Design, Implementation and Performance

Evaluation" that is completed and submitted by me for the award of the degree of

Doctor of Philosophy to Sri Lanka Institute of Information Technology(SLIIT) is a

record of work carried out by me under the supervision of Prof.Chandimal

Jayawardena, Dean, Faculty of Computing, SLIIT and External -supervision of

Prof.Bruce MacDonald, Department of

Electrical, Computer and Software Engineering, Faculty of Engineering in University Of

Auckland, New Zealand.

I further declare that the work reported in this thesis has not been submitted

and will not be submitted, either in part or in full, for the award of any other degree

or diploma in this institute or any other institute or university.

Certified by:

Name: U.U.Samantha Kumara Rajapaksha

Signature:

Date:24th November 2022

Name of the Supervisor: Prof.Chandimal Jayawardena

Signature:..........................

Date:.................................25th November 2022

Name of the External Supervisor: Prof.Bruce MacDonald

Signature:..........................

Date:.................................25 November 2022

i

ABSTRACT

ROS is the most prominent middleware used by most researchers in robotic

application development. Our research mainly depends on ROS technologies because

most researchers currently work with ROS as middleware for many research projects.

Controlling the robots through the Web interface is essential. Because in some

instances, users may not be able to communicate with the robot directly because of

some bad conditions in the environment where the robots are currently placed.

Therefore, we have developed a Web interface to control all robots through the

Internet. However, the ROS topics, nodes, and message formats used to subscribe and

publish can differ from one robot to another when we work with multiple robots in

the same environment. Therefore, when a user expresses high-level instructions

through a Web interface, all multiple robots must understand instructions uniformly

and take necessary actions accordingly without considering each robot’s internal

software and hardware implementation. The first contribution of the research is to

develop an algorithm to register all robots based on the main components of the ROS

technology through the Web interface autonomously. The robot Registration Engine

was developed with algorithms to complete the autonomous robot registration task.

The second contribution is identifying the relevant ROS topics and nodes for each

action when a user command gives through the Web interface. The ROS topic

identification algorithm was developed successfully. The third contribution was to

evaluate the system performance under different conditions and derive the equations

for the delay in response time through the web interface, validating the equations

derived.

We have conducted several experiments to evaluate our system with delays in

response time. The worst-case analysis was completed for all algorithms with Big O

notation. Users and researchers can utilize Robot Registration Algorithm and ROS

Topic Identification Algorithm to work with multiple robots through the Web

interface. We have successfully implemented all algorithms in a simulated

environment in Gazebo.

Keywords: Multiple robot, Ontology, Robot Operating System, Navigation, Gazebo,

Big O notation,Simulation,TurtleBot,Husky,TiaGo.

ii

ACKNOWLEDGEMENT

With immense pleasure and a deep sense of gratitude, I wish to express my

sincere thanks to my supervisor Prof.Chandimal Jayawardena, Dean, Faculty of

Computing, SLIIT, without his motivation and continuous encouragement, this

research would not have been successfully completed. I have benefited greatly from

your wealth of knowledge and meticulous editing. I am extremely grateful that you

took me on as a student and continued to have faith in me over the years.

Thank you to my external supervisor, Prof.Bruce MacDonald, Department of

Electrical, Computer and Software Engineering, Faculty of Engineering in the

University of Auckland, New Zealand, for your patience, guidance, and support. I have

benefited greatly from your wealth of knowledge and meticulous editing. I am

extremely grateful that you took me on as a student and continued to have faith in me

over the years.

I am extremely thankful to Prof.Lakshman Ratnayaka the Chancellor of SLIIT,

Prof.Lalith Gamage , the Vice Chancellor of SLIIT and Prof.Nimal Rajapake

, Deputy Vice Canceller of SLIIT for supporting me to carry out research in the

SLIIT and also for providing me with infrastructural facilities and many other resources

needed for my research.

I express my sincere thanks to Prof.Rahula Attalage, Dean, Faculty of Graduate

Studies and Research, SLIIT for his kind words of support and encouragement. I like to

acknowledge the support and encouragement rendered by Dr.Anuraha Jayakody,

Mr.Prasanna Sumathipala and Mr.Jagath Wickramarathna in several ways throughout

my research work.

I wish to extend my profound sense of gratitude to my parents for all the

sacrifices they made during my research and for providing me with moral support and

encouragement whenever required.

Last but not least, I would like to take the opportunity to thank my wife Kaushalya

Dilrukshi and my daughter Sahansa Yenuli Nisadara Rajapaksha for their constant

encouragement and moral support along with patience and understanding.

 Place: SLIIT Date: 14/07/2022 U.U.Samantha Rajapaksha

iii

LIST OF PUBLICATIONS

1. U. U. Samantha Rajapaksha, Chandimal Jayawardena, Bruce A.

MacDonald,”Design, Implementation, and Performance Evaluation of a Web-

Based Multiple Robot Control System”, Journal of Robotics, vol. 2022, Article ID

9289625, 24 pages, 2022. https://doi.org/10.1155/2022/9289625

2. U. U. S. K. Rajapaksha, C. Jayawardena and B. A. MacDonald, ”ROS

BasedHeterogeneous Multiple Robots Control Using High Level User

Instructions,”

TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON), 2021, pp. 163168,

doi: 10.1109/TENCON54134.2021.9707460.

3. U. U. Samantha Rajapaksha, C. Jayawardena and B. A. MacDonald, ”ROS

BasedMultiple Service Robots Control and Communication with High Level User

Instruction with Ontology,” 2021 10th International Conference on Information

and Automation for Sustainability (ICIAfS), 2021, pp. 381-386, doi:

10.1109/ICIAfS52090.2021.9606062.

4. U. U. S. Rajapaksha, C. Jayawardena and B. A. MacDonald, ”ROS

SupportedHeterogeneous Multiple Robots Registration and Communication

with User Instructions,” 2022 2nd International Conference on Advanced

Research in Computing (ICARC), 2022, pp. 102-107, doi:

10.1109/ICARC54489.2022.9753837.

5. U. U. S. Rajapaksha and C. Jayawardena, ”Ontology based Optimized Algorithms

to Communicate with a Service Robot using a User Command with Unknown

Terms,” IEEE 2nd International Conference on Advancements in Computing

(ICAC), 2020, pp. 258-262, doi: 10.1109/ICAC51239.2020.9357254.

iv

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENT .. ii

LIST OF PUBLICATIONS.. iii

LIST OF FIGURES ... vii

LIST OF TABLES ... ix

LIST OF TERMS AND ABBREVIATIONS xii

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statements . 3

1.3 Thesis Objectives . 5

1.4 Research Approach . 6

1.5 Contributions . 8

1.6 Thesis Outline .10

2 Literature Review 11

2.1 Heterogeneous Multiple Robot Controls 11

2.2 Interface and system development for multiple robot control.13

2.3 Synonym and Semantic of the User Instruction 16

2.4 Related Technologies ..17

2.4.1 Robot Operating System(ROS)17

2.4.2 ROS Topics . 21

2.4.3 Gazebo Simulator . 21

2.4.4 ROSbridge Server . 23

2.4.5 Semantic Web . 25

2.4.6 Ontology . 25

v

3 Methodology 29

3.1 Robot Registration Engine . 30

3.2 Command Interpreter . 31

3.3 Movement Management . 32

3.4 Ontology . 33

3.5 Synonym Analysis . 34

3.6 Semantic Analysis . 35

3.7 Command Publishing Engine . 35

3.8 Schedule Management . 43

3.9 Navigation Management . 43

3.10 Thread Management . 45

3.11 ROS Implementation . 45

4 Evaluation and Results 47

4.1 Experiment 01: Single Robot Interaction with simple instruction without

 using the web interface. 47

4.2 Experiment 02: Single Robot Interaction with simple instruction with web

 interface without autonomous robot registration. 51

4.3 Experiment 03: Single Robot Interaction with simple instruction with a

 web interface with autonomous robot registration. 55

4.4 Experiment 04: Homogeneous Multiple Robot Interaction with simple

 instruction with a web interface with autonomous robot registration. . . . 59

4.5 Experiment 05: Move the robots to a specific location with a web interface

 with autonomous robot registration. 64

4.6 Experiment 06: Robot Interaction with multiple instructions with a web

 interface with autonomous robot registration. 67

4.7 Experiment 07: Heterogeneous Multiple Robot Interaction with three lev-

 els of instruction. 70

4.8 Experiment 08: Heterogeneous Multiple Robot Interaction with Semantic

 instruction with a web interface with autonomous robot registration. . . . 73

vi

5 Discussion 80

5.1 Problem and Solution . 80

5.2 Research Findings . 8

0

6 Conclusion

8

2

6.1 Contribution . 8

3

6.2 Limitation . 8

4

7 Future Works

8

6

7.1 Future Works . 8

6

7.2 Funding Details . 8

7

7.3 Acknowledgement . 8

8

 REFERENCES . 8

8

Appendices

Appendix A Fragment of Ontology

9

6

A.1 Part of the OWL file Created Using Protege Tool 97

Appendix B Selected Robots with ROS Topics 109

vii

LIST OF FIGURES

1.1 High Level System Diagram . 3

2.1 Levels of ROS . 19

2.2 Sample ROS nodes . 20

2.3 ROS Nodes and Topics . 20

2.4 Sample ROS Topics . 22

2.5 Execution of the Launch File for TurtleBot in Gazebo 23

2.6 Gazebo Simulator with Single Robot 23

2.7 Gazebo Simulator with Multiple Robots 24

2.8 Execution of the ROSbridge Server . 24

2.9 Triple in RDF . 26

2.10 XML code for RDF Triple . 26

2.11 Triple in RDF as example . 27

2.12 RDF Graph with more concepts . 27

2.13 XML Code for Extended RDF graph 27

3.1 System Architecture Diagram . 29

3.2 Robot Registration Algorithm. 30

3.3 Initial Interpretation Process. 31

3.4 Robot Registration Algorithm. 32

3.5 State Transition Diagram. 33

3.6 Flowchart for Multiple Instruction Handling. 34

3.7 Flowchart for moving Robot to a specific Goal. 35

3.8 Fragment of the Ontology . 36

3.9 ROS topics for the Movement. 36

3.10 OWL:sameAS Syntax . 37

3.11 Synonym Analysis Algorithm . 37

3.12 OWL:Restriction Syntax . 38

3.13 Semantic Analysis Algorithm . 38

3.14 Get Initial Position Algorithm . 39

3.15 ROS Nodes and Topics . 40

viii

3.16 Get Initial Position Algorithm . 40

3.17 ROS Topic Identification Algorithm 41

3.18 Level 01 Interpretation Algorithm . 42

3.19 Level02 Interpretation Algorithm . 43

3.20 Level03 Interpretation Algorithm . 44

4.1 Single Robot Interaction without Web Interface 47

4.2 Single Robot Interaction without Web Interface 50

4.3 Single Robot Interaction with Web Interface 51

4.4 Single Robot Interaction with Web Interface 53

4.5 Single Robot Interaction with Web Interface 55

4.6 Single Robot Interaction with Web Interface Auto Registration 56

4.7 Single Robot Interaction without Web Interface 58

4.8 Multiple Two Robots Interaction with Web Interface Auto Registration . 60

4.9 Multiple Four Robots Interaction with Web Interface Auto Registration . 60

4.10 Main Launch File Two Launch Two Robots 61

4.11 Launch file to describe Position and Robot Description 61

4.12 One Robot Launch File . 61

4.13 Multi Robot Interaction with Web Interface 62

4.14 Initial Position and Target Locations (a) Two Robots (b) Four Robots . . 64

4.15 Average Move Time for Moving a Robot to a Specific Location 66

4.16 Multiple Instructions and Robot Interaction 68

4.17 State Transition Diagram. 69

4.18 (a) Initial positions of Two robots (b) Initial positions of Four robots . . 69

4.19 Web Interface . 71

4.20 Running Time Vs Static Inputs . 72

4.21 Running Time Vs dynamic Inputs . 73

4.22 Husky, Turtlebot and TiaGo Robots in Empty World 75

4.23 The Graph of the Time Complexity of all algorithms 76

4.24 Experiment without Navigation Success Rate 77

 4.25 Experiment with Navigation Success Rate 78

 A.1 Part of the Ontology Developed . 96

 B.1 Selected Robots with ROS Topics . 109

ix

LIST OF TABLES

1.1 Types of Web Interfaces . 2

2.1 Summary of Research Studies and Research Gap 18

3.1 Notations used in the Flowchart and Experiments 34

3.2 Experiment Details . 44

3.3 General Goal and Task Scheduling Table 45

4.1 Single Robot Average Start/Stop Response Time Without Web Interface 48

4.2 Testing to Determine the Constant c1 in Equations 4.1 48

4.3 Pearson value (r) for each Testing . 49

4.4 Testing to Determine the Constant c2 in Equations 4.2 49

4.5 Pearson value (r) for each Testing . 49

4.6 Single Robot Average Start/Stop Response Time With Web Interface . . 52

4.7 Testing to Determine the Constant c3 in Equations 4.3 52

4.8 Pearson value (r) for each Testing . 52

4.9 Testing to Determine the Constant c4 in Equations 4.4 54

4.10 Pearson value (r) for each Testing . 54

4.11 Pearson value (r) for Experiment 01 and Experiment 02 Comparison . .

4.12 Single Robot Average Start/Stop Response Time With Web Interface

54

Autonomous . 56

4.13 Testing to Determine the Constant c5 in Equations 4.5 57

4.14 Pearson value (r) for each Testing . 57

4.15 Testing to Determine the Constant c6 in Equations 4.6 57

4.16 Pearson value (r) for each Testing . 57

4.17 Pearson value (r) for Experiment 02 and Experiment 03 Comparison . .

4.18 Multiple Robots Average Start/Stop Response Time With Web Interface

59

Autonomous . 59

4.19 Testing to Determine the Constant c7 in Equations 4.7 63

4.20 Pearson value (r) for each Testing . 63

4.21 Testing to Determine the Constant c8 in Equations 4.8 63

4.22 Pearson value (r) for each Testing . 63

x

4.23 Average moving Time for Multiple Robots with Single Instruction . . . 65

4.24 Testing to Determine the Constant c9 in Equations 4.9 65

4.25 Pearson value (r) for each Testing . 65

4.26 Testing to Determine the Constant c10 in Equations 4.10 67

4.27 Pearson value (r) for each Testing . 67

4.28 Experiment Results . 71

4.29 Running Time Analysis . 74

4.30 Goal and Task Scheduling Table . 74

4.31 Instruction Types used for Testing . 75

4.32 Time Complexity of Algorithms . 75

4.33 Instruction Types with Time Complexity 76

4.34 Experiment Results for without Navigation 77

4.35 Experiment Results for with Navigation 77

xi

LISTOFTERMSANDABBREVIATIONS

Rdelta Time taken to retrieve the state from ROS topic xii

Rm,dmove Delay in moving to specific location by Multiple Robots xii

Rs,dmove Delay in moving to specific location by Single Robot xii

 Single robot delay Time at start . xii

Rs,dstart Single robot delay Time at stop . xii

Sdelta Time taken to save the state in ROS topic xii

 Linear Speed of the Robot in x direction at the start in ms−1. xii

 taud,ROS Delay in communicating with ROS topics xii

 taud,RT Delay in ROS topic identification . xii

 taud,os Delay in system call execution in Operating System. xii

taud,pos Delay in getting the current position and orientation of the robot xii

 taud,web Delay in communication through Web interface. xii

 Angular Speed of the Robot in z direction at the start in ms−1. xii

 AI Artificial Intelligence . xii

 AMCL Adaptive Monte Carlo Localization . xii

API Application Programming Interface . xii

CPE Command Publishing Engine . xii

GUI Graphical User Interface . xii

HMR Heterogeneous Multiple Robots . xii

HTML Hyper Text Markup Language . xii

IOT Internet Of Things . xii

IP Internet Protocol . xii

xii

OWL Web Ontology Language . xii

RDF Resource Description Framework. xii

ROS Robot Operating System. xii

RPC Remote Procedure Call . xii

RRE Integrated Development Environment. xii

RRE Robot Registration Engine . xii

TCP Transmission Control Protocol . xii

UDP User Datagram Protocol . xii

URDF Unified Robot Description Format . xii

URL Uniform Resource Locator . xii

W3C World Wide Web Consortium. xii

YARP Yet Another Robot Platform. xii

1

CHAPTER 1

Introduction

1.1 Introduction

Robotic programming is a complex and time-consuming task with most available

middleware. ROS is popular open-source software that most researchers use to

complete robotic programming tasks. It is not an operating system but a framework

for developing the software with robots. ROS provides the hardware abstraction, low-

level control of the devices, provides commonly-used functionalities and message

passing. Our research work mainly works with the ROS environment. ROS provides a

better interface to communicate and control the robots. However, it is not easy to

work with ROS in robot programming. One of the main objectives of the research is to

provide a Web interface to control the robot easily without considering the low-level

architecture of the ROS and robot.

Human-robot communication is one of the top research areas in robotic research

work. Different types of middleware are available to make this communication easy

and user-friendly. However, there are several challenges in developing a robotic

application for robot communication using the middleware directly because of the

complexity and interoperability of the middleware. The ROS is one of the middleware

used to program most robotic applications.

In an intelligent environment, there may be lots of service robots which are

working at different places simultaneously. Therefore, they may have different

capabilities and operate with different control systems (mobile base, wheels, two legs,

four legs, tracks etc.). Moreover, most robots may have different software

specifications, even running with the same middleware like ROS.

Suppose a system can hide these difficulties by providing a straightforward

interface where the user can provide high-level instruction without considering any

low-level technologies to communicate with a multi-robot environment. In that case,

it will be very convenient for the users.

Autonomous robot registration and control is one of the complex tasks in robotic

application development. ROS was developed to improve interoperability and reduce

heterogeneous multiple robot programming complexities. ROS is a kind of middleware

used by developers in robotic applications to reuse most existing software developed

by different researchers. There are different nodes, topics, and message formats for

different robots in ROS. Another project objective is registering the robot

2

autonomously through the web interface. An algorithm was developed to find the

related topics to control different robots in ROS. Therefore, our system’s main

component is the Robot Registration Engine (RRE) which is developed to register

multiple heterogeneous robots by getting all related rostopics. The web interface was

developed to interact with robots and users using the ROS bridge server. ROS bridge

server worked as an interface between the ROS environment and Web interface. We

have developed different web interfaces to interact with the user and different types

of experiments in our research as described by Web Interface I to V. the following

table 1.1.

Table 1.1 Types of Web Interfaces

Web Interface Types Description of the Web Interface

Web Interface I Single Robot without Autonomous Robot

Registration

Web Interface II Single Robot with Autonomous Robot

Registration

Web Interface III Multiple Two Robots with Autonomous Robot

Registration

Web Interface IV Multiple Four Robots with Autonomous Robot

Registration

Web Interface V Heterogeneous Robot with Autonomous

Robot Registration with Semantic Instructions

Web Interface I to IV was developed to work with instructions like moving the

robot to a specific location and working with multiple instructions sequentially. Web

Interface V was developed to work with instructions. We have used the Gazebo

simulator for our experiments. The robot’s actions and initial position changed with

time. Therefore, we have created a schedule for each robot to complete movement

or navigation in the experiment with Web Interface V. Then, we have identified the

relevant ROS topic in corresponding nodes to subscribe and publish the corresponding

command values from the user command. The Command Publishing Engine (CPE) is

responsible for publishing the ROS command for each action defined in the given user-

level instruction.

Different architectures were used to design the heterogeneous multiple robot

system, including centralized, distributed, and hybrid modes Hu et al. (2015). Our

solution is based on the centralized server architecture shown in Figure 1.1.

Before publishing the command on each robot, we need to identify the ROS topics

to publish or subscribe to and nodes which contain the ROS topics for each robot.

There-

3

Fig. 1.1 High Level System Diagram

fore, in our solution, the one task is to automatically register the robot in Robot

Registration Engine (RRE) by collecting all software-related specifications using

rosnode and rostopic commands.

1.2 Problem Statements

A relatively new research initiative in autonomous robot control is to develop

autonomous robot registration and control all robots through the Web interface.

However, based on the analysis of current research studies, we could not find research

work on autonomous robot registration and control through the web interface.

Furthermore, we have identified that programming a robot and multiple robots are too

complex and tedious, even with the ROS middleware.

There are different ROS topics and ROS message formats for robots in ROS.

Therefore, we must identify the relevant ROS topics and nodes to publish or subscribe

to different robots in ROS. Furthermore, autonomous Robot Registration and the

control command issue with the corresponding ROS topic is another main problem in

the research. Another research problem is managing and controlling multiple robots

through a web interface.

According to our background studies, we did not find any research works to

identify the ROS topic and nodes for controlling multiple robots simultaneously and

autonomously. Therefore, the other main research problem is identifying the relevant

ROS topics and nodes for the given user instruction.

There are different types of multiple heterogeneous robots with different

capabilities. The most prominent parts of the ROS are ROS nodes, ROS topics, message

Move to your
allocated

location and
start the work

WEB INTERFACE

INTERPRETER

ONTOLOGY

Turtlebot
specific
command

TIAGo
specific
command

Husky
specific
command

Generic
command

Schedule
Management
for multi
Robot

4

formats and ROS services. There are different ROS topics and ROS message formats

for different robots in ROS. We must identify the relevant ROS topics and nodes to

publish or subscribe to different robots in ROS. Autonomous control and

communication of the multiple robots through the web interface is one of the

challenging tasks. Autonomous Robot Registration and the control command issue

with corresponding ROS topic is another main problem in the research. Working with

ROS is also another very complicated and tedious task.

There were several research to get the current position and orientation of the

robots. With some conversion algorithms, finding the current position and orientation

can be achieved with odometry reading. Moving all robots to the given location is

another research problem we selected to solve.

Algorithms play a significant role in our system. It defines the steps that must be

completed sequentially to convert the input into the desired output. Performance

analysis of the algorithms is not a simple task when the algorithm is complex. There

are several algorithm analysis techniques. Big O notation is one of the best ways to

describe the complexity of the algorithms. Another research problem is analyzing the

algorithms’ time complexity using Big O notation.

Performance analysis with different web interfaces is another main research

challenge. We need to derive the equations for performance analysis for each

experiment with different web interfaces with different scenarios. Deriving the

mathematical equations with performance analysis is another research problem that

we need to solve.

1.3 Thesis Objectives

The main objective is to develop an algorithm to interact and control multiple robots

through the web interface with autonomous robot registration and autonomous ROS

topic identification.

Many research groups completed robot control and communication with ROS, but

according to our research studies, we did not find any research for autonomous robot

registration using any algorithms. ROS topics and nodes are critical components in the

ROS environment. The robots may have different ROS topics and nodes for subscribing

and publishing. One of the leading research project objectives is to develop an

algorithm that can register all robots concurrently through the Web interface.

When a user issues an instruction, then our system must be able to find the

corresponding ROS topis and nodes to complete the assigned task in the user

command. According to the previous studies, we did not find any algorithm developed

to identify the relevant ROS topics and nodes for subscription and publication.

Therefore, one of the leading research project objectives is to develop an algorithm

5

that can identify the relevant ROS topics and nodes to complete the issued task by the

user.

Our system is simulated with the Gazebo environment with multiple robots.

However, managing multiple robots with a Gazebo environment through a web

interface is not an easy task. Most of the time, managing the errors with ROS and

Gazebo is very tedious and time-consuming because fewer resources are available

online for ROS and Gazebo. Therefore, one of the leading research project objectives

is to learn the ROS and gazebo environment from scratch and simulate the

environment for the experiments. Designing an algorithm is not an easy task because

we need to consider several factors in designing a good algorithm. Then the algorithm

analysis is fundamental to finding the performance of each algorithm. There are

several algorithm analysis techniques. Big O notation is the optimal way to represent

the algorithm’s complexity. One of the leading research project objectives is to

develop an optimal algorithm to get the correct output and analyze the performance

of the algorithms.

Performance evaluation with the response time is another research problem that

we want to solve. Several experiments must be completed with different web

interfaces with different amounts of robots for different scenarios. We must design

the experiment environments and evaluate the performance for response time. Again,

we need to derive the mathematical equations representing each scenario’s delay in

response time. Therefore, another main objective is to perform analysis with derived

mathematical equations for each scenario with different web interfaces.

1.4 Research Approach

As stated in the previous section, The main objective is to develop an algorithm to

interact and control multiple robots through the web interface with autonomous

robot registration and autonomous ROS topic identification. However, some factors

must be considered when approaching the research work as described below.

ROS programming: Evan, there are many research works conducted with

middleware as ROS by many researchers. However, working with ROS to develop a

simple application is a challenging and tedious. Because getting online help and online

resources for developing the application was very limited. Therefore, our initial

approach is to learn the ROS from the basics using all available resources online and

offline. There are several research papers that describe the way authors have used

ROS for the development of some applications. The other approach the study the ROS

in detail is to study more research papers in relation to application development with

the ROS.

6

Gazebo environment: Our research work is simulated with multiple robots in a

Gazebo environment. Developing an application with a gazebo is also not an easy task

again because of fewer online and offline resources available. Therefore, our following

approach is to learn the programming gazebo environment by spawning multiple

robots simultaneously. Towards this completion, we need to study the research

papers and available online materials to get more knowledge on Gazebo.

Design algorithms: Designing an optimized algorithm is a challenging task in the

algorithm development process. There were no algorithms developed for

autonomous robot registration, autonomous ROS topic and node identification with

multiple robots through the web interface. The research approach to complete this

task is to study algorithm design techniques and study more research papers to get

more knowledge. The analysis of algorithms is another challenging task since there are

many ways to identify the complexity of the algorithms. Therefore, we have designed

our own algorithm and analysis of the algorithms.

Web Development: Since we need to control all robots through the Internet, we

need to have good knowledge of web development and programming. Most of the

languages link HTML, script language and extreme programming are essential in this

research. Our approach is to study both client-side and server-side programming and

ROS support with a web interface.

Programming languages: Most of the ROS programming can be completed with

the Python language. Therefore, studying the python language is very important to

develop some applications in the ROS library. Therefore, we need to have an excellent

approach to develop a comprehensive application with ROS library using the python

language. Python supports the concurrent program execution using threads.

Ontology: Ontology development is completed as additional work for the research

work. Adding synonyms and semantics is another additional task that we have

selected to complete. There are several research works completed with the ontology

in different applications. Our research approach is to study the existing research

papers and ontologies to support our system.

7

1.5 Contributions

There are several existing research works where researchers have developed control

and manage the robots through the Web interface. There are some algorithms

developed to control the multiple robots in the ROS environment and with other

middleware. In my research initially, I need to study all existing systems and

contributions to control multiple robots through a Web interface. Therefore, one of

the main contributions is to identify the limitation and issues with the current and

previous research works by thoroughly studying all existing research papers. These

contributions can be used to find an optimal solution to solve my research problem.

ROS is the leading middleware that we are using to complete the research project

with multiple robots. Initially, the system must be able to register all robots with Robot

Registration Engine using the algorithms developed. Getting ROS topics and ROS

nodes details is very important to control each robot with a user instruction. One of

the leading research contributions of this research project is to control and manage all

robots through the Web interface with user instructions without considering all

software and hardware differences of all robots. This contribution provides a way to

develop an interface that can be used to control multiple robots very easily.

Evaluation of algorithms is a complex task in algorithm designing. Identifying the

time complexity of the algorithm is very important when the system is being

developed. Here we complete the time complexity analysis for all algorithms

developed. One of the leading research contributions of this research project is to

provide the complexity analysis of the algorithm to decide the performance of each

algorithm.

Performance evaluation in terms of the delay of response for each experiment is

another main task of the project. We need to formulate the mathematical equations

for the delay in response time for each scenario. These mathematical formulas can be

utilized for the prediction of the performance of the system. One of the leading

research contributions of this research project is to formulate the mathematical

equations for the performance in terms of the delay in response time.

The main contribution to my research work are summarized below: First, I

discovered and proposed a new algorithm for autonomous, multiple robot registration

in a simulated Gazebo environment. According to the previous research studies

described in chapter 02, I did not find any research on autonomous robot registration.

Once a robot is connected through the Web interface, all ROS topics and nodes related

to each robot are collected and stored to use later. One of the main limitations of the

ROS is that robotic programming very difficult and but autonomous registration solve

this issue since it collects all ROS topics and nodes necessary to publish and subscribe.

8

I discovered and proposed a new algorithm for the ROS topic identification when

a user issued a command to control robots through the web interface. However,

according to the previous research studies described in chapter 02, I did not find any

research on ROS topic identification algorithms.

I discovered and developed the web interface to control multiple robots with

simple commands to move robots forward and circle simultaneously using the threads

in python language. However, according to the previous research studies described in

chapter 02, I did not find any research on multiple robot controls through the web

interface. Some research was done to control single robots through web interfaces

without autonomous registration.

I discovered the worst-case complexity of the autonomous robot registration

algorithm and ROS topic identification algorithm. This analysis results can be used by

other researchers when they want to get an idea of the algorithm’s performance.

I discovered and derived mathematical equations to represent the delay in

response time for the different scenarios with all experiments with other

characteristics. Furthermore, I found and validated the values for all constants in each

mathematical equation.

9

1.6 Thesis Outline

The following sections are grouped as follows. Section 2 represents a literature survey

with background readings and related research works with technologies. The

methodology with algorithms and main components of the design are presented in

section 3. The experiments and evaluation of the research project with results are

described in section 4. Section 5 represets the discussion of the problem, solution and

research findings.

Finally, section 5 describes the conclusion with future works.

10

CHAPTER 2

Literature Review

Several research works are currently working in the area of HMR communication in

different research groups. Here we discuss some of the works which are similar to our

work. We have categorized all background readings as Heterogeneous multiple robot

controls, Ontology-based multiple robot control and Interface and system

development for multiple robot control.

2.1 Heterogeneous Multiple Robot Controls

Many research studies were conducted by researchers with heterogeneous multiple

robot controls. Here we discussed the related research works.

Some research groups have implemented heterogeneous multi-robot control with

the involvement of humans. Seohyun et al. proposed a three-layer architecture to

control a multi-robot with human intervention. They have separated the autonomous

and manual parts in the interface design to control the multi robots (Jeon et al. 2012).

M. Alberri et al. have developed ROS-based architecture to connect multi-robot

heterogeneous systems with a hierarchical system. They have proposed layered

architecture. The high and middle layers consist of several ROS packages with ROS

nodes to provide different functionalities. The lowest layer consists of some C and C++

software packages (Alberri et al. 2018).

Another research group has developed a hybrid architecture based on ROS. This

system integrates the personal computer(PC) and embedded systems with multiple

heterogeneous robots. The PC is a server, and the robot is a node(Hu et al. 2015). Y.

Msala et al. have developed a centralized architecture mainly based on cloud-

distributed architecture. It controls and coordinates heterogeneous multiple robots.

Furthermore, they have used an artificial intelligence-based algorithm to allocate the

task to heterogeneous robots based on the robot’s ability (Msala et al. 2019).

Another research group developed a new system which controls robots through a

cloud called IAPcloud where most of the CPU-intensive work of the heterogeneous

multi-robot can be uploaded to the remote cloud server. Song Z. et al. has proposed a

cloud-based architecture to collaborate and control the heterogeneous robots by

reducing the programming difficulties and development timing (Zheng et al. 2018).

L.F.Costa et al. have developed a multi-robot communication web-based interface

in the same environment using ROS. They have developed two services on the

11

webserver to monitor and control. The main operation developed in the system is

moving the robot forward, to the right, to left and backwards. They have implemented

three layers: robot, server, and client. The main development is to provide the

environment to use the different robots by lay people with ROS-based

implementations(Costa and Gonc¸alves 2016).

R.Han et al. have developed a system for multi-robot navigation in dynamic

environments where they have used deep reinforcement learning to find the optimal

path (Han et al. 2020).

N. Lashkari et al. have developed a novel robust control method for heterogeneous

multiple robots with autonomous docking and formation. They have considered the

limitation in existing formation methods like battery failure, limited transportation

capacity, and manoeuvrability in developing the new model. The main goal of the

developed control is autonomous docking, formation keeping/switching, and collision

avoidance in dynamic environments. They conducted the experiments with a

simulated virtual environment with V-Rep. A mathematical model was used to develop

the formation methods of multiple robots and autonomous docking. They have shown

that the followers can dock themselves to other followers in the system and then

maintain the formation as a docked system (Lashkari et al. 2020).

R.Yara et al. have surveyed multiple heterogeneous robots. They have studied

more in task allocation, task decomposition, perception and control of heterogeneous

robots. The main challenges were identified and discussed in the paper. Cloud service

access with Big data is one of the research issues they have identified. Security and

communication are other research problems with IoT-based robotic applications.

Human in the loop is one of the problem identified by researchers. Finally,

communication constraints and uncertain connectivity are the main research issues

that must be solved in future research works (Rizk et al. 2019).

T. Kato et al. have developed a formation method for multiple heterogeneous

robots based on the current position of the robots. Each robot’s current position and

triangular method form the groups. They used simulation methods to verify that the

formation was accurate. They used the measurement system using wireless

communication and ultrasonic sound. Different shapes were developed using

equilateral triangles. They plan to implement this in real robots as future works (Kato

et al. 2010).

B.Jungyun et al. have developed an Efficient Coordination of Multiple

Heterogeneous Mobile Robots Considering Workload Balance. They have solved the

Multiple Depot Heterogeneous Traveling Salesman Problem. They used a heuristic

approach based on a primal-dual technique to solve this problem and minimize the

12

time. They proved the algorithms that solve the problem of visiting each given target

by one robot and completing the given goal by all robots with minimum time (Martinez

et al. 2015).

M. Lomas et al. have developed an architecture to control and manage multiple

heterogeneous robots with a team of operators. They experimented with multiple

unmanned vehicles with teams of operators. Open API is used to develop the system

with three-tier architecture. It is very flexible to work with the system dynamically

assign the task for each robot (Lomas et al. 2011).

I. Tiddi et al. have developed an ontology-based robotic application development

environment for non-expert users to develop and integrate robotic applications. They

have mainly considered simplifying the time-consuming process of programming

robotspecific tasks. The ontological representation was used to provide

interoperability, meaning for the concepts and relationships by hiding the complexity

of the given domain in robotics (Tiddi et al. 2017).

Mihai P. et al. have developed a system to parse natural language instruction and

get the ”semantic specification” (semspec) which can be translated to a program to

execute on a simulated robot. The system tarn slates the natural language sentences

with semantics into a program that can be executed on a robot using interpretation

rules with semantic description(Pomarlan and Bateman 2018).

Rajapaksha et al. have developed a system which takes input instruction with

uncertain words for a drone and converts it to machine-understandable format using

the ontology (Rajapaksha et al. 2019).

V. Muthugala et al. have completed a review of uncertain information with natural

language instructions with service robots. In addition, they have investigated and

identified the limitations in existing research work for handling qualitative information

in user instruction(Muthugala and Jayasekara 2018).

S.K.Rhee et al. have developed an Ontology-based Context and Preference Model

for service robots. The automation process is achieved using ontology. They have used

rule-based reasoning to work with the context in the environment. They have limited

the current implementation with the location, nearby users and objects for the

context. However, they plan to expand it with autonomous learning and consider

other factors in working with the semantic (Rhee et al. 2012).

2.2 Interface and system development for multiple robot control

F. Mullers¨ et al. have developed a tool to create and edit the ROS launch files with

the graphical user interface. Furthermore, users can drag and drop the new nodes to

13

the graph and update the resulting launch files with the developed user

interface(Mullers¨ et al. 2009).

C. J. Sutherland et al. have invented the domain-specific language named RoboLang,

which can use the existing programming tool. Moreover, it can make small changes

to the scripts to run on different platforms robot platforms(Sutherland and

MacDonald 2019).

Chandimal J. et al. have developed a system to develop the robotic software for

the given scenario with minimal modification of the program code, which can be

completed quickly. The system can change the robotic software very easily and quickly

without adding any errors or bugs in changing the behaviour of the robots. They have

developed different engines to support the implementation(Jayawardena et al. 2016).

Chandan D. et al. have developed an Integrated Development Environment for

visual programming by abstract textual domain-specific language. It provides the

program development environment to program robotic applications very fast and very

simply with the user requirements (Datta et al. 2012).

K.Takaya et al. have conducted experiments to present that the system developed

with simulation in Gazebo can be executed on a real robot with ROS without changing

any lines of code. They have developed 2D and 3D environments and 3D maps for the

navigation of mobile robots. The generated map had some noise, but it can be

neglected without any changes to the accuracy. The experiments have indicated that

the real robot and the simulated robot with the environment worked the same

without any differences (Takaya et al. 2016a).

S.S.Velamala et al. have developed a graphical user interface for robots and

autonomous vehicles using ROS and QT tools. They have control of Wave Adaptive

Modular Vehicle using the GUI developed. ROS does not provide GUI to control and

program the robots easily. All the ROS commands and gnome commands were

executed on the developed GUI. Additional components (sensors and actuators) can

be added to the developed system easily. They have proved that the other

autonomous system also can be controlled with the developed interface (Velamala et

al. 2017).

A tool which can be used to present and visualize the ROS data in a Web browser

was developed by A. Ivanov et al. They have tested the system with the TurtleBot3 in

the Gazebo simulator. ROS Web tool was used to connect the ROS and Web Interface

using roslibjs. They have controlled and collected ROS data through the Web interface.

It is identified that most browsers have supported the implementation (Ivanov et al.

2021). Chandan D. et al. developed an Integrated Development Environment for visual

programming by abstract textual domain-specific language. It provides the program

development environment to program robotic applications very fast and simply with

14

the user requirements Datta et al. (2012/10/29). Chandimal J. et al. developed a new

concept named a coach-player model to learn from user commandsDatta et al.

(2012/10/29)

Adriano S. et al. have reviewed motor control theory and sensory feedback

applications performed in parallel. Optimal control models were developed to

represent the humans’ ability to behave optimally after a certain level of training. The

advantage of the structural model and Hosman’s descriptive model are discussed in

this review Scibilia et al. (2022).

Maide Bucolo et al. have worked on a complex and imperfect electromechanical

structure that can be used as a paradigm for an imperfect system. They have indicated

that the electrical and mechanical interactions generate complex patterns because it

prevents the system from reaching correct conditions Bucolo et al. (2019). Our

solution may not be perfect in terms of performance characteristics.

Abdulmuttalib T Rashid et al. have developed a cluster matching algorithm to get

the robot’s orientation and localization. Each robot could estimate the neighbour

robot’s relative orientation within its transmission range. It can get the absolute

positions and orientations of the team robots without knowing the ID of the other

robots Rashid et al. (2015).

Abduladhem A. et al. have developed the multi robots navigation model in a

dynamic environment named shortest distance. The collision-free trajectory was

developed using the current orientation and position of the other robots. This

algorithm is based on the concept of reciprocal orientation that guarantees smooth

trajectories and collision-free paths Ali et al. (2016).

Buscarino A. et al. have proposed a methodology to control a group of robots

without central coordination. They have proved that the system performance with

noise can be improved by including long-range connections between the robots. They

have the model of the network as a dynamical network Buscarino et al. (2006).

M.Zhengguang et al. have developed a multi-robot simulator system with the help

of ROS and Qt tools. They have indicated the multi-robot system’s advantages over a

single robot. They have developed a powerful GUI to work with the multi-robot system

with the simulation. They used the Gazebo simulator to visualize the 3D view of the

robots. They have proved that this simulation was more accurate and accessible than

the other methods (Ma et al. 2019).

Javier Ruiz et al. have proposed using personal robots as ubiquitous, multimedia,

portable, self-personalized, natural and Internet interfaces. A unique robot is a

subclass of a mobile service robot designed to work with humans and conduct as

partners, providing entertainment and friendly communication interfaces. They have

15

implemented a robust and versatile object recognition system based on the matching

between a reference image. Users can interact with the Web and Internet applications

using either the touch screen placed in the robot or speech instructions. They

proposed future work to communicate successfully in a highly dynamic environment

with backgrounds, variable illumination, and high noise levels in the environment Ruiz-

del Solar and Ruiz-del Solar (2007).

V.Usha Rani et al. developed a web-controlled surveillance system to provide more

security in places that humans cannot visit. The robot can be sent to any location

where network access is available. The system was cost-effective and very efficient.

The system was implemented with the HTML and python languages. The user can

view the live stream through the web interface. The research group have developed

the obstacle identification algorithm also Rani et al. (2021).

Radim Farana et al. designed a web service to control the robot remotely. The

lowlevel protocol was developed to control the robot through the internet. This

interface was created using Silverlight technology. The robot is connected to a server

using a serial port (RS232). The interface was developed to control the robot using

web services Richtr and Farana (2011).

Christopher Reid et al. have implemented a cloud computing infrastructure for

networked heterogeneous robotic systems in an open-source robot operating system

(ROS). The Kobuki Turtlebots and LEGO EV3 robots were used for the experiments by

connecting to cloud services on the network through the Robot Operating System. The

wireless network is used to create a connection to robots. ROS is used to implement

in the robot’s local system to schedule data transmissions. ROS local nodes and

cloudbased virtual machines were used to implement the proposed approach. The

Robot Operating System was implemented to manage the data transmission to

minimize the systems’ network load. The research group has indicated that local

processing on networked systems contributes to better overall network performance

Reid et al. (2017).

Even though there are several research works done on heterogeneous multi-robot

systems, our solution is unique because of using ontology to determine the ROS topic

for each action.

2.3 Synonym and Semantic of the User Instruction

Several research groups are working on heterogeneous service Robot communication

and control with high-level instructions. Here we discussed some of the work that was

done similarly to ours.

Jaehong K. et al. have developed a system to interpret commands for intelligent

robots using ontology. Lexico semantic pattern matching has been used to retrieve the

16

meaningful keywords from the user command. They have developed the prototype

for the interpretation and the system was tested with different user commands. In

addition, they created an intermediary language called FURRL (Formalized User

Request Representation Language) to represent the sentences in a formal structure

Kim et al. (2006).

A Mart´ınez et al. have developed a switch and router configuration with the

domain semantics using the Web Ontology Language (OWL). The research group

developed an Ontology-Based Information Extraction (OBIE) system from the

Command-Line Interface (CLI) of network devices. A learning algorithm that has

automated interpretation of CLIs’ configuration capabilities in the heterogeneous

network was developed. The semantic similarity function is the system’s primary task,

which helps in mapping between the ontologies Martinez et al. (2015).

Laurent M. et al. have developed a generic architecture which provides a natural

language (NL) algorithm for command interpretation. The system mainly depends on

the agent’s code and its domain ontology. The two main approaches they have

considered are the top-down and the bottom-up approaches. Two approaches were

combined in the proposed architecture. This system operates with a minimal semantic

analysis on the ontology (synonymy) Mazuel and Sabouret (2006).

The ontology-based system was developed to implement the integrated robotic

application using ROS middleware by non-expert users by I. Tiddi et.al. The main

objective was to reduce users’ time to program robot-specific tasks. In addition,

ontologybased representation was developed to provide meaningful, conceptual

abstractions of complex and detailed domains, which improved interoperabilityTiddi

et al. (2017).

Natural language instructions were processed to generate ”semantic

specification” (semspec) and translated into the program to be executed by a

simulated robot by Mihai P. et.al. A semantic description of a natural language

sentence was translated into an executable program for the robot. Interpretation

rules to the semantic description were used to translate into executable

codePomarlan and Bateman (2018).

Pomarlan et al. have developed a system that takes a semantic specification

(semspec) obtained from parsing a natural language instruction and converts it into a

program to be run by a (simulated) robot. In addition, the authors have presented a

system that converts a semantic description of a natural language sentence into an

executable robot program by applying interpretation rules to the semantic

description. Interpretation is ruled that convert a short phrase to a longer description

of the action it performs.

17

After analyzing all research studies, I have summarized all research studies based

on the number of robots, web interface usage, autonomous registration, running time

analysis and ontology usage, as shown in the Table 2.1. According to the analysis, there

needs to be more research conducted on autonomous robot registration and control

of the robot through the web interface. Therefore, our research mainly focuses on

autonomous robot registration and control through the web interface.

2.4 Related Technologies

2.4.1 Robot Operating System(ROS)

It is a middleware which provides the interface for robotic application developers to

create sophisticated software quickly and conveniently. ROS provides the tools and

libraries that hide the complex hardware implementation for software developers

who Table 2.1 Summary of Research Studies and Research Gap

Jeon et al. 2012 yes yes No No No Partial No No

Alberri et al.2018 yes yes Yes No No No No No

Hu et al. 2015 Yes yes No No No No No No

Msala et al. 2019 Yes yes Yes No No No No No

Zheng et al.2018 Yes yes Yes No No No No No

Costa et al. 2016 Yes yes Yes No No Partial No No

R.Han et al. 2020 Yes yes No No No No No No

Lashkaret al.2020 Yes yes No No No Partial No No

Rizk et al.2019 Yes yes No No No Partial No No

Kato et al.2010 Yes yes No No No No No No

Martinet al.2015 Yes yes No No No No No No

Lomas et al. 2011 Yes yes No No No No No No

Tiddi et al. 2017 Yes No No No No No yes yes

Pomarl et al.2018 Yes No No No Yes No No No

Rajapaksa al.2019 Yes yes No No Yes No No yes

Jayasekara al.2018 Yes No No No Yes No No No

Rhee et al. 2012 Yes No No No Yes Partial No Yes

18

Mullers et al.2009 Yes No No No Yes No No No

Sutheret al.2019 Yes No No No No Partial No No

Takaya et al.2016 Yes No No No No Partial No No

Velamala et

al.2017

Yes No No No No Partial No No

Ivanov et al.2021 Yes No Yes No No Partial No No

Ma et al. 2019 Yes Yes No No No Partial No No

Rani et al.2021 Yes Yes yes No No No No No

Martinez et al.2015 Yes No No No Yes No No Yes

Tiddi et al.2017 Yes No No No Yes No No Yes

Bateman et al.2018 Yes No No No Yes No No Yes

Laurent M. et. al. Yes No No No Yes No No Yes

Kim et al.2006 Yes No No No Yes No No Yes

develop robotic applications. It is open-source software to develop the robotic

application. ROS provides hardware abstraction, very low-level device controls, inter-

communication between processes and packages for managing robots. It is a

distributed collection of processes to reuse the software in robotic application

development. ROS works with most modern programming languages like C++, Java

and Python. The Unix-based platform is used to run the ROS middleware. ROS is also

released with a different distribution similar to Linux versions. ROS levels will be

grouped as shown in Figure 2.1.

Fig. 2.1 Levels of ROS

ROS packages are used to organize the software as the smallest unit. It works as a

software process with runtime library and configuration files. Message types describe

the data structures used to send messages in the ROS environment. The service type

19

describes the data structure used in request and response. All standard systems are

stored as repositories.

The processes are named nodes that provide different services in the ROS

environment. Each node can be assigned for different task in the robotic application.

For example, one node can be allocated to navigation, and another node can be

allocated for movement control. A node can publish the message on a ROS topic, and

another node can subscribe to it. ROS topic is a name which can be used to identify

the shared location to communicate with nodes. ROS topic acts like a pipe to

communicate with nodes in the ROS environment. Master is working as a registry in

the ROS environment through that all communications can be implemented. The ROS

master communication is conducted with the XMLRPC, a stateless communication

technique.XMLRPC server is running by default with port number 11311. The ROS

master is connected with the parameter server to provide the namespaces.

There are several ROS nodes command line tools as described below: rosnode

info command is Used to print information about a node rosnode kill command

is Used to kill a running node rosnode list command is Used to list active nodes

rosnode machine command is Used to list nodes running on a particular

machine rosnode ping command is Used to test connectivity to a node

rosnode cleanup command is Used to purge registration information of unreachable

nodes.

The sample ROS nodes are shown in Figure 2.2 that can be taken by running the

rosnode list commands. These ROS nodes are similar to processes in the operating

system.

Fig. 2.2 Sample ROS nodes

The ROS wiki provides documentation of the content as a forum. Anyone can sign

into this forum and add content. The versions of ROS can be released as distributions

similar to the release in Linux operating system. The code segments released by

different institutes for the robotic application are stored as repositories. The

interaction among ROS nodes, ROS topics and ROS master is shown in Figure 2.3

20

Fig. 2.3 ROS Nodes and Topics

ROS provides a client library for programmers to make applications easily. It mainly

supports two languages, C++ and python. roscpp is the one library developed for C++

language, and rospy is the other library developed for python language.

Our experiments were completed with the ROS Melodic version (Released on 23rd

May 2018) with Ubuntu 18.04 version.

2.4.2 ROS Topics

ROS topics are like the standard shared memory in applications where two or more

processes can communicate by sharing the content through the shared memory. It is

the same as the named bus system on which some messages can be shared. Nodes

can publish or subscribe to the selected ROS topic to make communication. There can

be many subscribers and publishers for the selected ROS topic. Unidirectional

streaming communication is used in communication with the ROS topics. Each topic is

strongly typed with a message type to make the communication. The transport type

used to communicate in the ROS environment may be TCP/IP-based or UDP based on

the application requirements. ROS nodes can negotiate the transport type at run time.

It uses the Remote Procedure Call (RPC) to make successful communication.

rostopic is a command-line tool that can work with ROS topics. rostopic

list is a command that can get all current ROS topics.

rqt graph is a handy tool to visualize the nodes and topics in the system we are

working with ROS. You can use the help option to get all the available sub-commands

for the command rostopic. rostopic -h rostopic is a command-line tool for printing

information about ROS Topics.

Commands:

rostopic bw command is Used to display bandwidth used by topic

rostopic echo command is Used to print messages to the screen

rostopic find command is Used to find topics by type rostopic hz

21

command is Used to display the publishing rate of topic rostopic info

command is Used to print information about the active topic rostopic

list command is Used to list active topics rostopic pub command is Used

to publish data to a topic rostopic type command is Used to print topic

type

Different ROS topics can be used to publish commands for different actions. we can use

the ROS topics to publish like cmd vel, cmd vel mux or cmd vel mux/input/navi.The

possible ROS topics for the movement and initial pose. The sample ROS topic list is shown

below in Figure 2.4. It is generated with our experiments with the TurtleBot robot.

2.4.3 Gazebo Simulator

The Gazebo is an open-source simulator for robotic application development. It

provides a 3D view for developers. It has a high-performance, open, dynamic engine

Fig. 2.4 Sample ROS Topics

developed with C and C++ language. The Gazebo can easily create and run

experiments rapidly with solid physics and good graphics. It works with OpenGL

rendering and provides many codes for sensor simulation and actuator controls. This

is one of the most popular simulators in robotic application development. It is a good

22

tool for testing new concepts, systems, and algorithms Koenig and Howard (2004).

Several research groups have used the ROS and Gazebo environment to work with

multiple robot programming, and testing algorithms Anggraeni et al. (2020) Sadeghian

et al. (2017). Simulation is very important for testing the software programs, robot

behaviours in the environment, and controlling robots with new algorithms. Testing

results with the simulator in experiments agree with results in real developed

environments Takaya et al. (2016b). Gazebo simulators can be used to test robotics

algorithms, design robots, and perform regression testing with realistic scenarios with

a graphical user interface. This is one of the good virtual worlds to simulate multiple

robots in the same environment Yao et al. (2015). A set of ROS packages named

gazebo ROS pkgs is worked as wrappers around the stand-alone Gazebo. Models in

Gazebo can be spawned and deleted dynamically using the services gazebo spawn

model and gazebo delete model. We had to simulate multiple robots in the Gazebo

environment. Therefore we developed our scripts to spawn multiple robots at

different places simultaneously to complete our experiments. The sample gazebo

environment we used in our experiments is shown in Figure 2.6. We have developed

the scripts to spawn multiple robots at different initial locations in the Gazebo

environment, as shown in Figure 2.7.The roslaunch tool is used as the standard

method for starting ROS nodes and bringing up robots in the ROS environment. The

command roslaunch gazebo ros empty world.launch is used to launch the open world

in Gazebo. We need to select the correct version of the ROS working with Gazebo

simulation packages to develop the application with the Gazebo simulation

environment. The execution of the TurtleBot on the Gazebo simulation with the

launch file is shown in Figure 2.5.

Fig. 2.5 Execution of the Launch File for TurtleBot in Gazebo

23

Fig. 2.6 Gazebo Simulator with Single Robot

2.4.4 ROSbridge Server

Rosbridge server is working with the WebSocket transport layer. A WebSocket is a full

duplex communication protocol on a TCP connection. The communication and

24

Fig. 2.7 Gazebo Simulator with Multiple Robots

Fig. 2.8 Execution of the ROSbridge Server

interaction between a web browser (or other client application) and a web server can

be achieved using a WebSocket. Web pages can communicate with ROS using the

ROSbridge protocol. The rosbridge protocol provides the ability to fragment messages

and compress messages. ROSbridge uses the JSON format to transfer the messages.

Rosbridge library uses the Python library to work on web pages, convert JSON strings

into ROS messages, and vice versa. Most of the HRI research work was completed with

the help of Rosbridge library support Crick et al. (2012). Roslibjs is a JavaScript library

for the browser that can talk to ROS via the rosbridge server. Rosbridge provides

access to ROS topics and services available over TCP sockets or WebSockets as JSON

messages. This server is listening on port 9090 to create connections. Rosbridge can

be used by the client’s program to publish and subscribe to topic messages and invoke

services in the server. Robert Codd-Downey et al. have developed an interface using

Rosbridge libraries to communicate and control robots easily Codd-Downey and

Jenkin (2015). The execution of the ROSbridge server using the laucnch file is shown

in Figure

2.8.

2.4.5 Semantic Web

The Semantic Web is considered an expansion of the current Web and is not a separate

Web. The Semantic Web provides a better meaning to the Web’s content so that

machines can communicate with each other like people are communicating. Several

research works are going on to complete this requirement by many researchers. The

Semantic Web was developed to provide a common framework that allows making

machine communication easier and data to be shared. In addition, it enables software

reuse across applications, enterprises, organizations and society with the community.

W3C develops the Semantic Web with many researchers and industry partners. Most

25

of the standard was developed by W3C and pubished. Resource Description

Framework (RDF) was used initially to develop the Semantic Web. The semantic Web

provides intelligent access to the Web, making communication among machines more

accessible. Again it provides intelligent access to heterogeneous and distributed web

resources, enabling software systems and agents to mediate between user needs and

available information sources Lassila et al. (2000). Moreover, the software agents can

communicate with others with less intervention using ontologies in the Semantic Web

Hendler (2001).

2.4.6 Ontology

Ontologies play the primary role in the Semantic Web and are used as the backbone

in representing knowledge in applications. Therefore, finding required and

appropriate ontologies for the given domain is significant, but it is now a difficult and

tedious task since the numbers of ontologies keep developing rapidly. It is a

complicated task to develop an ontology starting from scratch even though there are

some tools since it is time-consuming, needs a good understanding of the domain and

is expensive to construct. The World Wide Web Consortium (W3C) has recommended

XML, XML Schema, RDF, RDF Schema and Web Ontology Language (OWL) as standards

and tools for developing the application with the semantics of the content. Therefore,

ontologies play a vital role in knowledge representation for the Semantic Web. The

Semantic Web represents a common framework for sharing and reusing data across

multiple applications, organizations, and community boundaries. Semantic Web is

based on the Resource Description Framework (RDF), but there are some limitations

to the RDF. Therefore, currently, researchers are using ontology to solve the limitation

of RDF. The format and the structure of RDF are straightforward to represent, and we

can use RDF triples in the form of subject, predicate, and object, as shown below Yun-

hua and Dan (2010). Some researchers have converted the existing database models

into RDF for developing some applications with semantics Tong (2018).

Statement = (Subject, Predicate, Object)

Subject: The resources that are being described by RDF with a URI.

Predicate: This is also a kind of resource which can have a name.

Object: It is also an RDF URI reference or a blank node.

Statement: A statement contains a resource, a property, and an associated value.

26

Fig. 2.9 Triple in RDF

Fig. 2.10 XML code for RDF Triple

RDF triple with graphical representation is shown in Figure 2.9. RDF has several

limitations, including it is difficult to declare the range restriction on some classes,

challenging to represent the disjointness between two classes, and difficulty in

implementing the union intersection and complement with classes. All these issues

and limitations can be avoided using ontologyFurthermore, most of the knowledge

bases can be developed using the ontology Staab et al. (2001) Maedche et al. (2003)

Lim et al. (2011). There are several research challenges related to applying ontologies

in real-world environments. However, it provides the meaning to the content to

complete machine-tomachine communication efficiently.

Assume there is a resource created by Samantha Rajapaksa, then it can be

represented using RDF triple as shown in Figure 2.10

Samantha Rajapaksha is the creator of the resource http://www.sliit.lk /Home /

Samantha

Fig. 2.11 Triple in RDF as example

27

Fig. 2.12 RDF Graph with more concepts

Fig. 2.13 XML Code for Extended RDF graph

The RDF file can be extended as shown in Figure 2.12 to represent more concepts

and their relationship. The Web Ontology Language (OWL) is used to represent the

ontology for the selected domain. The valuable rich, and complex knowledge about

things, groups of things, and relations between things can be represented using the

semantic web language called W3C web ontology language. It is a computational

logicbased language that can be used to knowledge expressed in OWL can be

expressed by computer programs. The OWL web ontology language is designed to

develop web applications that can process the content with semantics without just

presenting the content to humans. It provides very high machine interoperability with

web content than provided by XML, RDF, and RDF Schema.OWL provides three

sublanguages based on the expressive power of the content OWL lite, OWL Descriptive

Logic and OWL full. Several tools can be used to create the ontology from scratch.

Protege is one of the handy open-source ontology editors that can be used to create

our ontology.

Ontologies are used to describe taxonomies and formally define the structure of

knowledge for various domains. For example, in a given domain, the nouns can be

represented as classes of objects, and the verbs can be used to represent relations

28

between the objects. The OWL Web Ontology Language is an international standard

that can be used to encode and exchange ontologies to a developed application that

is needed with the semantic meaning of the content.

In some instances, user instruction may have some synonyms, so our system must

identify the corresponding synonym to select the relevant ROS topics and nodes. Some

research groups completed ontology-based synonym identification with the use of

deep neural network technologies Shen et al. (2018). Some researchers have used the

multistrategy to extract the synonym using a page ranking algorithm, pattern

matching algorithm, and literal similarity algorithm Lu et al. (2009). Some researchers

have used Neural network-based technologies to manage the user instructions with

semantics Luo and Chen (2017). The other research problem is identifying the user

instruction’s synonyms and related ROS topics and nodes for subscription and

publication.

CHAPTER 3

Methodology

The authors have implemented a web interface to interact with the robots and

users.ROS Bridge Server was used to connect the web interface and ROS middleware.

The Web interfaces were developed to interact with different experiments in our

research as described by the table 1.1. Web Interface I to IV was developed with

simple instructions like moving the Robot forward, moving the robot circle and getting

the Robot’s current position. Web Interface V was developed to work with instructions

with synonyms. We have used the Gazebo simulator for our experiments. The

standard ROS JavaScript Library provided by the ROS Web Tools

(http://robotwebtools.org/) was used to connect ROS with the Web interface. In the

last experiment, the user can issue multiple instructions to all robots placed at

different positions. Figure 3.1 represents the system architecture of our system.

29

Fig. 3.1 System Architecture Diagram

3.1 Robot Registration Engine

All multiple robots want to register with our robot registration engine by providing the

software details and hardware-related specifications semi-automatically. Figure 3.2

describes the robot registration algorithm. Firstly, it implements a node in ROS named

”regRobot” to fulfil all the lines in the algorithms.

INOUT: IP address list, URDF file and ontology

OOTPUT: Updated ontology with ROS topic, Nodes and services

ALL_ROBOT_REGISTRATION_ALGORITHM (ipAddressList, URDF_File, RobotOntology)

1. Begin
2. Develop a Process as “regRobot” using ROS node//All lines will be run by this process.
3. Foreach ipAddress ∈ 𝑖𝑝𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐿𝑖𝑠𝑡 do
4. //The hardware details were updated with user involvement
5. Connect the Robot using IP address
6. If Robot has wheels Then
7. Foreach 𝑖 ∈ {1,2,3,4,5,6,7,8} 𝒅𝒐
8. Get the hardware details with user and URDF_File
9. Update RobotOntology
10. Endfor
11. Else
12. Foreach 𝑗 ∈ {𝑏𝑖𝑝𝑒𝑑𝑎𝑙, 𝑡𝑟𝑖𝑝𝑒𝑑𝑎𝑙, 𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑑𝑒𝑙} 𝒅𝒐
13. Get the hardware details with user and URDF_File
14. Update RobotOntology
15. Endfor
16. Endif
17. //Update the software details with ROS commands
18. Foreach item in { 𝑟𝑜𝑠𝑡𝑜𝑝𝑖𝑐, 𝑟𝑜𝑠𝑛𝑜𝑑𝑒, 𝑟𝑜𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒} do

ROBOT
REGISTARTION

ENGINE

COMMAND INTERPRETER

Movement
Management

ONTOLO
GY

𝑂 𝑇𝑢𝑟𝑡𝑙𝑒𝐵𝑜𝑡
𝑂 𝑇𝑖𝑎𝐺𝑜
𝑂 𝐻𝑢𝑠𝑘𝑦

WEB
INTERF

ACE

Schedule
Management

USER
INSTRUCTION

Semantic Analysis Synonym Analysis

Ontology
Management

Communication
Management

Thread
Management

Navigation
Management

COMMAND
PUBLISHING
ENGINE

30

19. Select the necessary option for each command
20. Execute item on command prompt with the execl() system call
21. Collect the output lists and set as L
22. Foreach Line in Ldo
23. Update the ontology with relevant class
24. Endfor
25. Edfor
26. Endfor
27. Publish the ontology with “regOnto”.
28. End

Fig. 3.2 Robot Registration Algorithm.

Each Robot is connected using the ip address from the given ip address list. If the

Robot is already registered, then the ontology has no changes. Otherwise, the

hardware specification can be collected from the URDF file with human intervention.

Software specification can be collected by running the ROS commands using the

execl() system call. Available ROS topics, nodes, message types, and other details have

been updated in the ontology. Finally, this algorithm Publish the updated ontology on

the ROS topic named ”regOnto”.

We initially created a node called ”regRobot” to complete the rest of the line

execution of the algorithm. IP addresses were extracted from the given IP address list

named ”ipList”. Use the IP address to connect all heterogeneous service robots in the

gazebo environment. Then the hardware details were collected using human

involvement with the URDF file. Next, ROS commands were executed to collect the

Software specification, which used the execl() system call by the ROS node created

earlier. Finally, ontology named ”Registration Ontology” is created to represent

available ROS details.

Fig. 3.3 Initial Interpretation Process.

Web Interface
User

Instruction

Based on ROS Nodes

Based on ROS Topics Subscribed

Based on ROS Topics Published

Based on ROS Packages available

Action

Subject

Object

Constraint

M
A
P
P
I
N
G

O
N
T
O
L
O
G
Y

Semantic
Errors

31

Figure 3.4 represents the Flowchart for the algorithm we initially developed for

registration robots.

3.2 Command Interpreter

When a user issues a high-level user instruction on the web interface provided by the

system, the instruction is analyzed by the command interpreter to separate the action,

subject, object, and constraint, as shown in Figure 3.3. First, the processed instruction

can be sent to the synonyms analysis and semantic analysis process. Then it needs to

find out relevant ROS nodes, ROS topics for subscription, and publication with the

algorithm. Finally, the ROS Topic Identification algorithms are used to identify the

related ROS topic to control the robots. The ROS Topic Identification algorithm will be

explained later in this chapter. When users issue multiple instructions sequentially, we

need to interpret them separately. Therefore, we have designed a state transition

engine with multiple instructions. The system is designed to work with multiple

instructions one by one issued by the user using a state transition diagram with the

states’ description as shown in Figure 4.17. The robot state is saved in the ROS topic

to retrieve the robot state from time to time. When the Robot is ready, it will accept

the user’s instruction and complete the assigned work accordingly.

When a user issues multiple instructions to the Robot through the Web interface,

the related Flowchart with the state transition is shown in Figure 3.6. Initially, a robot

must register with the Robot Registration Engine and update the state as Ready in the

32

Fig. 3.4 Robot Registration Algorithm.

ROS topic. Then the Robot can work according to the instruction given by the user.

While the first instruction is processed, the user can issue another instruction then the

Robot must be interrupted to handle the second instruction. Based on the priority of

the instruction, the Robot must be able to decide to continue the current work or start

the second instruction. The work state has the highest priority, the motion state has

the second-highest priority, the dialogue state has the third priority, and the ready has

the lower priority. Each Robot will exit the system if the instructions are not received

within the defined time interval.

3.3 Movement Management

The most critical component of our experiments is the robot movement using

different instructions and different interfaces. Once a robot is registered with the RRE,

it uses the ROS Topic Identification Algorithm to identify the corresponding ROS topic

for the Movement. We have used different techniques to move the robots in different

experiments. In experiment 01, the authors used teleoperation to move robots

Start

Create a ROS node to complete the rest of
the lines of the Algorithm.

Get IP Address List, URDF
FileandOntology

No

Yes
Connect the Robot with

the IP address.
Are there
any robot
with IP?

Robot
has

wheels?
No

Yes Get the hardware details with
user and URDF File with

relatedto robot and
Update Ontology .

Get the hardware details with
user and URDF File with

relatedto robot and
Update Ontology.

Are there
any lines in

the ROS
topic List?

No Ye s

Run the rostopic
command with options

Identify the ROS topic
and update the ontology. End

33

forward and circle in an open environment in Gazebo. In experiments 02,03, and 04,

authors

𝑆0:𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒
𝑆1:𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑 𝑆𝑡𝑎𝑡𝑒
𝑆2:𝑅𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒
𝑆3:𝑀𝑜𝑣𝑒 𝑆𝑡𝑎𝑡𝑒
𝑆4:𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒
𝑆5:𝐷𝑖𝑎𝑙𝑜𝑔 𝑆𝑡𝑎𝑡𝑒
𝑆6:𝐸𝑥𝑖𝑡 𝑆𝑡𝑎𝑡𝑒
𝑆0 →𝑆1 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 ℎ𝑎𝑠 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑.

𝑆1 →𝑆2 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 𝑖𝑠 𝑟𝑒𝑎𝑑𝑦 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠.

𝑆2 →𝑆3 𝑖𝑓𝑀𝑜𝑣𝑒 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆2 →𝑆4 𝑖𝑓𝑊𝑜𝑟𝑘 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆2 →𝑆5 𝑖𝑓𝑑𝑖𝑎𝑙𝑜𝑔 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆3
𝑆4} → 𝑆2 𝑖𝑓𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆5
𝑆3
𝑆4} → 𝑆6 𝑖𝑓𝑎𝑛𝑦 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑.

𝑆5

Fig. 3.5 State Transition Diagram.

used the Web-based interface to move robots forward and circle in an open

environment in Gazebo with multiple robots. In experiment 05, the Robot was moved

to a specific location using the algorithm given in Figure 3.7. The notations in the

Flowchart are described in Table 3.1.

3.4 Ontology

Ontology is a model used to represent the concept and the relationships among all

related concepts; for example, if we select the Robot’s ontology, we can represent all

concepts in the robot domain and the relationships among all concepts related to

robots. We have created ontology to represent the concepts. User intervention is

needed to update the ontology. Finding concepts from Ontology is the one that takes

34

more time because the running time complexity of the searching algorithm is given by

O(n) where n is the number of classes in the given ontology. The part of the ontology

we created is shown in Figure 3.8.

Fig. 3.6 Flowchart for Multiple Instruction Handling.

Table 3.1 Notations used in the Flowchart and Experiments

 Description

 ms−1.

ms−1.

 ms−1.

θ

tion in quaternion form,

3.5 Synonym Analysis

Users can enter different types of instructions, and the system accepts only commands

and commands with the condition. Some commands with different verbs with the

same meaning can be called synonyms. Robots may only be able to understand

synonyms once it is appropriately programmed. Therefore, we implemented ontology

created with the Web Ontology Language property called ”sameAs” to find the

synonyms in the given instruction. We have used the ”owl:sameAs” statement to

Start

Start
 Robot

Register

the

Robot

in

RRE

and

 set

the

state

in

ROS

topic

Input
 Instructions

Process

the

input

Is

it

a

 move
 request?

Start

to

Move

and

 change

the

state

Is

it

a

 work
 request?

Start

to

work

and

 change

the

state

Is

it

a

 work
 request?

Start

to

work

and

 change

the

state

Is

it

a

high

 priority
 interrupt?

Is

it

a

high

 priority
 interrupt?

Is

it

a

high

 priority
 interrupt?

Yes Yes Yes

Yes Yes Yes

No No

No No No

No
Is

it

 timeout?

End

Yes

35

identify the two Uniform Resource Identifiers. That means each individual has the

same ”identity”. We can take the example as synonyms for instruction ”move” are

”shift, go, proceed, walk and advance”. Users can update ontology manually. Synonym

identification is used in the ROS topic Identification algorithm for publishing

commands. Different heterogeneous service robots can use different ROS topics;

therefore, we must find the correct ROS topic to publish the commands. The semantic

analysis algorithm is described in Figure 3.11.

Fig. 3.7 Flowchart for moving Robot to a specific Goal.

3.6 Semantic Analysis

The semantic meaning of the command is one of the main tasks in interpreting

userlevel instructions. Suppose a robot can detect a semantic error in the given user-

level instruction that will better implement the Robot’s intelligence. Therefore,

understanding the semantics of the command can be achieved if we can detect the

semantic error of the instruction using ontology. For example, when a user issues a

user-level instruction with the verb ”go,” we can guarantee that the next part should

be a location or destination. Figure 3.13 describes the semantic analysis algorithm.

The ontology code has a property that requires restricting all robots from moving

to a specific position. ”owl:allValuesFrom” is the property that can be used to define

the class with all possible values of the given property defined by ”owl:onProperty”. If

the object is not in the restricted value list, it is considered an invalid command and

gets the user intervention.

Start

Input:
 Move

 Robot
 to

 (𝒙 𝟎 , 𝒚 𝟎)

Create
 ROS

 node
 and

 Subscribe
 to

 the
 Odometry

 ROS
 Topic

Get
 the

 current
 position (𝒙 𝒈 , 𝒚 𝒈) and

 orientation
 (𝜽)

 of
 the

 Robot

Convert
 the

 orientation
 yaw = (𝜽)

 from
 quaternion

 to
 Euler

 form(roll,pitch,yaw)

𝒙 𝒅 = 𝒙 𝟎 𝒙 𝒈
𝒚 𝒅 = 𝒚 𝟎 𝒚 𝒈

𝜽 𝒅 = 𝐚𝐭𝐚𝐧 Τ 𝒚 𝒅 𝒙 𝒅
𝒊𝒇 𝜽 𝒅 − 𝜽 > 𝟎 . 𝟏

𝑼 𝒙 𝒔 = 𝟎 . 𝟎
𝝎 𝒛 𝒔 = 𝟎 . 𝟓

𝑼 𝒙 𝒔 = 𝟏 . 𝟓
𝝎 𝒛 𝒔 = 𝟎 . 𝟎

Yes

No

𝒊𝒇𝒙 𝒅 == 𝟎 & 𝒚 𝒅 =
= 𝟎

Yes

End.

No
Publish

 the
 command

 on
 ROS

 Topic

36

3.7 Command Publishing Engine

According to the user-level instruction, the command interpreter can identify the

action (move, navigate, Identify) subject, constraint, and object defined in the user

instruction. Then, the command publishing engine needs to identify the

corresponding ROS topics relevant to the action to publish and subscribe for initiation

of the action. For example,

Fig. 3.8 Fragment of the Ontology

Fig. 3.9 ROS topics for the Movement.

if we want to move the Robot to a specific location, we can publish the command on

ROS topics like cmd vel, cmd vel mux or cmd vel mux/input/navi. Of course, these

ROS topics will vary from Robot to Robot in heterogeneous environments. For

example, the possible ROS topics for the Movement and ROS topic for the initial pose

is shown in Figure 3.9.

Action

Move

Navigate

Identify

…………….

…………….

/cmd_vel

/*../*../cmd_vel

/cmd_vel_mux

/*../*../cmd_vel_mux

/cmd_vel_mux/*../

/cmd_vel_mux

/command_velocity
ROS Topic for Initial Pose

/odem

*/odem

/odemetry

37

The Get Position and Orientation algorithm is defined with the Flowchart as shown

in Figure 3.14. Initially, it connects with the Robot using the IP address and gets the

ROS topic list from the ontology updated by the Robot Registration Engine. Then, it

searches for the ROS topic related to the odometry to get the current position and

orientation of the Robot by subscribing to the odometry related ROS topic. If the

relevant ROS topic is unavailable, we have taken the user interventions to find the ROS

topic for the position and orientation.

<rdf:Description rdf:about="#move">

<owl:sameAs rdf:resource="#go"/>

<owl:sameAs rdf:resource="#progress"/>

<owl:sameAs rdf:resource="#advance"/>

<owl:sameAs rdf:resource="#shift"/>

</rdf:Description>

Fig. 3.10 OWL:sameAS Syntax

SYNONYM_ANALYSIS_ALGORITHM (action , ontology)
1. Start
2. Create a ROS node as “synAlgo” //Rest of the codes execute by this node.
3. for each 𝑐𝑙𝑎𝑠𝑠 ∈ 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 do
4. //Get all classes of the ontology
5. if 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑐𝑙𝑎𝑠𝑠 𝐭𝐡𝐞𝐧 // Find the class for the action
6. Call Get_ROSTOIC(action)
7. else
8. Get the sameAs List
9. for each 𝑖 ∈ 𝑠𝑎𝑚𝑒𝐴𝑠 𝐿𝑖𝑠𝑡 do
10. if 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑖 𝐭𝐡𝐞𝐧 // Find the synonym for the action
11. Call Get_ROSTOIC(action)
12. else
13. Get the user inputs
14. endif
15. endfor
16. endif
17. endfor 18. End.

Fig. 3.11 Synonym Analysis Algorithm

When a user enters the instruction to all heterogeneous service robots, we need

to initiate the action for each Robot. This task is completed by Command Publishing

Engine (CPE), which can publish the action on the corresponding ROS topic. Initially,

CPE can locate the current position of each Robot using the optimized algorithm. Get

Robot Position algorithm of each Robot is defined in Figure 3.16. The algorithm has

38

used the ip address and the undated ontology to get the initial position and the

orientation.

We have created a node in ROS called ”initPos”. It is responsible for running the

remaining lines of the defined algorithm. In addition, this node can find the relevant

ROS topics related to the initial position and orientation of the Robot.

Each Robot may have a different ROS topic to subscribe to and publish for different

operations. Therefore, we need to identify these topics before executing commands

on each Robot. Figure 3.17 describes the ROS topic identification algorithm. Initially,

the system used the given IP address list and ports list to connect with all robots. Used

the ROS topic in the ontology, which the RRE generated previously to create a shared

file as

<owl:Class rdf:about="#Robots">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#moveTo"/>
<owl:allValuesFrom rdf:resource="#Location"/>

</owl:Restriction>
</rdfs:subClassOf> </owl:Class>

Fig. 3.12 OWL:Restriction Syntax

INPUT: User Instruction, Ontology

OUTPUT: Identify the instruction as valid or invalid

SEMANTIC_ANALYSIS_ALGORITHM (Instruction, object, RobotOntology)
1. Begin
2. Develop a process using ROS node as “semAlgo” //This is resposible to run following lines.
3. Foreach 𝑐𝑙𝑎𝑠𝑠 ∈ 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 do
4. //Get all classes of the ontology
5. If 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑐𝑙𝑎𝑠𝑠 𝐭𝐡𝐞𝐧 // Find the class for the action

6. Foreach 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠 do
7. If 𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝐹𝑟𝑜𝑚 == 𝑜𝑏𝑗𝑒𝑐𝑡 𝐭𝐡𝐞𝐧
8. Call Get_ROSTOIC(action)
9. Else
10. Output as invalid request
11. Endif
12. Endfor
13. Else
14. Get the sameAs List
15. Foreach 𝑖 ∈ 𝑠𝑎𝑚𝑒𝐴𝑠 𝐿𝑖𝑠𝑡 do
16. If 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑖 𝐭𝐡𝐞𝐧 // Find the synonym for the action
17. For each 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠 do
18. If 𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝐹𝑟𝑜𝑚 == 𝑜𝑏𝑗𝑒𝑐𝑡 𝐭𝐡𝐞𝐧
19. Call Get_ROSTOIC(action)
20. Else
21. Output as invalid request
22. Endif

39

23. Endfor
24. Else
25. Get the user inputs
26. Endif
27. Endfor
28. Endif 29. Endfor 30. End.

Fig. 3.13 Semantic Analysis Algorithm

rtList. Then it called the Get ROSTopic() algorithm to get the corresponding ROS topics

for each action. This algorithm was used to find the ROS topics for each action defined

in the user instruction. For example, suppose the action is to move the Robot from

one location to another location. In that case, we need to find the corresponding ROS

topic used from the identified list as ’cmd’, ’vel’, ’cmd vel’, ’velocity’, ’speed’, ’travel’,

’run’. If the identified ROS topics list did not match the ROS topics received from

40

Fig. 3.14 Get Initial Position Algorithm

the RRE, we called Get Uncertain ROSTopic() to find the ROS topics with synonyms of

the action based on the ontology. This algorithm uses the synonyms for the given

action to find the corresponding ROS topic. If we can find one, we can use the topic

for subscribing or publishing the action; otherwise, we need to get the user input to

resolve the problem. The interaction among ROS nodes, ROS topics and ROS master is

shown in Figure 3.15

We have conducted experiments with the system using the two robots with level

01, level 02, and level 03 instructions with twenty different instructions. The twenty

Start

Create a ROS node to complete the rest of
the lines of the Algorithm.

Get IP Address List and
Ontology

No

Yes

Connect the Robot with
the IP address.

Are there
any robot
with IP?

Is
odometry

topic
available?

No

Yes

No

Get the user intervention
to find the ROS topic.

Get ROS topic list from the
Ontology

Subscribe to the
Odometry Topic

Get the position(x, y, z)
Get the Orientation(x, y, z, w)

End

41

Fig. 3.15 ROS Nodes and Topics

INPUT: Ip List and RobotOntology

OUTPUT: Position and Orentation

Get_Initial_Position_Orientation (ipList, RobotOntology)

1. Begin
2. Develop a process withh node in ROS as “initPos” //This will run following lines.
3. Using the ip address connect with the Robot.
4. Get the rostopic list from the RobotOntology.
5. Foreach element in rostopic list do
6. If element is in {odom,odometry,odomet} Then
7. Use the element to get odometry content formthe ROS topic
8. Retrive the position details in the form of (x, y, z)
9. Retrive the Orientation details in the form of (x, y, z, w)
10. Add the content in the RobotOntology
11. Else
12. User needs to provide the ROS topic
13. Use the element to get odometry content formthe ROS topic
14. Retrive the position details in the form of (x, y, z)
15. Retrive the Orientation details in the form of (x, y, z, w)
16. Add the content in the RobotOntology
17. Endif
18. Return the updated ontology.
19. Endfor
20. End

__

Fig. 3.16 Get Initial Position Algorithm

42

instructions were developed using different synonyms for the given verb move. Some

synonyms were not implemented in the ontology. Therefore, it has generated errors

for synonyms not in the ontology.

1. Level 01: Move 50m with velocity 1ms−1.

2. Level 02: Move to the point (20, 20) with velocity 1ms−1.

ROS_TOPIC_IDENTIFICATION_ALGORITHM (ipList, portList)

1. foreach ipi ∈ ipList & porti ∈ portList do
2. Get the rostopic list form Ontologyip
3. Publish ROS Topic as shared file named as rtListi
4. foreach actioni ∈ {move, navigate, identify, etc.} do
5. rti ← GET_ROSTOPIC(actioni)
6. Record the ROS Topics get as rti

GET_ROSTOPIC (actioni)

1. Open shared file fi ← rtListi
2. if actioni = move then
3. foreach rt ∈{'cmd','vel','cmd_vel','velocity','speed','travel','run'} do
4. foreach line li in file fi do 5. if rt is in li then //Exact Matching
6. Record ROS Topic rt for move.
7. else //Non-Exact Matching
8. GET_UNCERTAIN_ROSTOPIC(actioni)
9. if actioni = navigate then
10. foreach rn ∈{'move_base','map_server','robot_amcl'} do
11. if rt is in li then //Exact Matching 12. Record ROS Topic rn for navigate.
13. else //Non-Exact Matching
14. GET_UNCERTAIN_ROSTOPIC(actioni)
15. foreach rt ∈{'cmd','vel','cmd_vel','velocity','speed','travel',
16. 'run',’goal’,move’,’amcl’,’navigation’,’scan’,’map’,’cloud’,
17. ’rt’,’local’,’global’,’odom’} do
18. foreach line li in file fi do
19. if rt is in li then //Exact Matching 20. Record ROS Topic rt for navigate.
21. else //Non-Exact Matching
22. GET_UNCERTAIN_ROSTOPIC(actioni) GET_UNCERTAIN_ROSTOPIC (actioni)

1. Get the ontology (Oa) developed for actioni
2. foreach class ∈{Oa} do
3. If actioni == class then
4. Get the synonym list SLi from the ontology form the class
5. foreach rt ∈{SLi} do
6. foreach line li in file fi do
7. if rt is in li then //Exact Matching 8. Record ROS Topic rt for navigate.
9. else //Non-Exact Matching
10. Get the User Inputs for actioni

Fig. 3.17 ROS Topic Identification Algorithm

3. Level 03: Move to the given goal in the map.

43

We have used three levels of instructions for the experiment as defined in Table

3.2. The Level 01 instruction moves all robots to a given distance with the given

velocity from the current position with the current orientation.

Level01_Interpretation(cmd, ipList, ontology)

1. Start
2. Create a ROS node as “lev01Intr” //Rest of the codes execute by this node.
3. Get the distance and velocity from the cmd
4. Set the values for linear(x, y, z)and angular(x, y, z)
5. for each ip ∈ 𝑖𝑝𝐿𝑖𝑠𝑡 do
6. Connect with running robot using the ip.
7. Subscribeto regOnto ROS topic to Get the rtList
8. for each item ∈ rtList do
9. if (cmd_velis in item) then
10. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic
11. Set the stopping time based on the distance and velocity
12. else if (cmd_vel_muxis in item) then
13. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic
14. Set the stopping time based on the distance and velocity
15. else
16. Some error in input or rtList
17. endif
18. endfor
19. end

Fig. 3.18 Level 01 Interpretation Algorithm

Figure 3.19 represents the level 02 interpretation algorithm where all robots move

to the given new position with the given velocity from the current position facing the

new orientation.

Figure 3.20 represents the level 03 interpretation algorithm where all robots move

to the given goal with a given navigation path with an obstacle in the environment.

Assume that the map is being created for each Robot using the scan topic. The map

file is created and saved in the map server. This map is stored in the map server and is

used by all robots to navigate their path. We need to maintain a separate amcl

(Adaptive Monte Carlo Localisation) launch file and move base launch file for each

Robot. In the amcl launch file, we need to set Robot-specific ROS topic (eg.scan,

odometry, initialpose and particlecloud) for each Robot for the localization. Then we

need to remap the Robot specific ROS topic (eg.cmd vel, goal, odem, local plan, global

plan ,footprint and costmap) for the move base node for each Robot and store them

44

in the launch file for the Movement of the Robot. The namespace avoids conflict with

the same name with different robots in the ROS environment.

Level02_Interpretation(cmd, ipList, ontology)

1. Start
2. Create a ROS node as “lev02Intr” //Rest of the codes execute by this node.
3. Get the new position and velocity from the cmd
4. for each ip ∈ 𝑖𝑝𝐿𝑖𝑠𝑡 do
5. Connect with running robot using the ip.
6. Subscribeto “initPosOnto” ROS topic to get the current position and orientation
7. Set the values for linear(x, y, z)and angular(x, y, z)
8. Set the values for new position(x, y, z) and orientation(x, y, z, w)
9. Calculate the new orientation using new position and current position
10. Add delay time using sleep() to avoid the collision of Robots
11. Subscribeto regOnto ROS topic to Get the rtList
12. for each item ∈ rtList do
13. if (cmd_velis in item) then
14. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic 15. else if

(cmd_vel_muxis in item) then

16. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic

17. else
18. Some error in input or rtList
19. endif

20. endfor

21. end

Fig. 3.19 Level02 Interpretation Algorithm

3.8 Schedule Management

In our solution, we have assigned scheduled work and location for each Robot for a

given time slot. The Robot can execute user instructions only if it is a free time slot;

otherwise, the Robot needs to complete the allocated task. The CPE can publish or

subscribe to the relevant values for each ROS topic. Each heterogeneous Robot has

given a specific goal (Gi,j) or position to move with specific allocated work (Ti,j) based

on the given time allocation as shown in the Table 3.3. According to the given time

slot, the location to move (Goal) and task to be completed for each Robot is displayed

in the Goal and Task Scheduling table.

3.9 Navigation Management

Autonomous navigation of the Robot is one of the main research areas in Robotic

programming. ROS is implemented to work with the navigation stack that is used to

easily navigate from one location to another by hiding most of the complex tasks in

45

autonomous robot navigation. Navigation can be implemented using the ROS topics,

message formats and shapes of foot print of the Robot and selecting the relevant

values for the ROS topics for each Robot. Odometry and sensor information were used

as main inputs for the ROS navigational stack then it generated the corresponding

velocity for Table 3.2 Experiment Details

Level of the experiment Experiment details

Level 01 Move forward all robots to 50m with the

velocity of 10ms-1 from the current

position in the current orientation.

Level 02 Move all robots to a specific position by

facing to given position with given

velocity with time gap to avoid the robot

collision.

Level 03 Move all robots to a specific goal by
facing to given position with a given
velocity using separate navigation path
for each
Robot.

Level03_Interpretation(cmd, ipList, ontology, goals, map, amclList, movebaseList)

1. Start

2. Create a ROS node as “lev03Intr” //Rest of the codes execute by this node.

3.Subscribeto “initPosOnto” ROS topic to get the current position and orientation

4. for each ip ∈ 𝑖𝑝𝐿𝑖𝑠𝑡 do

5. Connect with running robot using the ip.

6. Get the current position and orientation from initPosOnto” ROS topic

7. Calculate the new orientation using new goal and current position

8. Subscribeto regOnto ROS topic to Get the rtList

9. Publishthe pgm and yaml file on the ROS topic /map.

10. for each item ∈ rtList do

11. if (scan is in item) then

12. Remap and update the amcl launch file

13. Remap and update the move_base launch file

14. else if (odometryis in item) then

15. Remap and update the amcl launch file

16. Remap and update the move_base launch file

17. else if ……

18. //Similarly we need to map initialpose, particlecloud,

19. //cmd_vel, goal, odem, local_plan, global_plan footprint and

20. endif

21. Create the single launch file and execute

22. endfor

23. end

46

Fig. 3.20 Level03 Interpretation Algorithm

the mobile base. According to the ROS specification, we can find that the mobile base

is controlled by xisvelocity,yisvelocity,andthetaisvelocity, and a 2D planer laser is

mounted on the mobile base. The navigation is successful on the square-shaped

robots Robotics (n.d.).

Table 3.3 General Goal and Task Scheduling Table

 Time slot 1 Time slot 2 Time slot 3 Time slot 4

Robot

Name

t0 − t1 t1 − t2 t2 − t3 t3 − t4

R1 Goal1,1

Task1,1

+ Goal1,2

Task1,2

+ Goal1,3

Task1,3

+ Goal1,4

Task1,4

+

R2 Goal2,1

Task2,1

+ Goal2,2

Task2,2

+ Goal2,3

Task2,3

+ Goal2,4

Task2,4

+

R3 Goal3,1

Task3,1

+ Goal3,2

Task3,2

+ Goal3,3

Task3,3

+ Goal3,4

Task3,4

+

The map server was used to store the created map file. All heterogeneous service

robots used the map stored in the map server to navigate obstacles from one location

to another. amcl (Adaptive Monte Carlo Localization) file and move base file for each

Robot were maintained as launch files to localize and move the Robot in the given

environment. (eg.ROS scan, ROS odometry, ROS initial pose and ROS particle cloud)

topics were used in the amcl launch file for each Robot for the localization. (eg.ROS

topic cmd vel, ROS topic goal, ROS topic odem, ROS topic local plan, ROS topic global

plan ,ROS topic footprint.) were used for remapping the ROS topic move base node

for each Robot.

3.10 Thread Management

Since we need to control and coordinate multiple robots simultaneously, threads can

be used to complete the task efficiently. Furthermore, a thread is a lightweight process

inside a process. Therefore, concurrency can be developed using the threads quickly.

The Thread library in Python implements multiple threads in our application. These

threads can complete each task independently.

3.11 ROS Implementation

ROS Melodic Morenia distribution was installed in Ubuntu 18.04 LTS to complete the

experiments with TurtleBot, Husky and TiaGO robots. We have installed the

DesktopFull Install version in Ubuntu. Then, catkin make command is used to create

47

the workspace for our project. It has created a CMakeLists.txt file. catkin create pkg

command is used to create different ROS packages for our application. We have

created several launch files to execute the ROS applications. There is a command

named as roslauch to launch the ROS program. The running program can be

interrupted by pressing the ctrl+c command in key bord. One of the main errors we

received was the launch file permission error. However, it can be eliminated easily

using the chmod command in ubuntu operating system. The roscore must be executed

first to execute all the other processes. The roscore is the primary process that

manages all other processes executed on the ROS environment.

48

CHAPTER 4

Evaluation and Results

We have conducted the experiments with Web interface I to V for simple instructions

and measured the response time of the robot start and stop with the web interface.

The initial experiment was conducted without the web interface. We have used the

following notation for our experiments as shown below table 3.1. All experiments

were completed in a simulation environment with Gazebo. The researchers have

shown that the system developed with the Gazebo environment can be easily ported

to the real robots without any changes to the original codes (Takaya et al. 2016a).

Therefore, all our developed codes can be executed on real robots without any

modifications.

Fig. 4.1 Single Robot Interaction without Web Interface

4.1 Experiment 01: Single Robot Interaction with simple instruction

without using the web interface.

Initially, the authors completed the experiment with a single robot without using the

web interface in the Gazebo simulator with TurtleBot3. The authors have issued

instructions to move the robot forward and move in a circle using the terminal

interface with the rostopic pub command. We have evaluated the average response

time of the robot for a Table 4.1 Single Robot Average Start/Stop Response Time

Without Web Interface

49

StartResponse(s)

 0.871 0.807 0.787

 0.657 0.541 0.531

 0.561 0.512 0.499

 0.511 0.501 0.476

StopResponse(s)

 1.211 1.728 2.161

 1.039 1.631 1.981

 1.001 1.431 1.871

 0.988 1.181 1.761

Table 4.2 Testing to Determine the Constant c1 in Equations 4.1

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c1 =

0.23)

Test02

(c1

0.24)

=

Test03

(c1 =

0.25)

0.871 0.5 0.0 0.851 0.871 0.891

0.657 0.5 0.1 0.622 0.632 0.642

0.561 0.5 1.0 0.363 0.553 0.559

0.511 0.5 1.5 0.509 0.514 0.519

0.807 1.0 0.0 0.621 0.631 0.641

0.541 1.0 0.1 0.545 0.552 0.558

0.512 1.0 1.0 0.508 0.513 0.518

0.501 1.0 1.5 0.486 0.490 0.494

start and stop instructions. We have conducted experiments with different robot

linear and angular speeds for a start and stop instructions. The experiment results will

be displayed in table 4.1. The interaction with TurtleBot3 with the terminal without

using a Web interface is shown in Figure 4.1. The response delay for a start and stop

of the robot is represented by the equation 4.1and 4.2 where Rs,dstart and

Rs,dstoprepresents the single robot delay at the start and stop respectively, τd,os

represents the delay in system call execution in Operating System, τd,ROS is used to

represents the delay in communicating with ROS topics and c1, c2 are constants.

 (4.1)

 (4.2) We have

determined the constant c1 using the experiment results, assuming the values of τd,os

and τd,ROS are constant for the given angular and linear speeds. The validation of the

50

constant c1 was completed with three Testing named Test 01, Test 02 and Test 01 with

three different constant values for c1 = 0.23, c1 = 0.24 and c1 = 0.25. Three Table 4.3

Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c1 = 0.23) 0.90611

Test02 (c1 = 0.24) 0.90618

Test03 (c1 = 0.25) 0.90624

Table 4.4 Testing to Determine the Constant c2 in Equations 4.2

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c2 =

0.84)

Test02

(c2

0.85)

=

Test03

(c2 =

0.86)

1.211 0.5 0.0 1.156 1.161 1.166

1.039 0.5 0.1 1.586 1.596 1.606

1.001 0.5 1.0 2.027 2.042 2.057

0.988 0.5 1.5 2.457 2.477 2.497

1.228 1.0 0.0 1.576 2.020 1.596

1.332 1.0 0.1 2.005 0.552 2.035

1.431 1.0 1.0 2.426 2.446 2.466

1.811 1.0 1.5 2.856 2.881 2.906

test results were calculated using the equation we have derived with the use of

constant value c1 we have calculated from the initial experimental results as shown in

Table 4.2. We have used the person() value to find the correlation between the value

generated from the equation and the experiment response value, as shown in Table

4.3. The pearson() value is higher for the value c1 = 0.25. Therefore, we can select c1

= 0.25 as the more accurate value for the equation 4.1. τd,os represents the delay in

system call execution in Operating System, τd,ROS represents the delay in

communicating with ROS topics and c1, c2 are constants.

Figure 4.2 represents the robot’s average start and stop response time for each

instruction. The average start response time gradually decreases when the linear and

angular speed increases, while the average stop time increases when the linear and

angular speed increases.

We have determined the constant c2 using the experiment results, assuming the

values of τd,os and τd,ROS are constant for the given angular and linear speeds. The

validation of the constant c2 was completed with three Testing named Test 01, Test 02

and Test 03 with three different constant values for c2 = 0.84, c2 = 0.85 and c2 = 0.86.

Three

51

Table 4.5 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c2 = 0.23) 0.52004

Test02 (c2 = 0.24) 0.52022

Test03 (c2 = 0.25) 0.52039

Single Robot Start Response without Web Interface

Linear Speed

Single Robot Stop Response without Web Interface

Fig. 4.2 Single Robot Interaction without Web Interface

test results were calculated using the equation we have derived with the use of

constant value c2 we have calculated from the initial experimental results as shown in

Table 4.4. We have used the person() value to find the correlation between the value

generated from the equation and the experiment response value, as shown in Table

4.5. The pearson() value is higher for the value c2 = 0.86. Therefore, we can select c2

= 0.86 as the more accurate value for the equation 4.2. τd,os represents the delay in

system call execution in Operating System, τd,ROS represents the delay in

communicating with ROS topics and c1, c2 are constants.

0 . 0 4 . 0 6 . 1 1 8 . 2 1 . 1 4 . 6

1

1 . 5

2

LinearSpeed U s x (ms − 1)

ω s z =0 . 0 ms − 1

ω s z =0 . 5 ms − 1

ω s z =1 . 0 ms − 1

ω s z =1 . 5 ms − 1

0 . 0 4 . 6 0 . 8 1 1 2 1 . 1 4 . 6

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9
ω s z =0 . 0 ms − 1

ω s z =0 . 5 ms − 1

ω s z =1 . 0 ms − 1

ω s z =1 . 5 ms − 1

52

4.2 Experiment 02: Single Robot Interaction with simple instruction with

web interface without autonomous robot registration.

The authors developed the web interface to interact with the robot using the ROS

Bridge Server and JavaScript library ROS Web Tools (http://robotwebtools.org/). The

authors have issued instructions to move the robot forward and in a circle using the

buttons provided in the Web interface with the robot. We have evaluated the average

response time of the robot for a start and stop instructions. We have conducted

experiments with different robot linear and angular speeds for a start and stop

instructions. The experiment results will be displayed below in table 4.6. The

interaction with TurtleBot3 with the terminal with Web interface is shown in the

following Figure 4.3. The response delay for a start and stop of the robot is

represented by the equation 4.3and 4.4 where Rs,dstart and Rs,dstoprepresents the single

robot delay at the start and stop respectively, τd,Web represents the delay in

communication through Web interface, τd,ROS is used to represents the delay in

communicating with ROS topics and c3, c4 are constants.

 (4.3)

 (4.4)

Fig. 4.3 Single Robot Interaction with Web Interface

Figure 4.4 represents the robot’s average start and stop response time for each

instruction. The average start response time gradually decreases when the linear and

angular speed increases, while the average stop time increases when the linear and

angular speed increases. According to the analysis, the authors have identified that

web communication is slightly faster than communication through the terminal.

53

We have determined the constant c3 using the experiment results, assuming the

valTable 4.6 Single Robot Average Start/Stop Response Time With Web Interface

StartResponse(s)

 0.811 0.789 0.766

 0.753 0.732 0.699

 0.611 0.601 0.544

 0.571 0.577 0.501

StopResponse(s)

 1.031 1.402 1.981

 1.001 1.267 1.812

 0.981 1.101 1.602

 0.911 0.999 1.201

Table 4.7 Testing to Determine the Constant c3 in Equations 4.3

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c3

0.24)

=

Test02

(c3 =

0.25)

Test03

(c3 =

0.26)

0.811 0.5 0.0 0.811 0.831 0.851

0.753 0.5 0.1 0.585 0.595 0.605

0.611 0.5 1.0 0.515 0.521 0.528

0.571 0.5 1.5 0.485 0.490 0.495

0.789 1.0 0.0 0.571 0.581 0.591

0.732 1.0 0.1 0.505 0.552 0.518

0.601 1.0 1.0 0.475 0.511 0.485

0.577 1.0 1.5 0.461 0.465 0.469

Table 4.8 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c3 = 0.24) 0.76559

Test02 (c3 = 0.25) 0.76737

Test03 (c3 = 0.26) 0.76901

Single Robot Start Response with Web Interface

54

Linear Speed

Single Robot

Stop

Response

with Web

Interface

Fig. 4.4 Single Robot Interaction with Web Interface

ues of τd,Web and τd,ROS are constant for the given angular and linear speeds. The

validation of the constant c3 was completed with three Testing named Test 01, Test

02 and Test 03 with three different constant values for c3 = 0.24, c3 = 0.25 and c3 =

0.26. Three test results were calculated using the equation we have derived with the

use of constant value c3 we have calculated from the initial experimental results as

shown in Table 4.7. We have used the person() value to find the correlation between

the value generated from the equation and the experiment response value, as shown

in Table 4.8. The pearson() value is higher for the value c3 = 0.26. Therefore, we can

select c3 = 0.26 as the more accurate value for the equation 4.3.τd,Web represents the

delay in communication through the Web interface, τd,ROS is used to represents the

delay in communicating with ROS topics and c3, c4 are constants.

We have determined the constant c4 using the experiment results, assuming the

valTable 4.9 Testing to Determine the Constant c4 in Equations 4.4

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c4

0.95)

=

Test02

(c4 =

0.96)

Test03

(c4 =

0.97)

0 . 0 4 . 6 0 . 8 1 1 . 2 1 . 1 4 . 6

1

1 . 2

1 . 4

1 . 6

1 . 8

2

LinearSpeed U s x (ms − 1)

ω s z =0 . 0 ms − 1

ω s z =0 . 5 ms − 1

ω s z =1 . 0 ms − 1

ω s z =1 . 5 ms − 1

0 . 4 0 . 6 0 . 8 1 1 2 1 . 1 4 . 6

0 . 5

0 . 6

0 . 7

0 . 8 ω s z =0 . 0 ms − 1

ω s z =0 . 5 ms − 1

ω s z =1 . 0 ms − 1

ω s z =1 . 5 ms − 1

55

1.031 0.5 0.0 1.031 1.036 1.041

1.001 0.5 0.1 1.516 1.526 1.536

0.981 0.5 1.0 2.001 2.016 2.031

0.911 0.5 1.5 2.486 2.507 2.526

1.102 1.0 0.0 1.506 1.516 1.526

1.267 1.0 0.1 1.991 2.006 2.021

1.101 1.0 1.0 2.476 2.496 2.516

1.981 1.0 1.5 2.961 2.986 3.011

Table 4.10 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c4 = 0.95) 0.57113

Test02 (c4 = 0.96) 0.57116

Test03 (c4 = 0.97) 0.57119

ues of τd,Web and τd,ROS are constant for the given angular and linear speeds. The

validation of the constant c4 was completed with three Testing named Test 01, Test

02 and Test 03 with three different constant values for c4 = 0.95, c4 = 0.96 and c4 =

0.97. Three test results were calculated using the equation we have derived with the

use of constant value c4 we have calculated from the initial experimental results as

shown in Table 4.9. We have used the person() value to find the correlation between

the value generated from the equation and the experiment response value, as shown

in Table 4.10. The pearson() value is higher for the value c4 = 0.97. Therefore, we can

select c4 = 0.97 as the more accurate value for the equation 4.4.τd,ROS is used to

represents the delay in communicating with ROS topics and c3, c4 are constants.

Table 4.11 Pearson value (r) for Experiment 01 and Experiment 02 Comparison

ExperimentDetails PearsonV alue(r)

Start Response with 0.93188

Start Response with 0.81706

Start Response with 0.82985

Stop Response with 0.77143

Stop Response with 0.97121

Stop Response with 0.94949

4.3 Experiment 03: Single Robot Interaction with simple instruction with a

web interface with autonomous robot registration.

The Robot Registration Engine was developed to collect all robot details, including all

ROS topics necessary to subscribe and publish. The ROS Topic Identification Algorithm

56

was developed to select the relevant ROS topics for each action defined in the user

instruction. We have evaluated the average response time of the robot for a start and

stop instructions. We have conducted experiments with different robot linear and

angular speeds for a start and stop instructions. The experiment results will be

displayed below in table 4.12. The interaction with TurtleBot3 with the terminal with

Web interface is shown in Figure 4.6. The response delay for a start and stop of the

robot is represented by the equation 4.5and 4.6 where Rs,dstart and Rs,dstoprepresents

the single robot delay at the start and stop respectively, τd,Web represents the delay in

communication through Web interface, τd,ROS is used to represents the delay in

communicating with ROS topics, τd,RT represents the delay in ROS topic identification

and c5, c6 are constants.

 (4.5)

 (4.6)

Fig. 4.5 Single Robot Interaction with Web Interface

Figure 4.7 represents the robot’s average start and stop response time for each

instruction. The average start response time gradually decreases when the linear and

angular speed increases, while the average stop time increases when the linear and

angular speed increases. According to the analysis, authors have identified that

autonomous robot communication is slightly slower than communication through the

Web without

57

Fig. 4.6 Single Robot Interaction with Web Interface Auto Registration

Table 4.12 Single Robot Average Start/Stop Response Time With Web Interface

Autonomous

StartResponse(s)

 1.011 1.001 0.981

 1.001 0.987 0.956

 0.987 0.872 0.789

 0.861 0.761 0.712

StopResponse(s)

 1.345 1.765 2.552

 1.241 1.451 2.222

 1.109 1.431 1.988

 1.011 1.344 1.765

autonomous registration.

We have determined the constant c5 using the experiment results assuming the

values of τd,Web, τd,Web and τd,RT are constant for the given angular and linear speeds.

The validation of the constant c5 was completed with three Testing named Test 01,

Test 02 and Test 03 with three different constant values for c5 = 0.11, c5 = 0.12 and c5

= 0.13. Three test results were calculated using the equation we have derived using

the constant value c5 we calculated from the initial experimental results as shown in

Table 4.13. We have used the person() value to find the correlation between the value

generated from the equation and the experiment response value, as shown in Table

4.14. The pearson() value is higher for the value c5 = 0.13. Therefore, we can select c5

= 0.13 as the more accurate value for the equation 4.5.τd,Web represents the delay in

communication through the Web interface, τd,ROS is used to represent the delay in

communicating with ROS topics, τd,RT represents the delay in ROS topic identification

and c5, c6 are constants.

58

We have determined the constant c6 using the experiment results assuming the

valTable 4.13 Testing to Determine the Constant c5 in Equations 4.5

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c5

0.11)

=

Test02

(c5 =

0.12)

Test03

(c5 =

0.13)

1.011 0.5 0.0 1.181 1.201 1.221

1.001 0.5 0.1 1.081 1.091 1.101

0.987 0.5 1.0 1.054 1.061 1.067

0.861 0.5 1.5 1.046 1.051 1.056

1.001 1.0 0.0 1.071 1.081 1.091

0.987 1.0 0.1 1.044 1.051 1.057

0.872 1.0 1.0 1.036 1.041 1.046

0.761 1.0 1.5 1.035 1.039 1.043

Table 4.14 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c5 = 0.11) 0.54836

Test02 (c5 = 0.12) 0.55785

Test03 (c5 = 0.13) 0.56558

Table 4.15 Testing to Determine the Constant c6 in Equations 4.6

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c6

1.115)

=

Test02

(c6 =

1.16)

Test03

(c6 =

1.17)

1.345 0.5 0.0 1.345 1.350 1.355

1.241 0.5 0.1 1.914 1.924 1.934

1.011 0.5 1.0 2.482 2.497 2.512

0.861 0.5 1.5 3.051 3.071 3.091

2.552 1.0 0.0 1.924 1.934 1.944

2.222 1.0 0.1 2.492 2.507 2.522

1.988 1.0 1.0 3.061 3.081 3.101

3.765 1.0 1.5 3.629 3.654 3.679

Table 4.16 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c6 = 1.15) 0.47464

Test02 (c6 = 1.16) 0.47460

Test03 (c6 = 1.17) 0.47456

59

Single Robot Start Response with Web Interface Auto

Linear Speed

Single Robot Stop Response with Web Interface Auto

Fig. 4.7 Single Robot Interaction without Web Interface

ues of τd,Web, τd,Web and τd,RT are constant for the given angular and linear speeds. The

validation of the constant c6 was completed with three Testing named Test 01, Test

02 and Test 03 with three different constant values for c6 = 1.15, c6 = 1.16 and c6 =

1.17. Three test results were calculated using the equation we have derived using the

constant value c6 we calculated from the initial experimental results as shown in Table

4.15. We have used the person() value to find the correlation between the value

generated from the equation and the experiment response value, as shown in Table

4.16. The pearson() value is higher for the value c6 = 1.17. Therefore, we can select c6

= 1.17 as the more accurate value for the equation 4.6.τd,Web represents the delay in

communication through the Web interface, τd,ROS is used to represent the delay in

communicating with ROS topics, τd,RT represents the delay in ROS topic identification

and c5, c6 are constants.

0 . 4 0 . 0 6 . 1 1 8 . 2 1 . 1 4 . 6

1

1 . 5

2

2 . 5

LinearSpeed U s x (ms − 1)

ω s z =0 . 0 ms − 1

ω s z =0 . 5 ms − 1

ω s z =1 . 0 ms − 1

ω s z =1 . 5 ms − 1

0 . 0 4 . 6 0 . 8 1 1 1 2 . 1 4 . 6
0 . 7

0 . 8

0 . 9

1 ω s z =0 . 0 ms − 1

ω s z =0 . 5 ms − 1

ω s z =1 . 0 ms − 1

ω s z =1 . 5 ms − 1

60

Table 4.17 Pearson value (r) for Experiment 02 and Experiment 03 Comparison

ExperimentDetails PearsonV alue(r)

Start Response with 0.86692

Start Response with 0.93539

Start Response with 0.98509

Stop Response with 0.82333

Stop Response with 0.91021

Stop Response with 0.89119

Table 4.18 Multiple Robots Average Start/Stop Response Time With Web Interface

Autonomous

StartResponse(s)
SingleRobot 1.011 1.001 0.981

TwoRobots 1.129 1.078 1.016

FourRobots 1.456 1.241 1.112

StopResponse(s)
SingleRobot 1.345 1.765 2.552

TwoRobots 1.674 1.987 2.987

FourRobots 1.987 2.134 2.456

4.4 Experiment 04: Homogeneous Multiple Robot Interaction with simple

instruction with a web interface with autonomous robot

registration.

The authors have developed the launch file to create multiple robots in the same

Gazebo environment. Initially, two TurtleBot robots were spawned in the empty

Gazebo world at two different locations. The simple move instructions were issued to

both robots simultaneously and evaluated the average response time for the start and

stop instructions. The separate namespaces were used to identify each ROS topic for

each robot. The first robot was named robot1, and the second was named robot2. The

interaction with multiple two TurtleBot with the terminal with Web interface is shown

in Figure

4.8. The response delay for a start and stop of the robot is represented by the equation

4.7and 4.8 where Rm,dstart and Rm,dstoprepresents the multiple robots delay at the start

and stop respectively, τd,Web represents the delay in communication through the Web

interface, τd,ROS is used to represents the delay in communicating with ROS topics, τd,RT

represents the delay in ROS topic identification and c7, c8 are constants. α and β

represent the number of robots in the environment. For example, when the number

of robots is two, then α = 2 and β = 2 and When the number of robots is four, then α

= 4 and β = 4.

61

 (4.7)

 (4.8)

Fig. 4.8 Multiple Two Robots Interaction with Web Interface Auto Registration

Secondly, the authors have spawned another four robots in the same Gazebo

environment for the experiment. Separate namespaces were given for each robot to

avoid conflicts with the same ROS topic. The simple move instructions were issued to

both robots simultaneously and evaluated the average response time for the start and

stop instructions. The experiment results will be displayed below in table 4.18. The

interaction with multiple four TurtleBot with the terminal with Web interface is shown

in the following Figure 4.9.

Fig. 4.9 Multiple Four Robots Interaction with Web Interface Auto Registration

The main launch file used to create two robots in the gazebo environment is shown

in Figure 4.10. The launch file, which describes the robot’s position and namespaces

62

with robot description, are defined in Figure 4.11. Loading each robot is completed by

another launch file named as described in Figure 4.12.

Fig. 4.10 Main Launch File Two Launch Two Robots

Fig. 4.11 Launch file to describe Position and Robot Description

Fig. 4.12 One Robot Launch File

Figure 4.13 represents the average start and stop response time for the single

robot, two robots, and four for each instruction where linear speed is changed.

However, the angular speed is kept constant to avoid collision among the robots. The

average start response time gradually increases when the number of robots increases,

while the average stop time increases when the number of robots increases.

We have determined the constant c7 using the experiment results assuming the

values of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds.

63

The validation of the constant c7 was completed with three Testing named Test 01,

Test 02 and Test 03 with three different constant values for c7 = 0.022, c7 = 0.032 and

Multiple Robots Start Response with Web Interface Auto

Linear Speed

Multiple Robots Stop Response with Web Interface Auto

Fig. 4.13 Multi Robot Interaction with Web Interface

c7 = 0.042. Three test results were calculated using the equation we have derived with

the use of constant value c7 we have calculated from the initial experimental results

as shown in Table 4.19. We have used the person() value to find the correlation

between the value generated from the equation and the experiment response value,

as shown in Table 4.20. The pearson() value is higher for the value c7 = 0.022.

Therefore, we can select c7 = 0.022 as the more accurate value for the equation

4.7.τd,Web represents the delay in communication through the Web interface, τd,ROS is

used to represent the delay in communicating with ROS topics, τd,RT represents the

delay in ROS topic identification and c7, c8 are constants. α and β represent the number

0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6

1 . 5

2

2 . 5

3

LinearSpeed U s x (ms − 1)

SingleRobot
TwoRobots
FourRobots

0 . 4 0 . 6 0 . 8 1 1 2 1 . 4 1 . 6

1

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5
SingleRobot
TwoRobots
FourRobots

64

of robots in the environment. For example, when the number of robots is two, then α

= 2 and β = 2 and When the number of robots is four, then α = 4 and β = 4.

We have determined the constant c8 using the experiment results assuming the

valTable 4.19 Testing to Determine the Constant c7 in Equations 4.7

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c7

0.022)

=

Test02

(c7 =

0.032)

Test03

(c7 =

0.042)

1.011 0.5 0.0 1.011 1.031 1.051

1.001 1.0 0.0 0.969 0.979 0.989

0.981 1.5 0.0 0.946 0.953 0.960

1.129 0.5 0.0 1.011 1.031 0.989

1.078 1.0 0.0 0.969 0.979 0.960

1.016 1.5 0.0 0.946 0.953 1.051

1.456 0.5 0.0 1.011 0.953 0.989

1.242 1.0 0.0 0.969 1.031 0.960

Table 4.20 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c7 = 0.022) 0.49650

Test02 (c7 = 0.032) 0.49418

Test03 (c7 = 0.042) 0.49246

Table 4.21 Testing to Determine the Constant c8 in Equations 4.8

StartResponse(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c8

1.20)

=

Test02

(c8 =

1.20)

Test03

(c9 =

1.20)

1.345 0.5 0.0 1.345 1.370 1.395

1.765 1.0 0.0 1.345 2.009 2.059

2.552 1.5 0.0 1.949 2.647 2.722

1.674 0.5 0.0 2.552 1.370 1.395

1.987 1.0 0.0 1.345 1.999 2.049

2.987 1.5 0.0 1.949 2.627 2.702

1.987 0.5 0.0 2.552 1.370 1.395

2.134 1.0 0.0 1.345 1.999 2.049

Table 4.22 Pearson value (r) for each Testing

TestName PearsonV alue(r)

65

Test01 (c8 = 1.20) 0.858045

Test02 (c8 = 1.25) 0.855090

Test03 (c8 = 1.30) 0.855204

ues of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds. The

validation of the constant c8 was completed with three Testing named Test 01,

Test 02 and Test 03 with three different constant values for c8 = 1.20, c8 = 1.25 and c8

= 1.30. Three test results were calculated using the equation we have derived with

the use of constant value c8 we have calculated from the initial experimental results

as shown in Table 4.21. We have used the person() value to find the correlation

between the value generated from the equation and the experiment response value,

as shown in Table 4.22. The pearson() value is higher for the value c8 = 1.20. Therefore,

we can select c8 = 1.20 as the more accurate value for the equation 4.8.τd,Web

represents the delay in communication through the Web interface, τd,ROS is used to

represent the delay in communicating with ROS topics, τd,RT represents the delay in

ROS topic identification and c7, c8 are constants. α and β represent the number of

robots in the environment. For example, when the number of robots is two, then α =

2 and β = 2 and When the number of robots is four, then α = 4 and β = 4.

4.5 Experiment 05: Move the robots to a specific location with a web

interface with autonomous robot registration.

Authors have completed the experiment to move the robot(single robot, two robots,

and four robots) to a given target location by an instruction using the Web interface.

On average, the robots were placed at different positions to move the same distance.

The following map represents the initial position and target locations of two and four

robots as shown in Figure 4.14. The robots linear speed and angular speed are set as

 and respectively based on the defined condition to find

the specific location.

m 10

(a)

1 0 m
(𝑥 0 , 𝑦 0)

(0 , 𝑎 1)

(0 , 𝑎 − 1)

𝑅𝑜𝑏𝑜𝑡 1

𝑅𝑜𝑏𝑜𝑡 2

10 m
b) (

10 m
(𝑥 0 , 𝑦 0)

(𝑏 1 , 𝑏 2) 𝑅𝑜𝑏𝑜𝑡 1 𝑅𝑜𝑏𝑜𝑡 2

𝑅𝑜𝑏𝑜𝑡 3 𝑅𝑜𝑏𝑜𝑡 4 (𝑏 1 , 𝑏 − 2)

(𝑏 − 1 , 𝑏 2)

(𝑏 − 1 , 𝑏 − 2)

(𝑥 1 , 𝑦 1) (𝑥 2 , 𝑦 2) (𝑥 1 , 𝑦 1) (𝑥 2 , 𝑦 2)

66

Fig. 4.14 Initial Position and Target Locations (a) Two Robots (b) Four Robots

Authors have conducted the experiments with a single robot, two robots, and four

Table 4.23 Average moving Time for Multiple Robots with Single Instruction

Average move Time

(s)

Move to (x0,y0) Move to (x0,y0)

and (x1,y1)

Move to

(x0,y0),(x1,y1) and

(x2,y2)

SingleRobot 2.01 4.22 7.01

TwoRobots 2.24 5.01 7.34

FourRobots 3.05 6.21 8.01

Table 4.24 Testing to Determine the Constant c9 in Equations 4.9

Movetime(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c9 = 1.1)

Test02

(c9 = 1.2)

Test03

(c9 = 1.3)

2.01 0.8 0.2 3.01 3.11 3.21

4.22 0.8 0.2 5.23 5.51 5.87

7.01 0.8 0.2 8.54 9.11 9.71

robots with a single instruction to move the robot to a specific location given by (x,y)

coordinates. The average Time taken by robots to a specific location was measured

and presented in Table 4.23. The average move time increases with the number of

robots and distance, as shown in Figure 4.15. The delay for moving a single robot and

multiple robots is represented by the equation 4.9, and 4.10 where Rs,dmove and

Rm,dmoverepresent the single and multiple robots average moving Time to specific

location respectively, τd,Web represents the delay in communication through the Web

interface,τdis,x,y is used to represent the distance travelled by the robots, τd,ROS is used

to represent the delay in communicating with ROS topics, τd,RT represents the delay in

ROS topic identification, τd,pos is used to represent a delay in getting the current

position and orientation of the robot, and c9 and c10 are constants. α and β represent

the number of robots in the environment. For example, when the number of robots is

two, then β = 2 and When the number of robots is four, then β = 4.

 (4.9)

 (4.10)

We have determined the constant c9 using the experiment results assuming the val-

Table 4.25 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c9 = 1.1) 0.998921

67

Test02 (c9 = 1.2) 0.998843

Test03 (c9 = 1.3) 0.999294

Average Move Time for Moving Robots to a Location

Fig. 4.15 Average Move Time for Moving a Robot to a Specific Location

ues of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds. The

validation of the constant c9 was completed with three Testing named Test 01, Test

02 and Test 03 with three different constant values for c9 = 1.1, c9 = 1.2 and c9 = 1.3.

Three test results were calculated using the equation we have derived with the use of

constant value c9 we have calculated from the initial experimental results as shown in

Table 4.24. We have used the person() value to find the correlation between the value

generated from the equation and the experiment response value, as shown in Table

4.25. The pearson() value is higher for the value c9 = 1.3. Therefore, we can select c9 =

1.3 as the more accurate value for the equation 4.9. τd,Web represents the delay in

communication through the Web interface,τdis,x,y is used to represent the distance

travelled by the robots, τd,ROS is used to represent the delay in communicating with

ROS topics, τd,RT represents the delay in ROS topic identification, τd,pos is used to

represent a delay in getting the current position and orientation of the robot, and c9

and c10 are constants. α and β represent the number of robots in the environment. For

example, when the number of robots is two, then β = 2, and When the number of

robots is four, then β = 4.

We have determined the constant c10 using the experiment results assuming the

values of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds.

The validation of the constant c10 was completed with three Testing named Test 01,

0 . 8 1 1 . 1 2 . 1 4 . 1 6 . 2 2 8 . 2 2 . 2 4 . 2 6 . 3 8 3 . 2

2

4

6

8

MoveLocations

SingleRobot
TwoRobots
FourRobots

68

Test 02 and Test 03 with three different constant values for c10 = 1.45, c10 = 1.55 and

c10 = 1.65. Three test results were calculated using the equation we have derived with

Table 4.26 Testing to Determine the Constant c10 in Equations 4.10

MoveTime(s) Uxs

ms−1

in ωzs

ms−1

in Test01

(c10

1.45)

=

Test02

(c10 =

1.55)

Test03

(c10 =

1.65)

2.24 0.8 0.2 2.90 3.00 3.10

5.01 0.8 0.2 4.35 4.65 4.95

7.34 0.8 0.2 7.25 7.85 8.05

3.05 0.8 0.2 2.90 3.00 3.10

6.21 0.8 0.2 5.80 6.20 6.40

8.01 0.8 0.2 11.6 12.5 13.00

Table 4.27 Pearson value (r) for each Testing

TestName PearsonV alue(r)

Test01 (c10 = 1.45) 0.900510

Test02 (c10 = 1.55) 0.904809

Test03 (c10 = 1.65) 0.903141

the use of constant value c10 we have calculated from the initial experimental results

as shown in Table 4.26. We have used the person() value to find the correlation

between the value generated from the equation and the experiment response value,

as shown in Table 4.27. The pearson() value is higher for c10 = 1.55. Therefore, we can

select c10 = 1.55 as the more accurate value for the equation 4.10. τd,Web represents

the delay in communication through the Web interface,τdis,x,y is used to represent the

distance travelled by the robots, τd,ROS is used to represent the delay in communicating

with ROS topics, τd,RT represents the delay in ROS topic identification, τd,pos is used to

represent a delay in getting the current position and orientation of the robot, and c9

and c10 are constants. β represents the number of robots in the environment. For

example, when the number of robots is two, then β = 2, and When the number of

robots is four, then β = 4.

4.6 Experiment 06: Robot Interaction with multiple instructions with a

web interface with autonomous robot registration.

Robots working in a real environment may get multiple instructions sequentially to

complete multiple tasks. Our system must be able to handle the multiple instructions

that are issued by users sequentially. A state transition machine is one of the most

69

optimal solutions to handle this research problem Sen Gupta et al. (2002) Park et al.

(2003) Bauer et al. (2018).

We have completed the experiment with the multiple instructions issued by the

user sequentially with the state transition diagram. The sample interaction between

the user instruction through the web interface and the robot is shown in Figure 4.16.

This diagram represents only three user instructions that the user issues to control the

robot. The experiment was conducted with three instructions to move the robot to

three different locations. The target locations were represented as (x0,y0),(x1,y1) and

(x2,y2). These ta get locations were selected to ensure all robots move an equal

distance on average.

Fig. 4.16 Multiple Instructions and Robot Interaction

The initial robot positions for two and four robots are represented in the map given

in Figure 4.18. The robots were initially placed concerning the target locations where

each robot must move the same distance. The blue colour circle represents the initial

robot position. The green colour square represents target locations given by user

instructions. The target locations are identified to ensure all robots travel equal

distances on average.

The system is implemented by handling multiple instructions one by one issued by

the user using a state transition diagram with the states’ description as shown in Figure

4.17. The robot state is saved in the ROS topic to retrieve the robot state from Time

to Time. When the robot is ready, it will accept the user’s instructions and complete

the assigned work accordingly.

The equation representing the delay occurs because multiple instructions issued

by the user were developed using the mathematical notation. We have used δij as

State transition time from i to j, ∀(i,j) ∈{1,2,3,4,5,6}, Sδ as Time taken to save the state

𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 (𝑺 𝟎)

Registerd
(𝑺 𝟏)

Ready (𝑺 𝟐)

𝑼𝒔𝒆𝒓 : 𝑚𝑜𝑣𝑒𝑡𝑜 (𝑥 0 , 𝑦 0)

𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑆𝑡𝑎𝑟𝑡

𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑑𝑤𝑖𝑡ℎ𝑅𝑅𝐸

𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑅𝑒 ady

Move (𝑺 𝟐)
𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑀𝑜𝑣 𝑒𝑡𝑜 (𝑥 0 , 𝑦 0)

𝑼𝒔𝒆𝒓 : 𝑚𝑜𝑣𝑒𝑡𝑜 (𝑥 1 , 𝑦 1)

𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑆𝑢𝑠𝑝𝑒𝑛𝑑
𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑀𝑜𝑣 𝑒𝑡𝑜 (𝑥 1 , 𝑦 1)

𝑼𝒔𝒆𝒓 : 𝑆𝑡𝑎𝑟𝑡𝑡ℎ𝑒𝑤𝑜𝑟𝑘𝑎𝑡 (𝑥 2 , 𝑦 2) 𝑾𝒐𝒓𝒌 (𝑺 𝟒) 𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑆𝑢𝑠𝑝𝑒𝑛𝑑
𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑀𝑜𝑣 𝑒𝑡𝑜 (𝑥 2 , 𝑦 2)
𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑆𝑡𝑎𝑟𝑡𝑤𝑜𝑟𝑘𝑎𝑡 (𝑥 2 , 𝑦 2)

𝑼𝒔𝒆𝒓 : 𝑇ℎ𝑒𝑟𝑒𝑖𝑠𝑛𝑜𝑢𝑠𝑒𝑟𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑬𝒙𝒊𝒕 (𝑺 𝟔) 𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝐼𝑑𝑒𝑙

70

in ROS topic,Rδ as Time taken to retrieve the state from ROS topic,ϵn as Transition delay

by n instructions where n ∈{1,2,3,...,l}. Total state transition delay time for single

instruction n = 1 is shown in the equation number 4.11. Total state transition delay

time for multiple instructions n = 1,2,3,..l is shown in the equation number 4.12. The

delay for moving a single robot and multiple robots to a specific location with multiple

instructions sequentially is represented by the equation 4.13 and 4.14 where Rs,dmIns

and Rm,dmInsrepresent the single and multiple robots delay in moving to specific

𝑆0:𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒
𝑆1:𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑 𝑆𝑡𝑎𝑡𝑒
𝑆2:𝑅𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒
𝑆3:𝑀𝑜𝑣𝑒 𝑆𝑡𝑎𝑡𝑒
𝑆4:𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒
𝑆5:𝐷𝑖𝑎𝑙𝑜𝑔 𝑆𝑡𝑎𝑡𝑒
𝑆6:𝐸𝑥𝑖𝑡 𝑆𝑡𝑎𝑡𝑒
𝑆0 →𝑆1 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 ℎ𝑎𝑠 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑.

𝑆1 →𝑆2 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 𝑖𝑠 𝑟𝑒𝑎𝑑𝑦 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠.

𝑆2 →𝑆3 𝑖𝑓𝑀𝑜𝑣𝑒 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆2 →𝑆4 𝑖𝑓𝑊𝑜𝑟𝑘 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆2 →𝑆5 𝑖𝑓𝑑𝑖𝑎𝑙𝑜𝑔 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆3
𝑆4} → 𝑆2 𝑖𝑓𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.

𝑆5
𝑆3
𝑆4} → 𝑆6 𝑖𝑓𝑎𝑛𝑦 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑.

𝑆5

Fig. 4.17 State Transition Diagram.

71

Fig. 4.18 (a) Initial positions of Two robots (b) Initial positions of Four robots

location respectively.

 . (4.11)

 (4.13)

 (4.14)

4.7 Experiment 07: Heterogeneous Multiple Robot Interaction with three

levels of instruction.

Our system was evaluated using the two robots ”turtlebot” and ”Tiago” on the gazebo

simulator. (Python–mhttp.servercommand) was implemented to publish the web

pages for the web interface, which mainly works with java scripts. Finally, the

rosbridge Server was implemented to provide the interface between ROS and non-

ROS clients. In level 01 instruction, the robots were instructed to move 50m with the

velocity of 1 ms−1. Figure. 4.19 shows the web interface where users can select the

experiment level for each input for all robots. In the level 02 instruction, the robots

were given a specific location to reach from the current position. In the level 03

m 10
a) (

m 0
(𝑥 0 , 𝑦 0) (𝑥 1 , 𝑦 1) (𝑥 2 , 𝑦 2)

(0 , 𝑎 1)

(0 , 𝑎 − 1)

𝑅𝑜𝑏𝑜𝑡 1

𝑅𝑜𝑏𝑜𝑡 2

10 m
b) (

10 m
(𝑥 0 , 𝑦 0)

(𝑥 1 , 𝑦 1) (𝑥 2 , 𝑦 2)

(𝑏 1 , 𝑏 2) 𝑅𝑜𝑏𝑜𝑡 1 𝑅𝑜𝑏𝑜𝑡 2

𝑅𝑜𝑏𝑜𝑡 3 𝑅𝑜𝑏𝑜𝑡 4 (𝑏 1 , − 𝑏 2)

(− 𝑏 1 , 𝑏 2)

(𝑏 − 1 , 𝑏 − 2)

72

instruction, the robots had to use a map stored in the map server. Each robot was

given a different goal to reach with obstacles in the environment.

We have conducted experiments with the system using the two robots with level

01, level 02, and level 03 instructions with twenty different instructions. The twenty

instructions were developed using different synonyms for the given verb move.

Unfortunately, some synonyms were not implemented in the ontology. Therefore, it

has generated errors for synonyms not in the ontology.

1. Level 01: Move 50m with velocity 1ms−1.

2. Level 02: Move to the point (20, 20) with velocity 1ms−1.

3. Level 03: Move to the given goal in the map.

We have conducted the experiments with the instructions shown in Table 3.2 to

test our system using a gazebo simulation environment with turtlebot and Tiago

robots. Table 4.28 represents the results of the experiments. According to the

experiment results, the error rate increases from level 1 to level 3 instructions. Levels

1 and 2 are

Fig. 4.19 Web Interface Table

4.28 Experiment Results

Instruction

Level

Language

Translation

Errors

Error

Rate

Interpretation

errors

Error

Rate

Interpretation

errors with

navigation

Error

Rate

Level 01 2 0.10 3 0.15 0 0.00

Level 02 3 0.15 4 0.20 0 0.00

Level 03 0 0.00 5 0.25 6 0.30

73

independent of navigation errors because they do not have any navigation but

language translation and interpretation errors.

We have used the running time complexity analysis of the algorithm with the Big

O notation, where we have assumed that the number of robots as i, the number of

nodes as n, the number of topics as t, and the number of classes which are used to

build the ontology as c.

Robot Registration Algorithm()

This algorithm has four nested loops starting from the number of robots in the initial

loop. Therefore, the Big O value of the Robot Registration Algorithm is O(i×n×t×c).

Get Position and Orientation Algorithm ()

This algorithm is used to get the current position and orientation of the robots;

therefore, it does not depend on the number of robots. Therefore, the Big O value of

the Get position and orientation Algorithm is O(n × t × c).

Level 01 Interpretation Algorithm ()

This algorithm needs to send the command to all robots using the loop and select all

ROS topics. Therefore, the Big O value of the Level 01 Interpretation Algorithm () is O(i

× t × c).

when the nodes, topics and classes are fixed

 1 10 100 1000

Number of Robots

Fig. 4.20 Running Time Vs Static Inputs

1

1000

1000000

0

50000

100000

150000

200000

250000

Reg Algo=Le03 Algo Pos Algo Le01 Algo=Le02 Algo Nodes Topics Classes

74

Level 02 Interpretation Algorithm ()

In this algorithm, we need to send the command to all robots using the loop.

Therefore, the Big O value of the Level 02 Interpretation Algorithm () is O(i × t × c).

Level 03 Interpretation Algorithm ()

Here we need to apply the instructions for all robots using the loop. Each node (eg

/scan and move base) is selected using the next level of the loop. We need to remap

the topics in amcl and move base launch files using the loop. Therefore, the Big O

value of the Level 03 Interpretation Algorithm () is O(i×n×t×c). A summary of the Time

Complexities is given in Table 4.29.

Therefore, the Big O value of the Registration Algorithm and Level03 Interpretation

Algorithm has the same value as O(i×n×t×c). In addition, the Level 01 Interpretation

Algorithm and Level 02 Interpretation Algorithm have the same value as O(i × t × c).

when the nodes, topics and classes are increased by factor

0 1
1 10 100 1000

Number of Robots

 Reg Algo=Le03 Algo Pos Algo Le01 Algo=Le02 Algo Nodes Topics Classes

Fig. 4.21 Running Time Vs dynamic Inputs

Figure 4.20 represents the running time of the algorithm against the number of

robots where we assume the number of nodes, the number of topics, and the number

of classes of ontology as static. Then it indicates that the running Time is increasing

slowly as a quadratic function like y = x2.

1000

1000000

500000

1000000

1500000

2000000

2500000

75

Figure 4.21 represents the running time of the algorithm against the number of

robots where we assume the number of nodes, the number of topics, and the number

of classes in ontology as dynamic. Then it indicates that the running Time is increasing

faster as cubic functions like y = x3.

4.8 Experiment 08: Heterogeneous Multiple Robot Interaction with

Semantic instruction with a web interface with autonomous robot

registration.

Heterogeneous multiple robot control with very high-level instruction is one of the

challenging issues in research groups in robotics. We have evaluated our system in the

Gazebo environment using three robots turtlebot, husky and TiaGo. The virtual

environment, available in Python httpserver (Python – mhttp), was executed to

implement necessary web pages with java scripts for the web interface. We have used

the rosbridge Server to work as an interface between ROS and non-ROS clients. The

user has added the instruction on the web interface provided by the system to interact

with the multiple robots. Table 4.31 shows the instruction types used to test our

system. Type I was a Table 4.29 Running Time Analysis

Robot Registration Algo-

rithm()

i=i n=n t=t c=c O(i × n × t × c)

Get Position and Orientation

Algorithm()

i=1 n=n t=t c=c O(n × t × c)

Level 01 Interpretation

Algorithm()

i=i n=1 t=t c=c O(i × t × c)

Level 02 Interpretation

Algorithm()

i=i n=1 t=t c=c O(i × t × c)

Level 03 Interpretation

Algorithm()

i=i n=n t=t c=c O(i × n × t × c)

general instruction with no synonym or semantic issue. The synonym was added to

instruction Type II, where a synonym analysis algorithm processed it. The semantics

of the instruction are not clear in instruction Type III. Instruction type IV has both

synonym and semantic issues. The synonym and semantics were not programmed for

76

the instruction Type V where the user has to handle the synonym and semantic issues.

The system was tested with many instructions, the Type I to Type V.

Table 4.30 Goal and Task Scheduling Table

 Time slot 1 Time slot 2 Time slot 3 Time slot 4

Robot

Name

t0 − t1 t1 − t2 t2 − t3 t3 − t4

Turtlebot A(2,2) +

rotate(5)

FreeTime

+

Husky D(5,5) +

rotate(10)

FreeTime F(0,5)

rotate(10)

+

TiaGo FreeTime

H(0,1) +

rotate(15)

The identification of the synonym and the semantic issues were performed by our

algorithms accurately. Furthermore, we have completed the time complexity analysis

of our algorithm to measure the system’s performance using the Big O notation. The

time

Fig. 4.22 Husky, Turtlebot and TiaGo Robots in Empty World

complexities of all algorithms are shown in Table 4.32. Time complexity is calculated

using the number of loops used by each algorithm where n is the input size. The graph

of the time complexity for all algorithms is shown in Figure 4.23. According to the time

complexity analysis, we can identify that the Robot Registration Algorithm and ROS

Topic Identification Algorithm have poor performance because time complexity is

O(n4).

Table 4.31 Instruction Types used for Testing

Instruction Type Description Example

Type I Instruction without synonym or

semantic issue

Move to A and clean

Type II Instruction with synonym shift to B and clean

Type III Instruction with semantic issue Move to roof and clean

Type IV Instruction with synonym and

semantic issue

Shift to sky and clean

77

Type V Instruction with synonym and

semantic issue (Not programmed

where user involvement is needed)

Proceed to sea and clean

Table 4.32 Time Complexity of Algorithms

Algorithm Name Time Complexity

Big O notation

in

Robot Registration Algorithm() O(n4)

Synonym Analysis Algorithm() O(n2)

Semantic Analysis Algorithm() O(n3)

Get Position and Orientation Algorithm() O(n)

ROS Topic Identification Algorithm() O(n4)

Time complexity analysis with Big O notation for each type of instruction is shown

in Table 4.33. Command Interpreter have used the Synonym Analysis Algorithm(), and

Fig. 4.23 The Graph of the Time Complexity of all algorithms

Semantic Analysis algorithm() where Synonym Analysis Algorithm() has taken O(n2),

and Semantic Analysis algorithm() has taken O(n3) running time-based on the

asymptotic notation in algorithm analysis. Therefore instruction type II is poor

compared to instruction type III. Instruction type V is worse because user interaction

is needed to solve the synonym and semantic issue in the instruction since synonyms

and semantics are not programmed.

Table 4.33 Instruction Types with Time Complexity

Types Algorithms used in
Command Inter-
preter

Time
Com-
plexity

Algorithms used in
Robot Registration and
Command pub-
lishing Engine

Time
Complex-
ity

Type I Analysis algorithm is

not needed

O(1) RR Algorithm()+ ROS TI

Algorithm()

O(n4)

78

Type II Synonym Analysis

Algorithm()

O(n2) RR Algorithm()+ ROS TI

Algorithm()

O(n4)

Type III Semantic Analysis

Algorithm()

O(n3) RR Algorithm()+ ROS TI

Algorithm()

O(n4)

Type IV Synonym Analysis

Algorithm()+ Semantic

Analysis Algorithm()

O(n3) RR Algorithm()+ ROS TI

Algorithm()

O(n4)

Type V Synonym Analysis
Algorithm() + Synonym
Analysis
Algorithm()+Human

Intervention is needed.

O(n3) RR Algorithm()+ ROS TI

Algorithm()

O(n4)

In addition to the above-discussed time complexity analysis for instruction type I

to V, we have conducted two types of experiments with the Gazebo environment with

Turtlebot, Husky and TiaGo robots. In the first experiment type, we have moved all

heterogeneous robots to a given goal in the open world in the Gazebo. The second

type Table 4.34 Experiment Results for without Navigation

Robot Goal without Navigation

Experiment Goal 01 Success

rate

08.0010.00

Goal 02 Success

rate

10.0012.00

Goal 03 Success

rate

12.0002.00

Goal 04 Success

rate

02.0004.00

Turtlebot 0.65 0.85 0.90 0.95

Husky 0.50 0.65 0.70 0.80

TiaGo 0.45 0.55 0.65 0.85

Table 4.35 Experiment Results for with Navigation

Robot Goal with Navigation

Experiment Goal 01 Success

rate

08.0010.00

Goal 02 Success

rate

10.0012.00

Goal 03 Success

rate

12.0002.00

Goal 04 Success

rate

02.0004.00

Turtlebot 0.40 0.55 0.75 0.80

Husky 0.35 0.40 0.55 0.70

TiaGo 0.30 0.45 0.60 0.75

79

Fig. 4.24 Experiment without Navigation Success Rate

of experiment is to navigate all heterogeneous robots to a given goal with obstacles in

the Gazebo. All three robots (turtle bot, husky, and Tiago) in an open world in the

Gazebo are shown in Figure 4.22. Experiments were conducted using the system

above multiple robots with movement and navigation using 20 type IV instructions.

Users can update the goal and task assigned for each robot for the different schedules

in Table

4.30. We have added the self-rotation for each robot to simulate the task completed

Fig. 4.25 Experiment with Navigation Success Rate

by robots based on the scheduled task. We found some errors in Robot Registration

Algorithm and ROS Topic Identification Algorithm() for movements and navigation.

0

0.2

0.4

0.6

0.8

1

GOAL 01 AT TIME
8.00 10.00

GOAL 02 AT TIME
10.00 12.00

GOAL 03 AT TIME
12.00 2.00

GOAL 04 AT TIME
2.00 4.00

TIME SOLTS

EXPERIMENT WITHOUT NAVIGATION

Turtlebot Husky TIAGO

0

0.2

0.4

0.6

0.8

1

GOAL 01 AT TIME
8.00 10.00

GOAL 02 AT TIME
10.00 12.00

GOAL 03 AT TIME
12.00 2.00

GOAL 04 AT TIME
2.00 4.00

TIME SOLTS

EXPERIMENT WITH NAVIGATION

Turtlebot Husky TIAGO

80

There were more ROS topic settings than the robot’s movement in an open world in

navigation.

The results of the experiment are represented in the Table for three robots

Turtlebot, Husky and TiaGo where we have tested 20 times for each goal at four

different time slots as (8.00 -10.00 am), (10.00 -12.00 noon), (12.00 -2.00 pm), (2.00-

4.00 pm). We received different ontology searching errors, robot registration errors,

ROS topic identification, and command publishing errors in each time slot. Therefore,

we gradually minimized the error with the experienced we had in each experiment

with the timing. The success rate is measured with 20 tests. It defines the number of

successful tests without errors out of 20 tests for each robot in each type of

experiment.

The results of experiment type 01 (without navigation) are shown in Table 4.34.

According to the analysis, we have identified that the turtlebot has a higher success

rate compared to other robots, as shown in Figure 4.24.

The results of experiment type 02 (with navigation) are shown in the table 4.35.

The success rate is also increasing, similar to experiment 01, as shown in Figure 4.25.

The running time of the Robot Registration Algorithm and ROS Topic Identification

Algorithm is O(n4) where n is the number of actions defined in the user instruction.

These two algorithms had the highest time complexity compared to other algorithms

we have developed in our system.

In general, the delay in response time for the start decreases when the linear and

angular speed increases. However, the delay in response time for the stop increases

when the linear and angular speed increases. In addition, a delay occurs when the

robot is controlled without the Web interface because of the delay with system call

execution through the operating system and communication with ROS functions.

When a robot is controlled through the Web without auto registration, a delay occurs

in communication through the Web and communication with ROS through the ROS

Bridge server. When the auto registration was added to the system, we needed to add

the delay taken by the algorithm for the ROS topic identification. The delay time

increases with the number of robots increased. When the robot is sent to a specific

location, we need to add Time taken to get the current position and orientation for

the delay time. When multiple instructions control a robot, we use a state transition

system. Therefore, we need to add the Time taken by the state transition system for

saving and retrieving the state to the delay time to get more accurate results.

According to the analysis, the authors have identified that web communication is

slightly faster than communication through the terminal

81

CHAPTER 5

Discussion

5.1 Problem and Solution

Here we discuss the main problem in the research and the solution achieved. One of

the research problems we have solved with our solution is providing an environment

that hides all difficulties and complexities of programming a robot or multiple robots

concurrently with a simple interface. Another research problem we have solved is

learning ROS from scratch and developing a comprehensive robotic application that

can provide a simple interface for controlling robots through the Internet. We have

developed the interfaces to manage and control multiple robots through a web

interface. The other main research problem is to develop an algorithm that can be

used to register all robots by getting all software-related specifications and hardware

specifications. We successfully developed the algorithm to register all reboots

concurrently through the web interface. The other research problem is identifying the

relevant ROS topics and nodes for the given user instruction. The ROS topic

identification algorithm was completed successfully with the use of ontology.

Moving all robots to the given location is another research problem we selected to

solve. Therefore, the algorithm was developed to move all robots to a specific location

in the environment of the gazebo simulator. Finally, another research problem is

analysing the algorithms’ time complexity using Big O notation. We have completed

the complexity analysis of the algorithm to compare its performance of the algorithm.

5.2 Research Findings

One of the research findings was identifying the limitations and issues with the current

and previous research works by thoroughly studying all existing research papers. One

of the other research findings was designing and developing the control and managing

algorithms for all robots through the Web interface with user instructions without

considering all software and hardware differences of all robots. According to the

experiments we have conducted with a web interface with multiple robots, the

research finding was that communication and control of multiple robots could be

achieved with speed as close to the speed without a web interface. One of the other

research findings was deriving the mathematical equation for the delay in each

82

experiment and the algorithm’s time complexity to decide each algorithm’s

performance.

83

CHAPTER 6

Conclusion

This research study has developed a system to issue instruction through the web

interface and controls multiple robots simultaneously. Previous research work for

control and communication with multiple robots through the internet had several

limitations and issues. Initially, all multiple robots need to register with Robot

Registration Engine. The autonomous robot registration and autonomous ROS topic

identification algorithms were implemented successfully. One of the research

components that we completed was the development of the Robot Registration

Engine to collect each robot’s details in our system through the web interface. This

was completed very successfully with our algorithms. When a user has given

instructions, the system must identify the corresponding ROS topic with our Ros topic

identification algorithm. The ROS topic identification algorithm was implemented very

successfully.We have analyzed the delay time in response to all experiments. The

delay time is increased with the introduction of these algorithms. We have derived

the mathematical equations for each delay time which varies based on the inputs and

system characteristics. The experiment result indicated that the autonomous robot

registration was successful, and the communication performance through the Web

decreased gradually with the number of robots registered. The running time of the

Robot Registration Algorithm and ROS Topic Identification Algorithm is O(n4).

The main objective is to develop an algorithm to interact and control multiple

robots through the web interface with autonomous robot registration and

autonomous ROS topic identification. We found that the number of resources we

could use for the ROS was minimal. Therefore, one of the leading research project

objectives is to learn the ROS from scratch and develop control applications with

different robots with some automation. We have successfully achieved this objective

by studying the available resources. We have studied ROS from the beginning and

developed a good application with multiple robots through a web interface.

Many research groups completed robot control and communication with ROS, but

according to our research studies, we did not find any research for autonomous robot

registration using any algorithms. Therefore, one of the leading research project

objectives is to develop an algorithm that can register all robots concurrently through

the Web interface. We successfully developed Robot Registration Engine with our

Robot Registration algorithm through the web interface.

84

According to the previous studies, we did not find any algorithm developed to

identify the relevant ROS topics and nodes for subscription and publication. Therefore,

one of the leading research project objectives is to develop an algorithm that can

identify the relevant ROS topics and nodes to complete the issued task by the user. As

a result, we successfully implemented the algorithm to identify the relevant ROS topics

and nodes for subscription and publication.

Managing multiple robots with a Gazebo environment through a web interface is

complex. Most of the time, managing the errors with ROS and Gazebo is very tedious

and time-consuming because fewer resources are available online for ROS and

Gazebo. Therefore, one of the leading research project objectives is to learn the ROS

and gazebo environment from scratch and simulate the environment for the

experiments. As a result, we simulated multiple robots in Gazebo to successfully make

the experiments even though we got more issues at the beginning of the simulation

process.

Analyzing the algorithm is very important to find the performance of each

algorithm. There are several algorithm analysis techniques. Big O notation is the

optimal way to represent the algorithm’s complexity. One of the leading research

project objectives is to develop an optimal algorithm to get the correct output and

analyze the performance of the algorithms. We successfully developed all algorithms

and evaluated the performance using the best time complexity analysis technique.

Performance evaluation with response time is another research problem that we

want to solve. Several experiments must be completed with different web interfaces

with different amounts of robots for different scenarios. Again, we need to derive the

mathematical equations from representing each scenario’s delay in response time.

Therefore, another main objective is to perform analysis with derived mathematical

equations for each scenario with different web interfaces. We have successfully

evaluated the performance in terms of delay in response time and derived the

mathematical equation for each scenario.

According to the experiments we have conducted with a web interface with

multiple robots, the research finding was that communication and control of multiple

robots could be achieved with speed as close to the speed without a web interface.

6.1 Contribution

The main contribution to my research work are summarized below:

First, I discovered and proposed a new algorithm for autonomous, multiple robot

registration in a simulated Gazebo environment. According to the previous research

studies described in chapter 02, I did not find any research on autonomous robot

85

registration. Once a robot is connected through the Web interface, all ROS topics and

nodes related to each robot are collected and stored to use later. One of the main

limitations of the ROS is that robotic programming very difficult and but autonomous

registration solve this issue since it collects all ROS topics and nodes necessary to

publish and subscribe.

I discovered and proposed a new algorithm for ROS topic identification when a

user issued a command to control robots through the web interface. However,

according to the previous research studies described in chapter 02, I did not find any

research on ROS topic identification algorithms. This task minimizes the robot’s

programming difficulties with ROS since our algorithm can find relevant ROS topics for

each robot to publish and subscribe to control.

I discovered and developed the web interface to control multiple robots with

simple commands to move robots forward and circle simultaneously using the threads

in python language. However, according to the previous research studies described in

chapter 02, I did not find any research on multiple robot controls through the web

interface. Some research was done to control single robots through web interfaces

without autonomous registration.

I discovered the worst-case complexity of the autonomous robot registration

algorithm and ROS topic identification algorithm. This analysis results can be used by

other researchers when they want to get an idea of the algorithm’s performance.

I discovered and derived mathematical equations to represent the delay in

response time for the different scenarios with all experiments with other

characteristics. Furthermore, I found and validated the values for all constants in each

mathematical equation.

6.2 Limitation

When we consider real robots, different mechanical components are necessary to

complete a task. Therefore, the robot’s response time depends on the mechanical

components’ delay. Therefore, the response delay time we have calculated will be

significant and can be changed when implemented with real robots. Furthermore,

these response times can be changed depending on the robot type. The kinematics

and dynamics of the robot were not considered because all experiments were

completed in a simulation environment.

All simulations were conducted only in an empty world in the Gazebo

environment. When the navigation algorithms are implemented with the Robot

Registration algorithm, we can implement robot control in the environment with

obstacles on the given path. This is another limitation of our solution.

86

The other limitations of our project is a simulation of the system with the Gazebo

simulator. I have simulated multiple robots in the Gazebo environment and used the

namespace to identify each robot uniquely. The launch files were developed to spawn

all multiple robots successfully at different places. All experiments were completed in

the simulated environment and did not use real-time robots for testing. Of course, we

can enhance all results by implementing all experiments in a real environment with

robots.

If the robots are not implemented with the ROS, then our solution will not be able

to use because we have developed an algorithm to work with only a ROS-based

system. However, we have not implemented any algorithm to control the robots with

other middleware.

Our experiments were conducted with user commands to move all robots forward

with different linear speeds, move all robots to a circle with different angular speeds

from different positions and move all robots to specific locations. We have not

considered the synchronization of all robots, access control of all robots, collision

avoidance of all robots and relative motion of all robots. These limitations were not

considered in all experiments we have implemented to get the results. Navigation

algorithms were not implemented through the web interface when we controlled

multiple robots.

We have designed a state transition engine that can handle the multiple

instructions issued by users sequentially. A state transition machine is one of the most

optimal solutions to handle multiple instructions sequentially.We have not

implemented the state transition engine to work with instructions in a simulated

environment.

Performance evaluation with response time is another research problem that we

want to solve. Several experiments must be completed with different web interfaces

with different amounts of robots for different scenarios. Again, we need to derive the

mathematical equations from representing each scenario’s delay in response time.

The evaluation results can be slightly different from real-world implementation results

because we have derived all mathematical equations with some assumptions. This can

be another limitation of our evaluation.

There can be some robots that are not using the ROS but may be using their

middleware then. Our system may need to be fixed with this kind of robot. Then we

need to have a mapping with ROS and other middleware to work with our system. This

will be another limitation of our implementation.

CHAPTER 7

87

Future Works

7.1 Future Works

Working with multiple instructions sequentially is very important when considering

real robots. However, we have only designed the state transition diagram to work with

multiple robots, which can be implemented in future works. The state transition

diagram we have developed can be converted into program code and implemented in

real robots to work with multiple instructions.

The semantics and synonyms of the user instructions can be implemented with the

ontology. That may provide the very intelligent aspect of the robot. However, we have

not implemented ontology directly in our solution. The semantics and synonym of the

instructions can be easily implemented with ontology in future work.

Our solution conducted all simulations in an empty world in the Gazebo

environment. As a future work, the navigation algorithms can be implemented with

the robot registration algorithm. Then the robot can move even with obstacles on the

given path.

Many techniques can be used to improve the performance of the algorithms we

have developed. Dynamic programming, greedy method, parallel algorithms,

distributed algorithms, and Artificial intelligence-based algorithms. These algorithm

optimization techniques can be used to improve the performance algorithm.

All experiments were completed in the simulated environment and did not use

actual real-time robots for testing. Therefore, we can enhance all results by

implementing all experiments in a real environment with robots. However, most

existing research studies indicated that the simulated experiment results are closely

related to the real environment. Therefore, the actual implementation of the system

in real robots with a real environment can be completed as future work.

We have not used ontology directly in our application. However, we have

simulated the ontology model in our system since working with ontology is not our

primary objective of the project in identifying the synonym for user commands.

However, we have used the algorithm to simulate some properties of the ontology to

get the synonym for user commands. Because synonym identification is additional

work in our project. In future work, we can create a complete ontology and manage

the system with a high-processing CPU to get more accurate results.

We have not considered the synchronization of all robots, access control of all

robots, collision avoidance of all robots and relative motion of all robots. These

limitations were not considered in all experiments we have implemented to get the

88

results. Navigation algorithms were not implemented through the web interface when

we controlled multiple robots. We can develop synchronization algorithms with

multiple robots for navigation and avoiding collisions with each other. The access

controlling issue can be easily tested with actual real-time robots. Some algorithms

were already developed for group formation for multiple robots in some research

groups.

Many systems are developed with a state transition engine to complete the

complicated task. We have designed a state transition engine that can handle the

multiple instructions issued by users sequentially. Therefore, one of the other main

research objectives is to design a theoretical state transition machine to work with

multiple instructions that are issued by users sequentially. We have successfully

designed the state transition engine theoretically and evaluated its performance.

However, we have not implemented the state transition engine to work with

instructions in a simulated environment. This engine can be developed and integrated

into the system as future work to complete the multiple instructions a user gives.

Performance evaluation with response time is another research problem that we

want to solve. Several experiments must be completed with different web interfaces

with different amounts of robots for different scenarios. Again, we need to derive the

mathematical equations from representing each scenario’s delay in response time.

Then, the performance evaluation can be tested with real robots to get more accurate

results for future work.

There can be some robots that are not using the ROS but may be using their

middleware then. Our system may not be working with this kind of robot. Then we

need to have a mapping with ROS and other middleware to work with our system. This

will be another limitation of our implementation. We can develop another registration

engine to get the services of other middleware as web services and control the robots

being developed middleware other than ROS.

7.2 Funding Details

This work was supported by the Sri Lanka Institute of Information Technology under

Grant number FGSR/RG/FC/2021/05.

7.3 Acknowledgement

We thank SLIIT(Sri Lanka Institute of Information Technology) for the support given

towards this Research Project.

89

REFERENCES

Alberri, M., Hegazy, S., Badra, M., Nasr, M., Shehata, O. M. and Morgan, E. I. (2018),

Generic ros-based architecture for heterogeneous multi-autonomous systems

development, in ‘2018 IEEE International Conference on Vehicular Electronics and

Safety (ICVES)’, pp. 1–6.

Ali, A. A., Rashid, A. T., Frasca, M. and Fortuna, L. (2016), ‘An algorithm for multirobot

collision-free navigation based on shortest distance’, Robotics and Autonomous

Systems 75, 119–128.

Anggraeni, P., Rokhim, I. and Salam, R. M. (2020), Design and development of multiple

mobile manipulator robots using gazebo-ros, in ‘2020 International Conference on

Applied Science and Technology (iCAST)’, pp. 672–676.

Bauer, A. S., Schmaus, P., Albu-Schaffer, A. and Leidner, D. (2018), Inferring seman-¨

tic state transitions during telerobotic manipulation, in ‘2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS)’, pp. 1–9.

Bucolo, M., Buscarino, A., Famoso, C., Fortuna, L. and Frasca, M. (2019), ‘Control of

imperfect dynamical systems’, Nonlinear Dynamics 98(4), 2989–2999.

Buscarino, A., Fortuna, L., Frasca, M. and Rizzo, A. (2006), ‘Dynamical network

interactions in distributed control of robots’, Chaos: An Interdisciplinary Journal of

Nonlinear Science 16(1), 015116.

Codd-Downey, R. and Jenkin, M. (2015), Rcon: Dynamic mobile interfaces for

command and control of ros-enabled robots, in ‘2015 12th International Conference

on Informatics in Control, Automation and Robotics (ICINCO)’, Vol. 02, pp. 66–73.

Costa, L. F. and Gonc¸alves, L. M. G. (2016), Roboserv: A ros based approach towards

providing heterogeneous robots as a service, in ‘2016 XIII Latin American Robotics

Symposium and IV Brazilian Robotics Symposium (LARS/SBR)’, pp. 169–174.

Crick, C., Jay, G., Osentoski, S. and Jenkins, O. C. (2012), Ros and rosbridge: Roboticists

out of the loop, in ‘2012 7th ACM/IEEE International Conference on HumanRobot

Interaction (HRI)’, pp. 493–494.

Datta, C., Jayawardena, C., Kuo, I. H. and MacDonald, B. A. (2012), Robostudio: A visual

programming environment for rapid authoring and customization of complex services

90

on a personal service robot, in ‘2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems’, pp. 2352–2357.

Datta, C., MacDonald, B., Jayawardena, C. and Kuo, I. (2012/10/29), Programming

behaviour of a personal service robot with application to healthcare, in ‘International

Conference on Social Robotics, Springer, Berlin, Heidelberg’, pp. 228–237.

Han, R., Chen, S. and Hao, Q. (2020), Cooperative multi-robot navigation in dynamic

environment with deep reinforcement learning, in ‘2020 IEEE International

Conference on Robotics and Automation (ICRA)’, pp. 448–454.

Hendler, J. (2001), ‘Agents and the semantic web’, IEEE Intelligent Systems 16(2), 30–

37.

Hu, C., Hu, C., He, D. and Gu, Q. (2015), A new ros-based hybrid architecture for

heterogeneous multi-robot systems, in ‘The 27th Chinese Control and Decision

Conference (2015 CCDC)’, pp. 4721–4726.

Ivanov, A., Zakiev, A., Tsoy, T. and Hsia, K.-H. (2021), Online monitoring and

visualization with ros and reactjs, in ‘2021 International Siberian Conference on

Control and Communications (SIBCON)’, pp. 1–4.

Jayawardena, C., Kuo, I., Broadbent, E. and MacDonald, B. A. (2016), ‘Socially assistive

robot healthbot: Design, implementation, and field trials’, IEEE Systems Journal 10(3),

1056–1067.

Jeon, S., Jang, M., Lee, D., Chang-Eun Lee and Cho, Y. (2012), Control architecture for

heterogeneous multiple robots with human-in-the-loop, in ‘2012 9th International

Conference on Ubiquitous Robots and Ambient Intelligence (URAI)’, pp. 274–278.

Kato, T., Watanabe, K. and Maeyama, S. (2010), A formation method for

heterogeneous multiple robots by specifying the relative position of each robot, in

‘Proceedings of SICE Annual Conference 2010’, pp. 3274–3277.

Kim, J., Jang, M. and Sohn, J. (2006), An ontological approach for natural language

command interpretation and its application in robotics, in ‘2006 SICE-ICASE

International Joint Conference’, pp. 3874–3878.

Koenig, N. and Howard, A. (2004), Design and use paradigms for gazebo, an

opensource multi-robot simulator, in ‘2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566)’, Vol. 3, pp. 2149–

2154 vol.3.

91

Lashkari, N., Biglarbegian, M. and Yang, S. X. (2020), ‘Development of a novel robust

control method for formation of heterogeneous multiple mobile robots with

autonomous docking capability’, IEEE Transactions on Automation Science and

Engineering 17(4), 1759–1776.

Lassila, O., van Harmelen, F., Horrocks, I., Hendler, J. and McGuinness, D. (2000), ‘The

semantic web and its languages’, IEEE Intelligent Systems and their Applications 15(6),

67–73.

Lim, G. H., Suh, I. H. and Suh, H. (2011), ‘Ontology-based unified robot knowledge for

service robots in indoor environments’, IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans 41(3), 492–509.

Lomas, M., Moffitt, V. Z., Craven, P., Cross, E. V., Franke, J. L. and Taylor, J. S. (2011),

Team-based interactions with heterogeneous robots through a novel hri software

architecture, in ‘2011 6th ACM/IEEE International Conference on Human-Robot

Interaction (HRI)’, pp. 193–194.

Lu, Y., Zhang, C. and Hou, H. (2009), Using multiple hybrid strategies to extract chinese

synonyms from encyclopedia resource, in ‘2009 Fourth International Conference on

Innovative Computing, Information and Control (ICICIC)’, pp. 1089–1093.

Luo, R. C. and Chen, C.-J. (2017), Recursive neural network based semantic navigation

of an autonomous mobile robot through understanding human verbal instructions, in

‘2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)’, pp.

1519–1524.

Ma, Z., Zhu, L., Wang, P. and Zhao, Y. (2019), Ros-based multi-robot system simulator,

in ‘2019 Chinese Automation Congress (CAC)’, pp. 4228–4232.

Maedche, A., Motik, B., Stojanovic, L., Studer, R. and Volz, R. (2003), ‘Ontologies for

enterprise knowledge management’, IEEE Intelligent Systems 18(2), 26–33.

Martinez, A., Yannuzzi, M., de Vergara, J. E. L., Serral-Gracia, R. and Ram` ´ırez, W.

(2015), An ontology-based information extraction system for bridging the

configuration gap in hybrid sdn environments, in ‘2015 IFIP/IEEE International

Symposium on Integrated Network Management (IM)’, pp. 441–449.

Mazuel, L. and Sabouret, N. (2006), Generic command interpretation algorithms for

conversational agents, in ‘2006 IEEE/WIC/ACM International Conference on Intelligent

Agent Technology’, pp. 146–153.

92

Msala, Y., Hamlich, M. and Mouchtachi, A. (2019), A new robust heterogeneous

multirobot approach based on cloud for task allocation, in ‘2019 5th International

Conference on Optimization and Applications (ICOA)’, pp. 1–4.

Mullers, F., Holz, D. and Behnke, S. (2009), ‘rxDeveloper: GUI-Aided Software Devel-¨

opmemt in ROS’, Proc. of ICRA Workshop on Software Development and Integration in

Robotics (SDIR) p. 2009.

Muthugala, M. A. V. J. and Jayasekara, A. G. B. P. (2018), ‘A review of service robots

coping with uncertain information in natural language instructions’, IEEE Access 6,

12913–12928.

Park, J., Lee, B. and Chung, W. (2003), Reflective force navigation control for a mobile

robot using a state transition diagram, in ‘Proceedings 2003 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM 2003)’, Vol. 1, pp. 52– 57

vol.1.

Pomarlan, M. and Bateman, J. (2018), ‘Robot program construction via grounded

natural language semantics and simulation robotics track’, Proceedings of the

International Joint Conference on Autonomous Agents and Multiagent Systems,

AAMAS 2, 857–864.

Rajapaksha, S., Illankoon, V., Halloluwa, N. D., Satharana, M. and Umayanganie, D.

(2019), Responsive drone autopilot system for uncertain natural language commands,

in ‘2019 International Conference on Advancements in Computing (ICAC)’, pp. 232–

237.

Rani, V. U., Sridevi, J. and Sai, P. M. (2021), Web controlled raspberry pi robot

surveillance, in ‘2021 International Conference on Sustainable Energy and Future

Electric Transportation (SEFET)’, pp. 1–5.

Rashid, A. T., Frasca, M., Ali, A. A., Rizzo, A. and Fortuna, L. (2015), ‘Multirobot

localization and orientation estimation using robotic cluster matching algorithm’,

Robotics and Autonomous Systems 63, 108–121.

Reid, C., Samanta, B. and Kadlec, C. (2017), Network performance of wireless

cloudbased robots with local processing, in ‘SoutheastCon 2017’, pp. 1–6.

Rhee, S. K., Lee, K. and Kim, H. (2012), Ontology-based context and preference model

for personal service robot, in ‘2012 9th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI)’, pp. 216–217.

93

Richtr, L. and Farana, R. (2011), Remote control the robot using web service, in ‘2011

12th International Carpathian Control Conference (ICCC)’, pp. 326–330.

Rizk, Y., Awad, M. and Tunstel, E. (2019), Cooperative heterogeneous multi-robot

systems: A survey, in ‘ACM Computing Surveys’, Vol. 52, pp. 1–31.

Robotics, O. (n.d.), ‘Ros navigation stack’. URL:

http:// wiki. ros. org /navigation.

Ruiz-del Solar, J. and Ruiz-del Solar, J. (2007), Personal robots as

ubiquitousmultimedial-mobile web interfaces, in ‘2007 Latin American Web

Conference (LAWEB 2007)’, pp. 120–127.

Sadeghian, R., Zarei, M., Shahin, S. and Masouleh, M. T. (2017), Vision based control

and simulation of a spherical rolling robot based on ros and gazebo, in ‘2017 IEEE 4th

International Conference on Knowledge-Based Engineering and Innovation (KBEI)’, pp.

0304–0309.

Scibilia, A., Pedrocchi, N. and Fortuna, L. (2022), ‘Human control model estimation in

physical human–machine interaction: A survey’, Sensors 22(5), 1732.

Sen Gupta, G., Messom, C. and Sng, H. (2002), State transition based supervisory

control for a robot soccer system, in ‘Proceedings First IEEE International Workshop

on Electronic Design, Test and Applications ’2002’, pp. 338–342.

Shen, Y., Li, Y., Deng, Y., Zhang, J., Yang, M., Chen, J., Si, S. and Lei, K. (2018),

‘Gastroenterology ontology construction using synonym identification and relation

extraction’, IEEE Access 6, 52095–52104.

Staab, S., Studer, R., Schnurr, H.-P. and Sure, Y. (2001), ‘Knowledge processes and

ontologies’, IEEE Intelligent Systems 16(1), 26–34.

Sutherland, C. J. and MacDonald, B. (2019), ‘RoboLang: A Simple Domain Specific

Language to Script Robot Interactions’, 2019 16th International Conference on

Ubiquitous Robots, UR 2019 pp. 265–270.

Takaya, K., Asai, T., Kroumov, V. and Smarandache, F. (2016a), Simulation

environment for mobile robots testing using ros and gazebo, in ‘2016 20th

International Conference on System Theory, Control and Computing (ICSTCC)’, pp. 96–

101.

Takaya, K., Asai, T., Kroumov, V. and Smarandache, F. (2016b), Simulation

environment for mobile robots testing using ros and gazebo, in ‘2016 20th

94

International Conference on System Theory, Control and Computing (ICSTCC)’, pp. 96–

101.

Tiddi, I., Bastianelli, E., Bardaro, G., D’Aquin, M. and Motta, E. (2017), An

ontologybased approach to improve the accessibility of ROS-based robotic systems, in

‘Proceedings of the Knowledge Capture Conference, K-CAP 2017’, number December.

Tong, Q. (2018), ‘Mapping object-oriented database models into rdf(s)’, IEEE Access 6,

47125–47130.

Velamala, S. S., Patil, D. and Ming, X. (2017), Development of ros-based gui for control

of an autonomous surface vehicle, in ‘2017 IEEE International Conference on Robotics

and Biomimetics (ROBIO)’, pp. 628–633.

Yao, W., Dai, W., Xiao, J., Lu, H. and Zheng, Z. (2015), A simulation system based on ros

and gazebo for robocup middle size league, in ‘2015 IEEE International Conference on

Robotics and Biomimetics (ROBIO)’, pp. 54–59.

Yun-hua, G. and Dan, L. (2010), Web resources description model based on rdf, in

‘2010 International Conference on Computer Application and System Modeling

(ICCASM 2010)’, Vol. 9, pp. V9–222–V9–225.

Zheng, S., Lin, Z., Zeng, Q., Zheng, R., Liu, C. and Xiong, H. (2018), ‘Iapcloud: A cloud

control platform for heterogeneous robots’, IEEE Access 6, 30577–30591.

95

Appendices

96

Appendix A

Fragment of Ontology

Fig. A.1 Part of the Ontology Developed

A.1 Part of the OWL file Created Using Protege Tool

<?xmlversion = ”1.0”? >

<!DOCTY PErdf : RDF[<!ENTITY owl”http : //www.w3.org/2002/07/owl#” >

<!ENTITY xsd”http : //www.w3.org/2001/XMLSchema#” >

97

<!ENTITY rdfs”http : //www.w3.org/2000/01/rdf − schema#” >

<!ENTITY rdf”http : //www.w3.org/1999/02/22 − rdf − syntax − ns#” >

<!ENTITY untitled − ontology − 16

”http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#” >

] >

< rdf : RDFxmlns = ”http : //www.semanticweb.org/staff/ontologies

/2021/1/untitled − ontology − 16#” xml : base = ”http :

//www.semanticweb.org/staff/ontologies/2021

/1/untitled − ontology − 16” xmlns : rdfs = ”http :

//www.w3.org/2000/01/rdf − schema#” xmlns : owl = ”http :

//www.w3.org/2002/07/owl# xmlns : xsd = ”http :

//www.w3.org/2001/XMLSchema#” xmlns : rdf = ”http :

//www.w3.org/1999/02/22 − rdf − syntax − ns# xmlns : untitled −

ontology − 16 = ”http : //www.semanticweb.org/ staff

/ontologies/2021/1/untitled − ontology − 16#” >

< owl : Ontologyrdf : about = ”http : //www.semanticweb.org/staff

/2021/1/untitled − ontology − 16”/ >

<!−−//ObjectProperties

// −− >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#cosistof −− >

16;

16;

98

16;

< rdfs : rangerdf : resource = ”anduntitled − ontology − 16;

Software”/ >

< /owl : ObjectProperty >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1

/untitled − ontology − 16#has −− >

16;

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16;

Robot”/ >

< /owl : ObjectProperty >

<! −−//

Dataproperties

/// −− >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1

/untitled − ontology − 16#CoG −− >

16;

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16;

Robot”/ >

< rdfs : rangerdf : resource = ”andowl;real”/ >

< /owl : DatatypeProperty >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#FootPrint −− >

16;

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16;

99

Robot”/ >

< rdfs : rangerdf : resource = ”andxsd;string”/ >

< /owl : DatatypeProperty >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#IPAddress −− >

16;

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16;

Robot”/ >

< rdfs : rangerdf : resource = ”andxsd;decimal”/ >

< /owl : DatatypeProperty >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#PortNumber −− >

16;

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16;

Robot”/ >

< rdfs : rangerdf : resource = ”andxsd;integer”/ >

< /owl : DatatypeProperty >

16;

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#ROSTopicName −− >

16;

100

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#RobotName −− >

16;

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16;

Robot”/ >

< rdfs : rangerdf : resource = ”andxsd;string”/ >

< /owl : DatatypeProperty >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#move −− >

< owl : DatatypePropertyrdf : about = ”anduntitled − ontology − 16; move”

>

< rdfs : rangerdf : resource = ”andxsd;string”/ >

< /owl : DatatypeProperty >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/

1/untitled − ontology − 16#navigation −− >

< owl : DatatypePropertyrdf : about = ”anduntitled − ontology − 16;

navigation” >

< rdfs : rangerdf : resource = ”andxsd;string”/ >

< /owl : DatatypeProperty >

<! −−http : //www.w3.org/2002/07/owl#topDataProperty −− >

< rdf : Descriptionrdf : about = ”andowl;topDataProperty” >

< rdfs : subPropertyOf rdf : resource = ”anduntitled − ontology −

16;ROSTopicName”/ > < /rdf : Description >

<! −−//

Classes

101

// −− >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 /untitled −

ontology − 16#Cameras −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;Cameras” >

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16;

Hardware”/ >

< /owl : Class >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#Hardware −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;Hardware”/ >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#Move −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;Move” >

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16;

Synonums”/ >

< /owl : Class >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#ROSNode −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSNode”/ >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#ROSPackage −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSPackage” >

102

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16;

ROSTopic”/ >

< /owl : Class >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#ROSServices −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSServices”/ >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#ROSTopic −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSTopic” >

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16;

ROSPackage”/ >

< /owl : Class >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1

/untitled − ontology − 16#Robot −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;Robot”/ >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#Scanners −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;Scanners” >

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16;

Hardware”/ >

< /owl : Class >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#Software −− >

103

< owl : Classrdf : about = ”anduntitled − ontology − 16;Software”/ >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#Synonums −− >

< owl : Classrdf : about = ”anduntitled − ontology − 16;Synonums”/ >

<! −−///

Individuals

// −− >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1

/untitled − ontology − 16#/cmd −− >

16;

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

ROSTopic”/ >

< moverdf : datatype = ”andxsd;string” >

25< /move >

< cosistofrdf : resource = ”anduntitled − ontology − 16;/cmd”/ >

< /owl : NamedIndividual >

16;

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

ROSTopic”/ >

< moverdf : datatype = ”andxsd;string” >

16;

104

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 /untitled −

ontology − 16#/map −− >

< owl : NamedIndividualrdf : about = ”anduntitled−ontology−16;/map” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16;ROSTopic”/ >

< moverdf : datatype = ”andxsd;string” > map<

/move >

16;

 − −

;ROSNode”/ >

< RobotNamerdf : datatype = ” > string” > Turtle

16;

16;

105

16;

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

< hasrdf : resource = ”anduntitled − ontology − 16;RT1”/ >

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled −

ontology − 16#/odem −− >

16;

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

ROSTopic”/ >

< RobotNamerdf : datatype = ”andxsd;string” >

< /RobotName >

< moverdf : datatype = ”andxsd;string” >

< /move >

< cosistofrdf : resource = ”anduntitled − ontology − 16;

/odem”/ >

< /owl : NamedIndividual >

16;

16;

16;

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies/

2021/1

/untitled − ontology − 16#Go −− >

106

16;

< owl : sameAsrdf : resource = ”anduntitled − ontology − 16; advance”/ >

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies

/2021/1/ untitled − ontology −

16#Proceed −− >

16;

< owl : sameAsrdf : resource = ”anduntitled − ontology − 16; advance”/ >

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies/2021 /1/untitled −

ontology − 16#RT1 −− >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16;

RT1” >

< ROSTopicNamerdf : datatype = ” > string” > cmd

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 /untitled −

ontology − 16#RT2 −− >

< owl : NamedIndividualrdf : about = ”anduntitled−ontology−16;RT2” >

< ROSTopicNamerdf : datatype = ” > string” > odem <

/ROSTopicName >

< ROSTopicNamerdf : datatype = ” string” > odometry <

/ROSTopicName >

< hasrdf : resource = ”anduntitled − ontology − 16;Robot2”/ >

107

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies/2021 /1/untitled −

ontology − 16#Robot1 −− >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology −

16;Robot1” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

Robot”/ >

< /owl : NamedIndividual >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16;

Robot2” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16

;Robot”/ >

< IPAddressrdf : datatype = ” > string” >

198.34.56.44 < /IPAddress >

< FootPrintrdf : datatype = ” > string” >

34 ∗ 45 < /FootPrint >

< PortNumberrdf : datatype = ” > string” >

45676 < /PortNumber >

< RobotNamerdf : datatype = ” > string” >

Husky < /RobotName >

< hasrdf : resource = ”anduntitled − ontology − 16;RT2”/ >

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies/

2021/1/untitled − ontology − 16#Robot3 −− >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16

;Robot3” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

108

Robot”/ >

< IPAddressrdf : datatype = ” > string” >

193.45.67.77 < /IPAddress >

< FootPrintrdf : datatype = ” > string” >

34 ∗ 56 < /FootPrint >

< PortNumberrdf : datatype = ” > string” >

56563 < /PortNumber >

< RobotNamerdf : datatype = ” > string” >

TiaGo < /RobotName >

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies/ 2021/1/untitled −

ontology − 16#Shift −− >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology −

16;Shift” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16;

Move”/ >

< owl : sameAsrdf : resource = ”anduntitled − ontology − 16; advance”/ >

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies/

2021/1/untitled − ontology − 16#advance −− >

16;

16;

16;

16;

16;

< /owl : NamedIndividual >

109

<! −−http : //www.semanticweb.org/staff/ontologies/2021 /1/untitled −

ontology − 16#pass −− >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; pass” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16;Move”/ >

< /owl : NamedIndividual >

<! −−http : //www.semanticweb.org/staff/ontologies

/2021/1/untitled − ontology − 16#progress −− >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16;

progress” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16

;Move”/ >

< /owl : NamedIndividual >

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; walk” >

< rdf : typerdf : resource = ”anduntitled − ontology − 16;Move”/ >

< /owl : NamedIndividual >

< /rdf : RDF >

Appendix B

Selected Robots with ROS Topics

Robot Ros Topic for

movement
The message format for the topic

Turtlebot cmd_vel - ROS Hydro
and later
command_velocity-

For ROS Groovy and

earlier

cmd_vel_mux

Vector3 linear Vector3

angular

110

Husky

joy_teleop/cmd_vel

twist_marker_server/c
md_vel
move_base/cmd_vel

Vector3 linear Vector3

angular

iRobot

cmd_vel (geometry_msg

s/Twist)

cmd_vel_mux

Vector3 linear Vector3

angular

Kobuki

velocity

(geometry_m

sgs/Twist) cmd_vel

(geometry_ms

gs/Twist)

cmd_vel_mux

Vector3 linear Vector3

angular

TIAGo

cmd_vel (geometry_ms

gs/Twist)

TIAGo specific

individual joints

cmd_vel_mux

Vector3 linear
Vector3 angular

NAO

cmd_vel (geometry_msg

s/Twist)

footstep
(humanoid_nav_msgs/St

epTarget)

nao_footstep

NAO specific

individual joints

Vector3 linear
Vector3 angular

geometry_msgs/Pose2D pose # step pose as

relative offset to last leg
uint8 leg # which leg to

use (left/right, see below)

uint8 right=0 # right leg con

stant
uint8 left=1 # left leg cons

tant

Fig. B.1 Selected Robots with ROS Topics

