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ABSTRACT 

ROS is the most prominent middleware used by most researchers in robotic 

application development. Our research mainly depends on ROS technologies because 

most researchers currently work with ROS as middleware for many research projects. 

Controlling the robots through the Web interface is essential. Because in some 

instances, users may not be able to communicate with the robot directly because of 

some bad conditions in the environment where the robots are currently placed. 

Therefore, we have developed a Web interface to control all robots through the 

Internet. However, the ROS topics, nodes, and message formats used to subscribe and 

publish can differ from one robot to another when we work with multiple robots in 

the same environment. Therefore, when a user expresses high-level instructions 

through a Web interface, all multiple robots must understand instructions uniformly 

and take necessary actions accordingly without considering each robot’s internal 

software and hardware implementation. The first contribution of the research is to 

develop an algorithm to register all robots based on the main components of the ROS 

technology through the Web interface autonomously. The robot Registration Engine 

was developed with algorithms to complete the autonomous robot registration task. 

The second contribution is identifying the relevant ROS topics and nodes for each 

action when a user command gives through the Web interface. The ROS topic 

identification algorithm was developed successfully. The third contribution was to 

evaluate the system performance under different conditions and derive the equations 

for the delay in response time through the web interface, validating the equations 

derived. 

We have conducted several experiments to evaluate our system with delays in 

response time. The worst-case analysis was completed for all algorithms with Big O 

notation. Users and researchers can utilize Robot Registration Algorithm and ROS 

Topic Identification Algorithm to work with multiple robots through the Web 

interface. We have successfully implemented all algorithms in a simulated 

environment in Gazebo. 

Keywords: Multiple robot, Ontology, Robot Operating System, Navigation, Gazebo, 

Big O notation,Simulation,TurtleBot,Husky,TiaGo. 
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CHAPTER 1 

Introduction 

1.1 Introduction 

Robotic programming is a complex and time-consuming task with most available 

middleware. ROS is popular open-source software that most researchers use to 

complete robotic programming tasks. It is not an operating system but a framework 

for developing the software with robots. ROS provides the hardware abstraction, low-

level control of the devices, provides commonly-used functionalities and message 

passing. Our research work mainly works with the ROS environment. ROS provides a 

better interface to communicate and control the robots. However, it is not easy to 

work with ROS in robot programming. One of the main objectives of the research is to 

provide a Web interface to control the robot easily without considering the low-level 

architecture of the ROS and robot. 

Human-robot communication is one of the top research areas in robotic research 

work. Different types of middleware are available to make this communication easy 

and user-friendly. However, there are several challenges in developing a robotic 

application for robot communication using the middleware directly because of the 

complexity and interoperability of the middleware. The ROS is one of the middleware 

used to program most robotic applications. 

In an intelligent environment, there may be lots of service robots which are 

working at different places simultaneously. Therefore, they may have different 

capabilities and operate with different control systems (mobile base, wheels, two legs, 

four legs, tracks etc.). Moreover, most robots may have different software 

specifications, even running with the same middleware like ROS. 

Suppose a system can hide these difficulties by providing a straightforward 

interface where the user can provide high-level instruction without considering any 

low-level technologies to communicate with a multi-robot environment. In that case, 

it will be very convenient for the users. 

Autonomous robot registration and control is one of the complex tasks in robotic 

application development. ROS was developed to improve interoperability and reduce 

heterogeneous multiple robot programming complexities. ROS is a kind of middleware 

used by developers in robotic applications to reuse most existing software developed 

by different researchers. There are different nodes, topics, and message formats for 

different robots in ROS. Another project objective is registering the robot 
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autonomously through the web interface. An algorithm was developed to find the 

related topics to control different robots in ROS. Therefore, our system’s main 

component is the Robot Registration Engine (RRE) which is developed to register 

multiple heterogeneous robots by getting all related rostopics. The web interface was 

developed to interact with robots and users using the ROS bridge server. ROS bridge 

server worked as an interface between the ROS environment and Web interface. We 

have developed different web interfaces to interact with the user and different types 

of experiments in our research as described by Web Interface I to V. the following 

table 1.1. 

Table 1.1 Types of Web Interfaces 

Web Interface Types Description of the Web Interface 

Web Interface I Single Robot without Autonomous Robot 

Registration 

Web Interface II Single Robot with Autonomous Robot 

Registration 

Web Interface III Multiple Two Robots with Autonomous Robot 

Registration 

Web Interface IV Multiple Four Robots with Autonomous Robot 

Registration 

Web Interface V Heterogeneous Robot with Autonomous 

Robot Registration with Semantic Instructions 

Web Interface I to IV was developed to work with instructions like moving the 

robot to a specific location and working with multiple instructions sequentially. Web 

Interface V was developed to work with instructions. We have used the Gazebo 

simulator for our experiments. The robot’s actions and initial position changed with 

time. Therefore, we have created a schedule for each robot to complete movement 

or navigation in the experiment with Web Interface V. Then, we have identified the 

relevant ROS topic in corresponding nodes to subscribe and publish the corresponding 

command values from the user command. The Command Publishing Engine (CPE) is 

responsible for publishing the ROS command for each action defined in the given user-

level instruction. 

Different architectures were used to design the heterogeneous multiple robot 

system, including centralized, distributed, and hybrid modes Hu et al. (2015). Our 

solution is based on the centralized server architecture shown in Figure 1.1. 

Before publishing the command on each robot, we need to identify the ROS topics 

to publish or subscribe to and nodes which contain the ROS topics for each robot. 

There- 
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Fig. 1.1 High Level System Diagram 

fore, in our solution, the one task is to automatically register the robot in Robot 

Registration Engine (RRE) by collecting all software-related specifications using 

rosnode and rostopic commands. 

1.2 Problem Statements 

A relatively new research initiative in autonomous robot control is to develop 

autonomous robot registration and control all robots through the Web interface. 

However, based on the analysis of current research studies, we could not find research 

work on autonomous robot registration and control through the web interface. 

Furthermore, we have identified that programming a robot and multiple robots are too 

complex and tedious, even with the ROS middleware. 

There are different ROS topics and ROS message formats for robots in ROS. 

Therefore, we must identify the relevant ROS topics and nodes to publish or subscribe 

to different robots in ROS. Furthermore, autonomous Robot Registration and the 

control command issue with the corresponding ROS topic is another main problem in 

the research. Another research problem is managing and controlling multiple robots 

through a web interface. 

According to our background studies, we did not find any research works to 

identify the ROS topic and nodes for controlling multiple robots simultaneously and 

autonomously. Therefore, the other main research problem is identifying the relevant 

ROS topics and nodes for the given user instruction. 

There are different types of multiple heterogeneous robots with different 

capabilities. The most prominent parts of the ROS are ROS nodes, ROS topics, message 
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formats and ROS services. There are different ROS topics and ROS message formats 

for different robots in ROS. We must identify the relevant ROS topics and nodes to 

publish or subscribe to different robots in ROS. Autonomous control and 

communication of the multiple robots through the web interface is one of the 

challenging tasks. Autonomous Robot Registration and the control command issue 

with corresponding ROS topic is another main problem in the research. Working with 

ROS is also another very complicated and tedious task. 

There were several research to get the current position and orientation of the 

robots. With some conversion algorithms, finding the current position and orientation 

can be achieved with odometry reading. Moving all robots to the given location is 

another research problem we selected to solve. 

Algorithms play a significant role in our system. It defines the steps that must be 

completed sequentially to convert the input into the desired output. Performance 

analysis of the algorithms is not a simple task when the algorithm is complex. There 

are several algorithm analysis techniques. Big O notation is one of the best ways to 

describe the complexity of the algorithms. Another research problem is analyzing the 

algorithms’ time complexity using Big O notation. 

Performance analysis with different web interfaces is another main research 

challenge. We need to derive the equations for performance analysis for each 

experiment with different web interfaces with different scenarios. Deriving the 

mathematical equations with performance analysis is another research problem that 

we need to solve. 

1.3 Thesis Objectives 

The main objective is to develop an algorithm to interact and control multiple robots 

through the web interface with autonomous robot registration and autonomous ROS 

topic identification. 

Many research groups completed robot control and communication with ROS, but 

according to our research studies, we did not find any research for autonomous robot 

registration using any algorithms. ROS topics and nodes are critical components in the 

ROS environment. The robots may have different ROS topics and nodes for subscribing 

and publishing. One of the leading research project objectives is to develop an 

algorithm that can register all robots concurrently through the Web interface. 

When a user issues an instruction, then our system must be able to find the 

corresponding ROS topis and nodes to complete the assigned task in the user 

command. According to the previous studies, we did not find any algorithm developed 

to identify the relevant ROS topics and nodes for subscription and publication. 

Therefore, one of the leading research project objectives is to develop an algorithm 
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that can identify the relevant ROS topics and nodes to complete the issued task by the 

user. 

Our system is simulated with the Gazebo environment with multiple robots. 

However, managing multiple robots with a Gazebo environment through a web 

interface is not an easy task. Most of the time, managing the errors with ROS and 

Gazebo is very tedious and time-consuming because fewer resources are available 

online for ROS and Gazebo. Therefore, one of the leading research project objectives 

is to learn the ROS and gazebo environment from scratch and simulate the 

environment for the experiments. Designing an algorithm is not an easy task because 

we need to consider several factors in designing a good algorithm. Then the algorithm 

analysis is fundamental to finding the performance of each algorithm. There are 

several algorithm analysis techniques. Big O notation is the optimal way to represent 

the algorithm’s complexity. One of the leading research project objectives is to 

develop an optimal algorithm to get the correct output and analyze the performance 

of the algorithms. 

Performance evaluation with the response time is another research problem that 

we want to solve. Several experiments must be completed with different web 

interfaces with different amounts of robots for different scenarios. We must design 

the experiment environments and evaluate the performance for response time. Again, 

we need to derive the mathematical equations representing each scenario’s delay in 

response time. Therefore, another main objective is to perform analysis with derived 

mathematical equations for each scenario with different web interfaces. 

1.4 Research Approach 

As stated in the previous section, The main objective is to develop an algorithm to 

interact and control multiple robots through the web interface with autonomous 

robot registration and autonomous ROS topic identification. However, some factors 

must be considered when approaching the research work as described below. 

ROS programming: Evan, there are many research works conducted with 

middleware as ROS by many researchers. However, working with ROS to develop a 

simple application is a challenging and tedious. Because getting online help and online 

resources for developing the application was very limited. Therefore, our initial 

approach is to learn the ROS from the basics using all available resources online and 

offline. There are several research papers that describe the way authors have used 

ROS for the development of some applications. The other approach the study the ROS 

in detail is to study more research papers in relation to application development with 

the ROS. 
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Gazebo environment: Our research work is simulated with multiple robots in a 

Gazebo environment. Developing an application with a gazebo is also not an easy task 

again because of fewer online and offline resources available. Therefore, our following 

approach is to learn the programming gazebo environment by spawning multiple 

robots simultaneously. Towards this completion, we need to study the research 

papers and available online materials to get more knowledge on Gazebo. 

Design algorithms: Designing an optimized algorithm is a challenging task in the 

algorithm development process. There were no algorithms developed for 

autonomous robot registration, autonomous ROS topic and node identification with 

multiple robots through the web interface. The research approach to complete this 

task is to study algorithm design techniques and study more research papers to get 

more knowledge. The analysis of algorithms is another challenging task since there are 

many ways to identify the complexity of the algorithms. Therefore, we have designed 

our own algorithm and analysis of the algorithms. 

Web Development: Since we need to control all robots through the Internet, we 

need to have good knowledge of web development and programming. Most of the 

languages link HTML, script language and extreme programming are essential in this 

research. Our approach is to study both client-side and server-side programming and 

ROS support with a web interface. 

Programming languages: Most of the ROS programming can be completed with 

the Python language. Therefore, studying the python language is very important to 

develop some applications in the ROS library. Therefore, we need to have an excellent 

approach to develop a comprehensive application with ROS library using the python 

language. Python supports the concurrent program execution using threads. 

Ontology: Ontology development is completed as additional work for the research 

work. Adding synonyms and semantics is another additional task that we have 

selected to complete. There are several research works completed with the ontology 

in different applications. Our research approach is to study the existing research 

papers and ontologies to support our system.  
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1.5 Contributions 

There are several existing research works where researchers have developed control 

and manage the robots through the Web interface. There are some algorithms 

developed to control the multiple robots in the ROS environment and with other 

middleware. In my research initially, I need to study all existing systems and 

contributions to control multiple robots through a Web interface. Therefore, one of 

the main contributions is to identify the limitation and issues with the current and 

previous research works by thoroughly studying all existing research papers. These 

contributions can be used to find an optimal solution to solve my research problem. 

ROS is the leading middleware that we are using to complete the research project 

with multiple robots. Initially, the system must be able to register all robots with Robot 

Registration Engine using the algorithms developed. Getting ROS topics and ROS 

nodes details is very important to control each robot with a user instruction. One of 

the leading research contributions of this research project is to control and manage all 

robots through the Web interface with user instructions without considering all 

software and hardware differences of all robots. This contribution provides a way to 

develop an interface that can be used to control multiple robots very easily. 

Evaluation of algorithms is a complex task in algorithm designing. Identifying the 

time complexity of the algorithm is very important when the system is being 

developed. Here we complete the time complexity analysis for all algorithms 

developed. One of the leading research contributions of this research project is to 

provide the complexity analysis of the algorithm to decide the performance of each 

algorithm. 

Performance evaluation in terms of the delay of response for each experiment is 

another main task of the project. We need to formulate the mathematical equations 

for the delay in response time for each scenario. These mathematical formulas can be 

utilized for the prediction of the performance of the system. One of the leading 

research contributions of this research project is to formulate the mathematical 

equations for the performance in terms of the delay in response time. 

The main contribution to my research work are summarized below: First, I 

discovered and proposed a new algorithm for autonomous, multiple robot registration 

in a simulated Gazebo environment. According to the previous research studies 

described in chapter 02, I did not find any research on autonomous robot registration. 

Once a robot is connected through the Web interface, all ROS topics and nodes related 

to each robot are collected and stored to use later. One of the main limitations of the 

ROS is that robotic programming very difficult and but autonomous registration solve 

this issue since it collects all ROS topics and nodes necessary to publish and subscribe. 
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I discovered and proposed a new algorithm for the ROS topic identification when 

a user issued a command to control robots through the web interface. However, 

according to the previous research studies described in chapter 02, I did not find any 

research on ROS topic identification algorithms. 

I discovered and developed the web interface to control multiple robots with 

simple commands to move robots forward and circle simultaneously using the threads 

in python language. However, according to the previous research studies described in 

chapter 02, I did not find any research on multiple robot controls through the web 

interface. Some research was done to control single robots through web interfaces 

without autonomous registration. 

I discovered the worst-case complexity of the autonomous robot registration 

algorithm and ROS topic identification algorithm. This analysis results can be used by 

other researchers when they want to get an idea of the algorithm’s performance. 

I discovered and derived mathematical equations to represent the delay in 

response time for the different scenarios with all experiments with other 

characteristics. Furthermore, I found and validated the values for all constants in each 

mathematical equation.  



9 

1.6 Thesis Outline 

The following sections are grouped as follows. Section 2 represents a literature survey 

with background readings and related research works with technologies. The 

methodology with algorithms and main components of the design are presented in 

section 3. The experiments and evaluation of the research project with results are 

described in section 4. Section 5 represets the discussion of the problem, solution and 

research findings. 

Finally, section 5 describes the conclusion with future works.  
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CHAPTER 2 

Literature Review 

Several research works are currently working in the area of HMR communication in 

different research groups. Here we discuss some of the works which are similar to our 

work. We have categorized all background readings as Heterogeneous multiple robot 

controls, Ontology-based multiple robot control and Interface and system 

development for multiple robot control. 

2.1 Heterogeneous Multiple Robot Controls 

Many research studies were conducted by researchers with heterogeneous multiple 

robot controls. Here we discussed the related research works. 

Some research groups have implemented heterogeneous multi-robot control with 

the involvement of humans. Seohyun et al. proposed a three-layer architecture to 

control a multi-robot with human intervention. They have separated the autonomous 

and manual parts in the interface design to control the multi robots (Jeon et al. 2012). 

M. Alberri et al. have developed ROS-based architecture to connect multi-robot 

heterogeneous systems with a hierarchical system. They have proposed layered 

architecture. The high and middle layers consist of several ROS packages with ROS 

nodes to provide different functionalities. The lowest layer consists of some C and C++ 

software packages (Alberri et al. 2018). 

Another research group has developed a hybrid architecture based on ROS. This 

system integrates the personal computer(PC) and embedded systems with multiple 

heterogeneous robots. The PC is a server, and the robot is a node(Hu et al. 2015). Y. 

Msala et al. have developed a centralized architecture mainly based on cloud-

distributed architecture. It controls and coordinates heterogeneous multiple robots. 

Furthermore, they have used an artificial intelligence-based algorithm to allocate the 

task to heterogeneous robots based on the robot’s ability (Msala et al. 2019). 

Another research group developed a new system which controls robots through a 

cloud called IAPcloud where most of the CPU-intensive work of the heterogeneous 

multi-robot can be uploaded to the remote cloud server. Song Z. et al. has proposed a 

cloud-based architecture to collaborate and control the heterogeneous robots by 

reducing the programming difficulties and development timing (Zheng et al. 2018). 

L.F.Costa et al. have developed a multi-robot communication web-based interface 

in the same environment using ROS. They have developed two services on the 
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webserver to monitor and control. The main operation developed in the system is 

moving the robot forward, to the right, to left and backwards. They have implemented 

three layers: robot, server, and client. The main development is to provide the 

environment to use the different robots by lay people with ROS-based 

implementations(Costa and Gonc¸alves 2016). 

R.Han et al. have developed a system for multi-robot navigation in dynamic 

environments where they have used deep reinforcement learning to find the optimal 

path (Han et al. 2020). 

N. Lashkari et al. have developed a novel robust control method for heterogeneous 

multiple robots with autonomous docking and formation. They have considered the 

limitation in existing formation methods like battery failure, limited transportation 

capacity, and manoeuvrability in developing the new model. The main goal of the 

developed control is autonomous docking, formation keeping/switching, and collision 

avoidance in dynamic environments. They conducted the experiments with a 

simulated virtual environment with V-Rep. A mathematical model was used to develop 

the formation methods of multiple robots and autonomous docking. They have shown 

that the followers can dock themselves to other followers in the system and then 

maintain the formation as a docked system (Lashkari et al. 2020). 

R.Yara et al. have surveyed multiple heterogeneous robots. They have studied 

more in task allocation, task decomposition, perception and control of heterogeneous 

robots. The main challenges were identified and discussed in the paper. Cloud service 

access with Big data is one of the research issues they have identified. Security and 

communication are other research problems with IoT-based robotic applications. 

Human in the loop is one of the problem identified by researchers. Finally, 

communication constraints and uncertain connectivity are the main research issues 

that must be solved in future research works (Rizk et al. 2019). 

T. Kato et al. have developed a formation method for multiple heterogeneous 

robots based on the current position of the robots. Each robot’s current position and 

triangular method form the groups. They used simulation methods to verify that the 

formation was accurate. They used the measurement system using wireless 

communication and ultrasonic sound. Different shapes were developed using 

equilateral triangles. They plan to implement this in real robots as future works (Kato 

et al. 2010). 

B.Jungyun et al. have developed an Efficient Coordination of Multiple 

Heterogeneous Mobile Robots Considering Workload Balance. They have solved the 

Multiple Depot Heterogeneous Traveling Salesman Problem. They used a heuristic 

approach based on a primal-dual technique to solve this problem and minimize the 
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time. They proved the algorithms that solve the problem of visiting each given target 

by one robot and completing the given goal by all robots with minimum time (Martinez 

et al. 2015). 

M. Lomas et al. have developed an architecture to control and manage multiple 

heterogeneous robots with a team of operators. They experimented with multiple 

unmanned vehicles with teams of operators. Open API is used to develop the system 

with three-tier architecture. It is very flexible to work with the system dynamically 

assign the task for each robot (Lomas et al. 2011). 

I. Tiddi et al. have developed an ontology-based robotic application development 

environment for non-expert users to develop and integrate robotic applications. They 

have mainly considered simplifying the time-consuming process of programming 

robotspecific tasks. The ontological representation was used to provide 

interoperability, meaning for the concepts and relationships by hiding the complexity 

of the given domain in robotics (Tiddi et al. 2017). 

Mihai P. et al. have developed a system to parse natural language instruction and 

get the ”semantic specification” (semspec) which can be translated to a program to 

execute on a simulated robot. The system tarn slates the natural language sentences 

with semantics into a program that can be executed on a robot using interpretation 

rules with semantic description(Pomarlan and Bateman 2018). 

Rajapaksha et al. have developed a system which takes input instruction with 

uncertain words for a drone and converts it to machine-understandable format using 

the ontology (Rajapaksha et al. 2019). 

V. Muthugala et al. have completed a review of uncertain information with natural 

language instructions with service robots. In addition, they have investigated and 

identified the limitations in existing research work for handling qualitative information 

in user instruction(Muthugala and Jayasekara 2018). 

S.K.Rhee et al. have developed an Ontology-based Context and Preference Model 

for service robots. The automation process is achieved using ontology. They have used 

rule-based reasoning to work with the context in the environment. They have limited 

the current implementation with the location, nearby users and objects for the 

context. However, they plan to expand it with autonomous learning and consider 

other factors in working with the semantic (Rhee et al. 2012). 

2.2 Interface and system development for multiple robot control 

F. Mullers¨ et al. have developed a tool to create and edit the ROS launch files with 

the graphical user interface. Furthermore, users can drag and drop the new nodes to 
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the graph and update the resulting launch files with the developed user 

interface(Mullers¨ et al. 2009). 

C. J. Sutherland et al. have invented the domain-specific language named RoboLang, 

which can use the existing programming tool. Moreover, it can make small changes 

to the scripts to run on different platforms robot platforms(Sutherland and 

MacDonald 2019). 

Chandimal J. et al. have developed a system to develop the robotic software for 

the given scenario with minimal modification of the program code, which can be 

completed quickly. The system can change the robotic software very easily and quickly 

without adding any errors or bugs in changing the behaviour of the robots. They have 

developed different engines to support the implementation(Jayawardena et al. 2016). 

Chandan D. et al. have developed an Integrated Development Environment for 

visual programming by abstract textual domain-specific language. It provides the 

program development environment to program robotic applications very fast and very 

simply with the user requirements (Datta et al. 2012). 

K.Takaya et al. have conducted experiments to present that the system developed 

with simulation in Gazebo can be executed on a real robot with ROS without changing 

any lines of code. They have developed 2D and 3D environments and 3D maps for the 

navigation of mobile robots. The generated map had some noise, but it can be 

neglected without any changes to the accuracy. The experiments have indicated that 

the real robot and the simulated robot with the environment worked the same 

without any differences (Takaya et al. 2016a). 

S.S.Velamala et al. have developed a graphical user interface for robots and 

autonomous vehicles using ROS and QT tools. They have control of Wave Adaptive 

Modular Vehicle using the GUI developed. ROS does not provide GUI to control and 

program the robots easily. All the ROS commands and gnome commands were 

executed on the developed GUI. Additional components (sensors and actuators) can 

be added to the developed system easily. They have proved that the other 

autonomous system also can be controlled with the developed interface (Velamala et 

al. 2017). 

A tool which can be used to present and visualize the ROS data in a Web browser 

was developed by A. Ivanov et al. They have tested the system with the TurtleBot3 in 

the Gazebo simulator. ROS Web tool was used to connect the ROS and Web Interface 

using roslibjs. They have controlled and collected ROS data through the Web interface. 

It is identified that most browsers have supported the implementation (Ivanov et al. 

2021). Chandan D. et al. developed an Integrated Development Environment for visual 

programming by abstract textual domain-specific language. It provides the program 

development environment to program robotic applications very fast and simply with 
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the user requirements Datta et al. (2012/10/29). Chandimal J. et al. developed a new 

concept named a coach-player model to learn from user commandsDatta et al. 

(2012/10/29) 

Adriano S. et al. have reviewed motor control theory and sensory feedback 

applications performed in parallel. Optimal control models were developed to 

represent the humans’ ability to behave optimally after a certain level of training. The 

advantage of the structural model and Hosman’s descriptive model are discussed in 

this review Scibilia et al. (2022). 

Maide Bucolo et al. have worked on a complex and imperfect electromechanical 

structure that can be used as a paradigm for an imperfect system. They have indicated 

that the electrical and mechanical interactions generate complex patterns because it 

prevents the system from reaching correct conditions Bucolo et al. (2019). Our 

solution may not be perfect in terms of performance characteristics. 

Abdulmuttalib T Rashid et al. have developed a cluster matching algorithm to get 

the robot’s orientation and localization. Each robot could estimate the neighbour 

robot’s relative orientation within its transmission range. It can get the absolute 

positions and orientations of the team robots without knowing the ID of the other 

robots Rashid et al. (2015). 

Abduladhem A. et al. have developed the multi robots navigation model in a 

dynamic environment named shortest distance. The collision-free trajectory was 

developed using the current orientation and position of the other robots. This 

algorithm is based on the concept of reciprocal orientation that guarantees smooth 

trajectories and collision-free paths Ali et al. (2016). 

Buscarino A. et al. have proposed a methodology to control a group of robots 

without central coordination. They have proved that the system performance with 

noise can be improved by including long-range connections between the robots. They 

have the model of the network as a dynamical network Buscarino et al. (2006). 

M.Zhengguang et al. have developed a multi-robot simulator system with the help 

of ROS and Qt tools. They have indicated the multi-robot system’s advantages over a 

single robot. They have developed a powerful GUI to work with the multi-robot system 

with the simulation. They used the Gazebo simulator to visualize the 3D view of the 

robots. They have proved that this simulation was more accurate and accessible than 

the other methods (Ma et al. 2019). 

Javier Ruiz et al. have proposed using personal robots as ubiquitous, multimedia, 

portable, self-personalized, natural and Internet interfaces. A unique robot is a 

subclass of a mobile service robot designed to work with humans and conduct as 

partners, providing entertainment and friendly communication interfaces. They have 
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implemented a robust and versatile object recognition system based on the matching 

between a reference image. Users can interact with the Web and Internet applications 

using either the touch screen placed in the robot or speech instructions. They 

proposed future work to communicate successfully in a highly dynamic environment 

with backgrounds, variable illumination, and high noise levels in the environment Ruiz-

del Solar and Ruiz-del Solar (2007). 

V.Usha Rani et al. developed a web-controlled surveillance system to provide more 

security in places that humans cannot visit. The robot can be sent to any location 

where network access is available. The system was cost-effective and very efficient. 

The system was implemented with the HTML and python languages. The user can 

view the live stream through the web interface. The research group have developed 

the obstacle identification algorithm also Rani et al. (2021). 

Radim Farana et al. designed a web service to control the robot remotely. The 

lowlevel protocol was developed to control the robot through the internet. This 

interface was created using Silverlight technology. The robot is connected to a server 

using a serial port (RS232). The interface was developed to control the robot using 

web services Richtr and Farana (2011). 

Christopher Reid et al. have implemented a cloud computing infrastructure for 

networked heterogeneous robotic systems in an open-source robot operating system 

(ROS). The Kobuki Turtlebots and LEGO EV3 robots were used for the experiments by 

connecting to cloud services on the network through the Robot Operating System. The 

wireless network is used to create a connection to robots. ROS is used to implement 

in the robot’s local system to schedule data transmissions. ROS local nodes and 

cloudbased virtual machines were used to implement the proposed approach. The 

Robot Operating System was implemented to manage the data transmission to 

minimize the systems’ network load. The research group has indicated that local 

processing on networked systems contributes to better overall network performance 

Reid et al. (2017). 

Even though there are several research works done on heterogeneous multi-robot 

systems, our solution is unique because of using ontology to determine the ROS topic 

for each action. 

2.3 Synonym and Semantic of the User Instruction 

Several research groups are working on heterogeneous service Robot communication 

and control with high-level instructions. Here we discussed some of the work that was 

done similarly to ours. 

Jaehong K. et al. have developed a system to interpret commands for intelligent 

robots using ontology. Lexico semantic pattern matching has been used to retrieve the 
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meaningful keywords from the user command. They have developed the prototype 

for the interpretation and the system was tested with different user commands. In 

addition, they created an intermediary language called FURRL (Formalized User 

Request Representation Language) to represent the sentences in a formal structure 

Kim et al. (2006). 

A Mart´ınez et al. have developed a switch and router configuration with the 

domain semantics using the Web Ontology Language (OWL). The research group 

developed an Ontology-Based Information Extraction (OBIE) system from the 

Command-Line Interface (CLI) of network devices. A learning algorithm that has 

automated interpretation of CLIs’ configuration capabilities in the heterogeneous 

network was developed. The semantic similarity function is the system’s primary task, 

which helps in mapping between the ontologies Martinez et al. (2015). 

Laurent M. et al. have developed a generic architecture which provides a natural 

language (NL) algorithm for command interpretation. The system mainly depends on 

the agent’s code and its domain ontology. The two main approaches they have 

considered are the top-down and the bottom-up approaches. Two approaches were 

combined in the proposed architecture. This system operates with a minimal semantic 

analysis on the ontology (synonymy) Mazuel and Sabouret (2006). 

The ontology-based system was developed to implement the integrated robotic 

application using ROS middleware by non-expert users by I. Tiddi et.al. The main 

objective was to reduce users’ time to program robot-specific tasks. In addition, 

ontologybased representation was developed to provide meaningful, conceptual 

abstractions of complex and detailed domains, which improved interoperabilityTiddi 

et al. (2017). 

Natural language instructions were processed to generate ”semantic 

specification” (semspec) and translated into the program to be executed by a 

simulated robot by Mihai P. et.al. A semantic description of a natural language 

sentence was translated into an executable program for the robot. Interpretation 

rules to the semantic description were used to translate into executable 

codePomarlan and Bateman (2018). 

Pomarlan et al. have developed a system that takes a semantic specification 

(semspec) obtained from parsing a natural language instruction and converts it into a 

program to be run by a (simulated) robot. In addition, the authors have presented a 

system that converts a semantic description of a natural language sentence into an 

executable robot program by applying interpretation rules to the semantic 

description. Interpretation is ruled that convert a short phrase to a longer description 

of the action it performs. 



17 

After analyzing all research studies, I have summarized all research studies based 

on the number of robots, web interface usage, autonomous registration, running time 

analysis and ontology usage, as shown in the Table 2.1. According to the analysis, there 

needs to be more research conducted on autonomous robot registration and control 

of the robot through the web interface. Therefore, our research mainly focuses on 

autonomous robot registration and control through the web interface. 

2.4 Related Technologies 

2.4.1 Robot Operating System(ROS) 

It is a middleware which provides the interface for robotic application developers to 

create sophisticated software quickly and conveniently. ROS provides the tools and 

libraries that hide the complex hardware implementation for software developers 

who Table 2.1 Summary of Research Studies and Research Gap 

 

 

 

 

 

 

 
 

 

Jeon et al. 2012 yes yes No No No Partial No No 

Alberri et al.2018 yes yes Yes No No No No No 

Hu et al. 2015 Yes yes No No No No No No 

Msala et al. 2019 Yes yes Yes No No No No No 

Zheng et al.2018 Yes yes Yes No No No No No 

Costa et al. 2016 Yes yes Yes No No Partial No No 

R.Han et al. 2020 Yes yes No No No No No No 

Lashkaret al.2020 Yes yes No No No Partial No No 

Rizk et al.2019 Yes yes No No No Partial No No 

Kato et al.2010 Yes yes No No No No No No 

Martinet al.2015 Yes yes No No No No No No 

Lomas et al. 2011 Yes yes No No No No No No 

Tiddi et al. 2017 Yes No No No No No yes yes 

Pomarl et al.2018 Yes No No No Yes No No No 

Rajapaksa al.2019 Yes yes No No Yes No No yes 

Jayasekara al.2018 Yes No No No Yes No No No 

Rhee et al. 2012 Yes No No No Yes Partial No Yes 
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Mullers et al.2009 Yes No No No Yes No No No 

Sutheret al.2019 Yes No No No No Partial No No 

Takaya et al.2016 Yes No No No No Partial No No 

Velamala et 

al.2017 

Yes No No No No Partial No No 

Ivanov et al.2021 Yes No Yes No No Partial No No 

Ma et al. 2019 Yes Yes No No No Partial No No 

Rani et al.2021 Yes Yes yes No No No No No 

Martinez et al.2015 Yes No No No Yes No No Yes 

Tiddi et al.2017 Yes No No No Yes No No Yes 

Bateman et al.2018 Yes No No No Yes No No Yes 

Laurent M. et. al. Yes No No No Yes No No Yes 

Kim et al.2006 Yes No No No Yes No No Yes 

develop robotic applications. It is open-source software to develop the robotic 

application. ROS provides hardware abstraction, very low-level device controls, inter- 

communication between processes and packages for managing robots. It is a 

distributed collection of processes to reuse the software in robotic application 

development. ROS works with most modern programming languages like C++, Java 

and Python. The Unix-based platform is used to run the ROS middleware. ROS is also 

released with a different distribution similar to Linux versions. ROS levels will be 

grouped as shown in Figure 2.1. 

 

Fig. 2.1 Levels of ROS 

ROS packages are used to organize the software as the smallest unit. It works as a 

software process with runtime library and configuration files. Message types describe 

the data structures used to send messages in the ROS environment. The service type 
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describes the data structure used in request and response. All standard systems are 

stored as repositories. 

The processes are named nodes that provide different services in the ROS 

environment. Each node can be assigned for different task in the robotic application. 

For example, one node can be allocated to navigation, and another node can be 

allocated for movement control. A node can publish the message on a ROS topic, and 

another node can subscribe to it. ROS topic is a name which can be used to identify 

the shared location to communicate with nodes. ROS topic acts like a pipe to 

communicate with nodes in the ROS environment. Master is working as a registry in 

the ROS environment through that all communications can be implemented. The ROS 

master communication is conducted with the XMLRPC, a stateless communication 

technique.XMLRPC server is running by default with port number 11311. The ROS 

master is connected with the parameter server to provide the namespaces. 

There are several ROS nodes command line tools as described below: rosnode 

info command is Used to print information about a node rosnode kill command 

is Used to kill a running node rosnode list command is Used to list active nodes 

rosnode machine command is Used to list nodes running on a particular 

machine rosnode ping command is Used to test connectivity to a node 

rosnode cleanup command is Used to purge registration information of unreachable 

nodes. 

The sample ROS nodes are shown in Figure 2.2 that can be taken by running the 

rosnode list commands. These ROS nodes are similar to processes in the operating 

system. 

 

Fig. 2.2 Sample ROS nodes 

The ROS wiki provides documentation of the content as a forum. Anyone can sign 

into this forum and add content. The versions of ROS can be released as distributions 

similar to the release in Linux operating system. The code segments released by 

different institutes for the robotic application are stored as repositories. The 

interaction among ROS nodes, ROS topics and ROS master is shown in Figure 2.3 
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Fig. 2.3 ROS Nodes and Topics 

ROS provides a client library for programmers to make applications easily. It mainly 

supports two languages, C++ and python. roscpp is the one library developed for C++ 

language, and rospy is the other library developed for python language. 

Our experiments were completed with the ROS Melodic version (Released on 23rd 

May 2018) with Ubuntu 18.04 version. 

2.4.2 ROS Topics 

ROS topics are like the standard shared memory in applications where two or more 

processes can communicate by sharing the content through the shared memory. It is 

the same as the named bus system on which some messages can be shared. Nodes 

can publish or subscribe to the selected ROS topic to make communication. There can 

be many subscribers and publishers for the selected ROS topic. Unidirectional 

streaming communication is used in communication with the ROS topics. Each topic is 

strongly typed with a message type to make the communication. The transport type 

used to communicate in the ROS environment may be TCP/IP-based or UDP based on 

the application requirements. ROS nodes can negotiate the transport type at run time. 

It uses the Remote Procedure Call (RPC) to make successful communication. 

rostopic is a command-line tool that can work with ROS topics. rostopic 

list is a command that can get all current ROS topics. 

rqt graph is a handy tool to visualize the nodes and topics in the system we are 

working with ROS. You can use the help option to get all the available sub-commands 

for the command rostopic. rostopic -h rostopic is a command-line tool for printing 

information about ROS Topics. 

Commands: 

rostopic bw command is Used to display bandwidth used by topic 

rostopic echo command is Used to print messages to the screen 

rostopic find command is Used to find topics by type rostopic hz 
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command is Used to display the publishing rate of topic rostopic info 

command is Used to print information about the active topic rostopic 

list command is Used to list active topics rostopic pub command is Used 

to publish data to a topic rostopic type command is Used to print topic 

type 

Different ROS topics can be used to publish commands for different actions. we can use 

the ROS topics to publish like cmd vel, cmd vel mux or cmd vel mux/input/navi.The 

possible ROS topics for the movement and initial pose. The sample ROS topic list is shown 

below in Figure 2.4. It is generated with our experiments with the TurtleBot robot. 

2.4.3 Gazebo Simulator 

The Gazebo is an open-source simulator for robotic application development. It 

provides a 3D view for developers. It has a high-performance, open, dynamic engine 

 

Fig. 2.4 Sample ROS Topics 

developed with C and C++ language. The Gazebo can easily create and run 

experiments rapidly with solid physics and good graphics. It works with OpenGL 

rendering and provides many codes for sensor simulation and actuator controls. This 

is one of the most popular simulators in robotic application development. It is a good 
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tool for testing new concepts, systems, and algorithms Koenig and Howard (2004). 

Several research groups have used the ROS and Gazebo environment to work with 

multiple robot programming, and testing algorithms Anggraeni et al. (2020) Sadeghian 

et al. (2017). Simulation is very important for testing the software programs, robot 

behaviours in the environment, and controlling robots with new algorithms. Testing 

results with the simulator in experiments agree with results in real developed 

environments Takaya et al. (2016b). Gazebo simulators can be used to test robotics 

algorithms, design robots, and perform regression testing with realistic scenarios with 

a graphical user interface. This is one of the good virtual worlds to simulate multiple 

robots in the same environment Yao et al. (2015). A set of ROS packages named 

gazebo ROS pkgs is worked as wrappers around the stand-alone Gazebo. Models in 

Gazebo can be spawned and deleted dynamically using the services gazebo spawn 

model and gazebo delete model. We had to simulate multiple robots in the Gazebo 

environment. Therefore we developed our scripts to spawn multiple robots at 

different places simultaneously to complete our experiments. The sample gazebo 

environment we used in our experiments is shown in Figure 2.6. We have developed 

the scripts to spawn multiple robots at different initial locations in the Gazebo 

environment, as shown in Figure 2.7.The roslaunch tool is used as the standard 

method for starting ROS nodes and bringing up robots in the ROS environment. The 

command roslaunch gazebo ros empty world.launch is used to launch the open world 

in Gazebo. We need to select the correct version of the ROS working with Gazebo 

simulation packages to develop the application with the Gazebo simulation 

environment. The execution of the TurtleBot on the Gazebo simulation with the 

launch file is shown in Figure 2.5. 

 

Fig. 2.5 Execution of the Launch File for TurtleBot in Gazebo 
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Fig. 2.6 Gazebo Simulator with Single Robot 

2.4.4 ROSbridge Server 

Rosbridge server is working with the WebSocket transport layer. A WebSocket is a full 

duplex communication protocol on a TCP connection. The communication and 
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Fig. 2.7 Gazebo Simulator with Multiple Robots 

 

Fig. 2.8 Execution of the ROSbridge Server 

interaction between a web browser (or other client application) and a web server can 

be achieved using a WebSocket. Web pages can communicate with ROS using the 

ROSbridge protocol. The rosbridge protocol provides the ability to fragment messages 

and compress messages. ROSbridge uses the JSON format to transfer the messages. 

Rosbridge library uses the Python library to work on web pages, convert JSON strings 

into ROS messages, and vice versa. Most of the HRI research work was completed with 

the help of Rosbridge library support Crick et al. (2012). Roslibjs is a JavaScript library 

for the browser that can talk to ROS via the rosbridge server. Rosbridge provides 

access to ROS topics and services available over TCP sockets or WebSockets as JSON 

messages. This server is listening on port 9090 to create connections. Rosbridge can 

be used by the client’s program to publish and subscribe to topic messages and invoke 

services in the server. Robert Codd-Downey et al. have developed an interface using 

Rosbridge libraries to communicate and control robots easily Codd-Downey and 

Jenkin (2015). The execution of the ROSbridge server using the laucnch file is shown 

in Figure 

2.8. 

2.4.5 Semantic Web 

The Semantic Web is considered an expansion of the current Web and is not a separate 

Web. The Semantic Web provides a better meaning to the Web’s content so that 

machines can communicate with each other like people are communicating. Several 

research works are going on to complete this requirement by many researchers. The 

Semantic Web was developed to provide a common framework that allows making 

machine communication easier and data to be shared. In addition, it enables software 

reuse across applications, enterprises, organizations and society with the community. 

W3C develops the Semantic Web with many researchers and industry partners. Most 
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of the standard was developed by W3C and pubished. Resource Description 

Framework (RDF) was used initially to develop the Semantic Web. The semantic Web 

provides intelligent access to the Web, making communication among machines more 

accessible. Again it provides intelligent access to heterogeneous and distributed web 

resources, enabling software systems and agents to mediate between user needs and 

available information sources Lassila et al. (2000). Moreover, the software agents can 

communicate with others with less intervention using ontologies in the Semantic Web 

Hendler (2001). 

2.4.6 Ontology 

Ontologies play the primary role in the Semantic Web and are used as the backbone 

in representing knowledge in applications. Therefore, finding required and 

appropriate ontologies for the given domain is significant, but it is now a difficult and 

tedious task since the numbers of ontologies keep developing rapidly. It is a 

complicated task to develop an ontology starting from scratch even though there are 

some tools since it is time-consuming, needs a good understanding of the domain and 

is expensive to construct. The World Wide Web Consortium (W3C) has recommended 

XML, XML Schema, RDF, RDF Schema and Web Ontology Language (OWL) as standards 

and tools for developing the application with the semantics of the content. Therefore, 

ontologies play a vital role in knowledge representation for the Semantic Web. The 

Semantic Web represents a common framework for sharing and reusing data across 

multiple applications, organizations, and community boundaries. Semantic Web is 

based on the Resource Description Framework (RDF), but there are some limitations 

to the RDF. Therefore, currently, researchers are using ontology to solve the limitation 

of RDF. The format and the structure of RDF are straightforward to represent, and we 

can use RDF triples in the form of subject, predicate, and object, as shown below Yun-

hua and Dan (2010). Some researchers have converted the existing database models 

into RDF for developing some applications with semantics Tong (2018). 

Statement = (Subject, Predicate, Object) 

Subject: The resources that are being described by RDF with a URI. 

Predicate: This is also a kind of resource which can have a name. 

Object: It is also an RDF URI reference or a blank node. 

Statement: A statement contains a resource, a property, and an associated value. 
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Fig. 2.9 Triple in RDF 

 

Fig. 2.10 XML code for RDF Triple 

RDF triple with graphical representation is shown in Figure 2.9. RDF has several 

limitations, including it is difficult to declare the range restriction on some classes, 

challenging to represent the disjointness between two classes, and difficulty in 

implementing the union intersection and complement with classes. All these issues 

and limitations can be avoided using ontologyFurthermore, most of the knowledge 

bases can be developed using the ontology Staab et al. (2001) Maedche et al. (2003) 

Lim et al. (2011). There are several research challenges related to applying ontologies 

in real-world environments. However, it provides the meaning to the content to 

complete machine-tomachine communication efficiently. 

Assume there is a resource created by Samantha Rajapaksa, then it can be 

represented using RDF triple as shown in Figure 2.10 

Samantha Rajapaksha is the creator of the resource http://www.sliit.lk /Home / 

Samantha 

 

Fig. 2.11 Triple in RDF as example 
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Fig. 2.12 RDF Graph with more concepts 

 

Fig. 2.13 XML Code for Extended RDF graph 

The RDF file can be extended as shown in Figure 2.12 to represent more concepts 

and their relationship. The Web Ontology Language (OWL) is used to represent the 

ontology for the selected domain. The valuable rich, and complex knowledge about 

things, groups of things, and relations between things can be represented using the 

semantic web language called W3C web ontology language. It is a computational 

logicbased language that can be used to knowledge expressed in OWL can be 

expressed by computer programs. The OWL web ontology language is designed to 

develop web applications that can process the content with semantics without just 

presenting the content to humans. It provides very high machine interoperability with 

web content than provided by XML, RDF, and RDF Schema.OWL provides three 

sublanguages based on the expressive power of the content OWL lite, OWL Descriptive 

Logic and OWL full. Several tools can be used to create the ontology from scratch. 

Protege is one of the handy open-source ontology editors that can be used to create 

our ontology. 

Ontologies are used to describe taxonomies and formally define the structure of 

knowledge for various domains. For example, in a given domain, the nouns can be 

represented as classes of objects, and the verbs can be used to represent relations 
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between the objects. The OWL Web Ontology Language is an international standard 

that can be used to encode and exchange ontologies to a developed application that 

is needed with the semantic meaning of the content. 

In some instances, user instruction may have some synonyms, so our system must 

identify the corresponding synonym to select the relevant ROS topics and nodes. Some 

research groups completed ontology-based synonym identification with the use of 

deep neural network technologies Shen et al. (2018). Some researchers have used the 

multistrategy to extract the synonym using a page ranking algorithm, pattern 

matching algorithm, and literal similarity algorithm Lu et al. (2009). Some researchers 

have used Neural network-based technologies to manage the user instructions with 

semantics Luo and Chen (2017). The other research problem is identifying the user 

instruction’s synonyms and related ROS topics and nodes for subscription and 

publication. 

CHAPTER 3 

Methodology 

The authors have implemented a web interface to interact with the robots and 

users.ROS Bridge Server was used to connect the web interface and ROS middleware. 

The Web interfaces were developed to interact with different experiments in our 

research as described by the table 1.1. Web Interface I to IV was developed with 

simple instructions like moving the Robot forward, moving the robot circle and getting 

the Robot’s current position. Web Interface V was developed to work with instructions 

with synonyms. We have used the Gazebo simulator for our experiments. The 

standard ROS JavaScript Library provided by the ROS Web Tools 

(http://robotwebtools.org/) was used to connect ROS with the Web interface. In the 

last experiment, the user can issue multiple instructions to all robots placed at 

different positions. Figure 3.1 represents the system architecture of our system. 
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Fig. 3.1 System Architecture Diagram 

3.1 Robot Registration Engine 

All multiple robots want to register with our robot registration engine by providing the 

software details and hardware-related specifications semi-automatically. Figure 3.2 

describes the robot registration algorithm. Firstly, it implements a node in ROS named 

”regRobot” to fulfil all the lines in the algorithms. 

  
INOUT: IP address list, URDF file and ontology  

OOTPUT: Updated ontology with ROS topic, Nodes and services  

ALL_ROBOT_REGISTRATION_ALGORITHM ( ipAddressList, URDF_File, RobotOntology )  

  
1. Begin  
2. Develop a Process as “regRobot” using ROS node//All lines will be run by this process.  
3. Foreach ipAddress ∈ 𝑖𝑝𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐿𝑖𝑠𝑡 do  
4. //The hardware details were updated with user involvement  
5. Connect the Robot using IP address  
6. If Robot has wheels Then    
7. Foreach 𝑖 ∈ {1,2,3,4,5,6,7,8} 𝒅𝒐  
8. Get the hardware details with user and URDF_File  
9. Update RobotOntology  
10. Endfor  
11. Else  
12. Foreach 𝑗 ∈ {𝑏𝑖𝑝𝑒𝑑𝑎𝑙, 𝑡𝑟𝑖𝑝𝑒𝑑𝑎𝑙, 𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑑𝑒𝑙} 𝒅𝒐  
13. Get the hardware details with user and URDF_File  
14. Update RobotOntology  
15. Endfor  
16. Endif  
17. //Update the software details with ROS commands  
18. Foreach item in { 𝑟𝑜𝑠𝑡𝑜𝑝𝑖𝑐, 𝑟𝑜𝑠𝑛𝑜𝑑𝑒, 𝑟𝑜𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒} do  
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19. Select the necessary option for each command  
20. Execute item on command prompt with the execl() system call          
21. Collect the output lists and set as L  
22. Foreach Line  in Ldo  
23. Update the ontology with relevant class                                           
24. Endfor  
25. Edfor  
26. Endfor  
27. Publish the ontology with “regOnto”.  
28. End  

  

  

Fig. 3.2 Robot Registration Algorithm. 

Each Robot is connected using the ip address from the given ip address list. If the 

Robot is already registered, then the ontology has no changes. Otherwise, the 

hardware specification can be collected from the URDF file with human intervention. 

Software specification can be collected by running the ROS commands using the 

execl() system call. Available ROS topics, nodes, message types, and other details have 

been updated in the ontology. Finally, this algorithm Publish the updated ontology on 

the ROS topic named ”regOnto”. 

We initially created a node called ”regRobot” to complete the rest of the line 

execution of the algorithm. IP addresses were extracted from the given IP address list 

named ”ipList”. Use the IP address to connect all heterogeneous service robots in the 

gazebo environment. Then the hardware details were collected using human 

involvement with the URDF file. Next, ROS commands were executed to collect the 

Software specification, which used the execl() system call by the ROS node created 

earlier. Finally, ontology named ”Registration Ontology” is created to represent 

available ROS details. 

 

Fig. 3.3 Initial Interpretation Process. 
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Figure 3.4 represents the Flowchart for the algorithm we initially developed for 

registration robots. 

3.2 Command Interpreter 

When a user issues a high-level user instruction on the web interface provided by the 

system, the instruction is analyzed by the command interpreter to separate the action, 

subject, object, and constraint, as shown in Figure 3.3. First, the processed instruction 

can be sent to the synonyms analysis and semantic analysis process. Then it needs to 

find out relevant ROS nodes, ROS topics for subscription, and publication with the 

algorithm. Finally, the ROS Topic Identification algorithms are used to identify the 

related ROS topic to control the robots. The ROS Topic Identification algorithm will be 

explained later in this chapter. When users issue multiple instructions sequentially, we 

need to interpret them separately. Therefore, we have designed a state transition 

engine with multiple instructions. The system is designed to work with multiple 

instructions one by one issued by the user using a state transition diagram with the 

states’ description as shown in Figure 4.17. The robot state is saved in the ROS topic 

to retrieve the robot state from time to time. When the Robot is ready, it will accept 

the user’s instruction and complete the assigned work accordingly. 

When a user issues multiple instructions to the Robot through the Web interface, 

the related Flowchart with the state transition is shown in Figure 3.6. Initially, a robot 

must register with the Robot Registration Engine and update the state as Ready in the 
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Fig. 3.4 Robot Registration Algorithm. 

ROS topic. Then the Robot can work according to the instruction given by the user. 

While the first instruction is processed, the user can issue another instruction then the 

Robot must be interrupted to handle the second instruction. Based on the priority of 

the instruction, the Robot must be able to decide to continue the current work or start 

the second instruction. The work state has the highest priority, the motion state has 

the second-highest priority, the dialogue state has the third priority, and the ready has 

the lower priority. Each Robot will exit the system if the instructions are not received 

within the defined time interval. 

3.3 Movement Management 

The most critical component of our experiments is the robot movement using 

different instructions and different interfaces. Once a robot is registered with the RRE, 

it uses the ROS Topic Identification Algorithm to identify the corresponding ROS topic 

for the Movement. We have used different techniques to move the robots in different 

experiments. In experiment 01, the authors used teleoperation to move robots 
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forward and circle in an open environment in Gazebo. In experiments 02,03, and 04, 

authors 

  
   

𝑆0:𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒  
𝑆1:𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑 𝑆𝑡𝑎𝑡𝑒  
𝑆2:𝑅𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒  
𝑆3:𝑀𝑜𝑣𝑒 𝑆𝑡𝑎𝑡𝑒  
𝑆4:𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒  
𝑆5:𝐷𝑖𝑎𝑙𝑜𝑔 𝑆𝑡𝑎𝑡𝑒  
𝑆6:𝐸𝑥𝑖𝑡 𝑆𝑡𝑎𝑡𝑒  
𝑆0 →𝑆1 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 ℎ𝑎𝑠 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑.  

𝑆1 →𝑆2 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 𝑖𝑠 𝑟𝑒𝑎𝑑𝑦 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠.  

𝑆2 →𝑆3 𝑖𝑓𝑀𝑜𝑣𝑒 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆2 →𝑆4 𝑖𝑓𝑊𝑜𝑟𝑘 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆2 →𝑆5 𝑖𝑓𝑑𝑖𝑎𝑙𝑜𝑔 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆3 
𝑆4} → 𝑆2 𝑖𝑓𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆5 
𝑆3 
𝑆4} → 𝑆6 𝑖𝑓𝑎𝑛𝑦 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑.  

𝑆5 
  

Fig. 3.5 State Transition Diagram. 

used the Web-based interface to move robots forward and circle in an open 

environment in Gazebo with multiple robots. In experiment 05, the Robot was moved 

to a specific location using the algorithm given in Figure 3.7. The notations in the 

Flowchart are described in Table 3.1. 

3.4 Ontology 

Ontology is a model used to represent the concept and the relationships among all 

related concepts; for example, if we select the Robot’s ontology, we can represent all 

concepts in the robot domain and the relationships among all concepts related to 

robots. We have created ontology to represent the concepts. User intervention is 

needed to update the ontology. Finding concepts from Ontology is the one that takes 
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more time because the running time complexity of the searching algorithm is given by 

O(n) where n is the number of classes in the given ontology. The part of the ontology 

we created is shown in Figure 3.8. 

 

Fig. 3.6 Flowchart for Multiple Instruction Handling. 

Table 3.1 Notations used in the Flowchart and Experiments 

 Description 
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tion in quaternion form, 

3.5 Synonym Analysis 

Users can enter different types of instructions, and the system accepts only commands 

and commands with the condition. Some commands with different verbs with the 

same meaning can be called synonyms. Robots may only be able to understand 

synonyms once it is appropriately programmed. Therefore, we implemented ontology 

created with the Web Ontology Language property called ”sameAs” to find the 

synonyms in the given instruction. We have used the ”owl:sameAs” statement to 
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identify the two Uniform Resource Identifiers. That means each individual has the 

same ”identity”. We can take the example as synonyms for instruction ”move” are 

”shift, go, proceed, walk and advance”. Users can update ontology manually. Synonym 

identification is used in the ROS topic Identification algorithm for publishing 

commands. Different heterogeneous service robots can use different ROS topics; 

therefore, we must find the correct ROS topic to publish the commands. The semantic 

analysis algorithm is described in Figure 3.11. 

 

Fig. 3.7 Flowchart for moving Robot to a specific Goal. 

3.6 Semantic Analysis 

The semantic meaning of the command is one of the main tasks in interpreting 

userlevel instructions. Suppose a robot can detect a semantic error in the given user-

level instruction that will better implement the Robot’s intelligence. Therefore, 

understanding the semantics of the command can be achieved if we can detect the 

semantic error of the instruction using ontology. For example, when a user issues a 

user-level instruction with the verb ”go,” we can guarantee that the next part should 

be a location or destination. Figure 3.13 describes the semantic analysis algorithm. 

The ontology code has a property that requires restricting all robots from moving 

to a specific position. ”owl:allValuesFrom” is the property that can be used to define 

the class with all possible values of the given property defined by ”owl:onProperty”. If 

the object is not in the restricted value list, it is considered an invalid command and 

gets the user intervention. 
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3.7 Command Publishing Engine 

According to the user-level instruction, the command interpreter can identify the 

action (move, navigate, Identify) subject, constraint, and object defined in the user 

instruction. Then, the command publishing engine needs to identify the 

corresponding ROS topics relevant to the action to publish and subscribe for initiation 

of the action. For example, 

 

Fig. 3.8 Fragment of the Ontology 

 

Fig. 3.9 ROS topics for the Movement. 

if we want to move the Robot to a specific location, we can publish the command on 

ROS topics like cmd vel, cmd vel mux or cmd vel mux/input/navi. Of course, these 

ROS topics will vary from Robot to Robot in heterogeneous environments. For 

example, the possible ROS topics for the Movement and ROS topic for the initial pose 

is shown in Figure 3.9. 
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The Get Position and Orientation algorithm is defined with the Flowchart as shown 

in Figure 3.14. Initially, it connects with the Robot using the IP address and gets the 

ROS topic list from the ontology updated by the Robot Registration Engine. Then, it 

searches for the ROS topic related to the odometry to get the current position and 

orientation of the Robot by subscribing to the odometry related ROS topic. If the 

relevant ROS topic is unavailable, we have taken the user interventions to find the ROS 

topic for the position and orientation. 

<rdf:Description rdf:about="#move"> 

<owl:sameAs rdf:resource="#go"/> 

<owl:sameAs rdf:resource="#progress"/> 

<owl:sameAs rdf:resource="#advance"/> 

<owl:sameAs rdf:resource="#shift"/> 

</rdf:Description> 

Fig. 3.10 OWL:sameAS Syntax 

 

SYNONYM_ANALYSIS_ALGORITHM ( action , ontology )  
1. Start  
2. Create a ROS node as “synAlgo” //Rest of the codes execute by this node.  
3. for each 𝑐𝑙𝑎𝑠𝑠 ∈ 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 do  
4. //Get all classes of the ontology   
5. if 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑐𝑙𝑎𝑠𝑠  𝐭𝐡𝐞𝐧        // Find the class for the action   
6. Call Get_ROSTOIC(action)  
7. else  
8. Get the sameAs List  
9. for each 𝑖 ∈ 𝑠𝑎𝑚𝑒𝐴𝑠 𝐿𝑖𝑠𝑡 do  
10. if 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑖  𝐭𝐡𝐞𝐧        // Find the synonym for the action   
11. Call Get_ROSTOIC(action)  
12. else  
13. Get the user inputs   
14. endif  
15. endfor  
16. endif  
17. endfor 18. End.  

 

Fig. 3.11 Synonym Analysis Algorithm 

When a user enters the instruction to all heterogeneous service robots, we need 

to initiate the action for each Robot. This task is completed by Command Publishing 

Engine (CPE), which can publish the action on the corresponding ROS topic. Initially, 

CPE can locate the current position of each Robot using the optimized algorithm. Get 

Robot Position algorithm of each Robot is defined in Figure 3.16. The algorithm has 
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used the ip address and the undated ontology to get the initial position and the 

orientation. 

We have created a node in ROS called ”initPos”. It is responsible for running the 

remaining lines of the defined algorithm. In addition, this node can find the relevant 

ROS topics related to the initial position and orientation of the Robot. 

Each Robot may have a different ROS topic to subscribe to and publish for different 

operations. Therefore, we need to identify these topics before executing commands 

on each Robot. Figure 3.17 describes the ROS topic identification algorithm. Initially, 

the system used the given IP address list and ports list to connect with all robots. Used 

the ROS topic in the ontology, which the RRE generated previously to create a shared 

file as 

<owl:Class rdf:about="#Robots">  
<rdfs:subClassOf>  

<owl:Restriction>  
<owl:onProperty rdf:resource="#moveTo"/>  
<owl:allValuesFrom rdf:resource="#Location"/> 

</owl:Restriction>  
</rdfs:subClassOf> </owl:Class> 

Fig. 3.12 OWL:Restriction Syntax 

 

INPUT: User Instruction, Ontology  

OUTPUT: Identify the instruction as valid or invalid  

SEMANTIC_ANALYSIS_ALGORITHM (Instruction, object, RobotOntology )  
1. Begin 
2. Develop a process using ROS node as “semAlgo” //This is resposible to run following lines.  
3. Foreach 𝑐𝑙𝑎𝑠𝑠 ∈ 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 do  
4. //Get all classes of the ontology   
5. If 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑐𝑙𝑎𝑠𝑠  𝐭𝐡𝐞𝐧        // Find the class for the action   

6. Foreach 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠 do  
7. If 𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝐹𝑟𝑜𝑚 == 𝑜𝑏𝑗𝑒𝑐𝑡  𝐭𝐡𝐞𝐧          
8. Call Get_ROSTOIC(action)  
9. Else   
10. Output as invalid request  
11. Endif  
12. Endfor  
13. Else  
14. Get the sameAs List  
15. Foreach 𝑖 ∈ 𝑠𝑎𝑚𝑒𝐴𝑠 𝐿𝑖𝑠𝑡 do  
16. If 𝑎𝑐𝑡𝑖𝑜𝑛 == 𝑖  𝐭𝐡𝐞𝐧        // Find the synonym for the action   
17. For each 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠 do  
18. If 𝑎𝑙𝑙𝑉𝑎𝑙𝑢𝑒𝐹𝑟𝑜𝑚 == 𝑜𝑏𝑗𝑒𝑐𝑡  𝐭𝐡𝐞𝐧          
19. Call Get_ROSTOIC(action)  
20. Else   
21. Output as invalid request  
22. Endif  



39 

23. Endfor  
24. Else  
25. Get the user inputs   
26. Endif  
27. Endfor  
28. Endif 29.     Endfor 30. End.  

  

 

Fig. 3.13 Semantic Analysis Algorithm 

rtList. Then it called the Get ROSTopic() algorithm to get the corresponding ROS topics 

for each action. This algorithm was used to find the ROS topics for each action defined 

in the user instruction. For example, suppose the action is to move the Robot from 

one location to another location. In that case, we need to find the corresponding ROS 

topic used from the identified list as ’cmd’, ’vel’, ’cmd vel’, ’velocity’, ’speed’, ’travel’, 

’run’. If the identified ROS topics list did not match the ROS topics received from 
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Fig. 3.14 Get Initial Position Algorithm 

the RRE, we called Get Uncertain ROSTopic() to find the ROS topics with synonyms of 

the action based on the ontology. This algorithm uses the synonyms for the given 

action to find the corresponding ROS topic. If we can find one, we can use the topic 

for subscribing or publishing the action; otherwise, we need to get the user input to 

resolve the problem. The interaction among ROS nodes, ROS topics and ROS master is 

shown in Figure 3.15 

We have conducted experiments with the system using the two robots with level 

01, level 02, and level 03 instructions with twenty different instructions. The twenty 
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Fig. 3.15 ROS Nodes and Topics 

  

 

INPUT: Ip List and RobotOntology  
  
OUTPUT: Position and Orentation  
  

Get_Initial_Position_Orientation (ipList, RobotOntology)  

1. Begin  
2. Develop a process withh node in ROS as “initPos” //This will run following lines.  
3. Using the ip address connect with the Robot.    
4. Get the rostopic list from the RobotOntology.   
5. Foreach element in rostopic list do 
6. If element is in {odom,odometry,odomet} Then  
7. Use the element to get odometry content formthe ROS topic  
8. Retrive the position details in the form of (x, y, z)  
9. Retrive the Orientation details in the form of ( x, y, z, w)  
10. Add the content in the RobotOntology  
11. Else  
12. User needs to provide the ROS topic     
13. Use the element to get odometry content formthe ROS topic  
14. Retrive the position details in the form of (x, y, z)  
15. Retrive the Orientation details in the form of ( x, y, z, w)  
16. Add the content in the RobotOntology  
17. Endif  
18. Return the updated ontology.  
19. Endfor  
20. End  

______________________________________________________________________________  

Fig. 3.16 Get Initial Position Algorithm 
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instructions were developed using different synonyms for the given verb move. Some 

synonyms were not implemented in the ontology. Therefore, it has generated errors 

for synonyms not in the ontology. 

1. Level 01: Move 50m with velocity 1ms−1. 

2. Level 02: Move to the point (20, 20) with velocity 1ms−1. 

 
ROS_TOPIC_IDENTIFICATION_ALGORITHM (ipList, portList)  

1. foreach ipi ∈ ipList & porti ∈ portList do  
2. Get the rostopic list form Ontologyip  
3. Publish ROS Topic as shared file named as rtListi  
4. foreach actioni ∈ {move, navigate, identify, etc.} do  
5. rti ← GET_ROSTOPIC(actioni)  
6. Record the ROS Topics get as rti  

GET_ROSTOPIC (actioni)  

1. Open shared file fi ← rtListi  
2. if actioni = move then  
3. foreach rt ∈{'cmd','vel','cmd_vel','velocity','speed','travel','run'} do  
4. foreach line li in file fi  do 5.         if rt is in li then  //Exact Matching  
6. Record ROS Topic rt for move.   
7. else  //Non-Exact Matching  
8. GET_UNCERTAIN_ROSTOPIC(actioni)    
9. if actioni = navigate then  
10. foreach rn ∈{'move_base','map_server','robot_amcl'} do  
11. if rt is in li then  //Exact Matching 12.        Record ROS Topic rn for navigate.  
13. else  //Non-Exact Matching  
14. GET_UNCERTAIN_ROSTOPIC(actioni)   
15. foreach rt ∈{'cmd','vel','cmd_vel','velocity','speed','travel',                    
16. 'run',’goal’,move’,’amcl’,’navigation’,’scan’,’map’,’cloud’,     
17. ’rt’,’local’,’global’,’odom’} do  
18. foreach line li in file fi  do  
19. if rt is in li then  //Exact Matching 20.             Record ROS Topic rt for navigate.   
21. else  //Non-Exact Matching  
22. GET_UNCERTAIN_ROSTOPIC(actioni)   GET_UNCERTAIN_ROSTOPIC (actioni)    

1. Get the ontology (Oa) developed for actioni  
2. foreach class  ∈{Oa} do  
3. If actioni == class then  
4. Get the synonym list SLi from the ontology form the class  
5. foreach rt ∈{SLi} do  
6. foreach line li in file fi  do  
7. if rt is in li then  //Exact Matching 8.                Record ROS Topic rt for navigate.   
9. else  //Non-Exact Matching  
10. Get the User Inputs for actioni  

 

Fig. 3.17 ROS Topic Identification Algorithm 

3. Level 03: Move to the given goal in the map. 
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We have used three levels of instructions for the experiment as defined in Table 

3.2. The Level 01 instruction moves all robots to a given distance with the given 

velocity from the current position with the current orientation. 

Level01_Interpretation(cmd, ipList, ontology)     

1. Start 
2. Create a ROS node as “lev01Intr” //Rest of the codes execute by this node. 
3. Get the distance and velocity from the cmd 
4. Set the values for linear(x, y, z)and angular(x, y, z) 
5. for each ip ∈ 𝑖𝑝𝐿𝑖𝑠𝑡 do 
6. Connect with running robot using the ip. 
7. Subscribeto regOnto ROS topic to Get the rtList 
8. for each item ∈ rtList do 
9. if (cmd_velis in item ) then 
10. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic 
11. Set the stopping time based on the distance and velocity 
12. else if (cmd_vel_muxis in item ) then 
13. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic 
14. Set the stopping time based on the distance and velocity 
15. else 
16. Some error in input or rtList 
17. endif 
18. endfor 
19. end 

Fig. 3.18 Level 01 Interpretation Algorithm 

Figure 3.19 represents the level 02 interpretation algorithm where all robots move 

to the given new position with the given velocity from the current position facing the 

new orientation. 

Figure 3.20 represents the level 03 interpretation algorithm where all robots move 

to the given goal with a given navigation path with an obstacle in the environment. 

Assume that the map is being created for each Robot using the scan topic. The map 

file is created and saved in the map server. This map is stored in the map server and is 

used by all robots to navigate their path. We need to maintain a separate amcl 

(Adaptive Monte Carlo Localisation ) launch file and move base launch file for each 

Robot. In the amcl launch file, we need to set Robot-specific ROS topic ( eg.scan, 

odometry, initialpose and particlecloud) for each Robot for the localization. Then we 

need to remap the Robot specific ROS topic (eg.cmd vel, goal, odem, local plan, global 

plan ,footprint and costmap ) for the move base node for each Robot and store them 
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in the launch file for the Movement of the Robot. The namespace avoids conflict with 

the same name with different robots in the ROS environment. 

Level02_Interpretation(cmd, ipList, ontology)     

1. Start 
2. Create a ROS node as “lev02Intr” //Rest of the codes execute by this node. 
3. Get the new position and velocity from the cmd 
4. for each ip ∈ 𝑖𝑝𝐿𝑖𝑠𝑡 do 
5. Connect with running robot using the ip. 
6. Subscribeto “initPosOnto” ROS topic to get the current position and orientation  
7. Set the values for linear(x, y, z)and angular(x, y, z)  
8. Set the values for new position(x, y, z) and orientation(x, y, z, w) 
9. Calculate the new orientation using new position and current position 
10. Add delay time using sleep() to avoid the collision of Robots 
11. Subscribeto regOnto ROS topic to Get the rtList 
12. for each item ∈ rtList do 
13. if (cmd_velis in item ) then 
14. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic 15. else if 

(cmd_vel_muxis in item ) then 

16. Publishlinear(x, y, z) and angular(x, y, z) on this ROS topic 

17. else  
18. Some error in input or rtList 
19. endif 

20. endfor 

21. end 

Fig. 3.19 Level02 Interpretation Algorithm 

3.8 Schedule Management 

In our solution, we have assigned scheduled work and location for each Robot for a 

given time slot. The Robot can execute user instructions only if it is a free time slot; 

otherwise, the Robot needs to complete the allocated task. The CPE can publish or 

subscribe to the relevant values for each ROS topic. Each heterogeneous Robot has 

given a specific goal (Gi,j) or position to move with specific allocated work (Ti,j) based 

on the given time allocation as shown in the Table 3.3. According to the given time 

slot, the location to move (Goal) and task to be completed for each Robot is displayed 

in the Goal and Task Scheduling table. 

3.9 Navigation Management 

Autonomous navigation of the Robot is one of the main research areas in Robotic 

programming. ROS is implemented to work with the navigation stack that is used to 

easily navigate from one location to another by hiding most of the complex tasks in 
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autonomous robot navigation. Navigation can be implemented using the ROS topics, 

message formats and shapes of foot print of the Robot and selecting the relevant 

values for the ROS topics for each Robot. Odometry and sensor information were used 

as main inputs for the ROS navigational stack then it generated the corresponding 

velocity for Table 3.2 Experiment Details 

Level of the experiment Experiment details 

Level 01 Move forward all robots to 50m with the 

velocity of 10ms-1 from the current 

position in the current orientation. 

Level 02 Move all robots to a specific position by 

facing to given position with given 

velocity with time gap to avoid the robot 

collision. 

Level 03 Move all robots to a specific goal by 
facing to given position with a given 
velocity using separate navigation path 
for each 
Robot. 

Level03_Interpretation(cmd, ipList, ontology, goals, map, amclList, movebaseList)     

1. Start 

2. Create a ROS node as “lev03Intr” //Rest of the codes execute by this node. 

3.Subscribeto “initPosOnto” ROS topic to get the current position and orientation  

4. for each ip ∈ 𝑖𝑝𝐿𝑖𝑠𝑡 do 

5. Connect with running robot using the ip. 

6. Get the current position and orientation from initPosOnto” ROS topic 

7. Calculate the new orientation using new goal and current position 

8. Subscribeto regOnto ROS topic to Get the rtList 

9. Publishthe pgm and yaml file on the ROS topic /map. 

10. for each item ∈ rtList do 

11. if (scan is in item ) then 

12. Remap and update the amcl launch file 

13. Remap and update the move_base launch file 

14. else if (odometryis in item ) then 

15. Remap and update the amcl launch file 

16. Remap and update the move_base launch file 

17. else if …… 

18. //Similarly we need to map initialpose, particlecloud,  

19. //cmd_vel, goal, odem, local_plan, global_plan footprint and             

20. endif 

21. Create the single launch file and execute 

22. endfor 

23. end  
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Fig. 3.20 Level03 Interpretation Algorithm 

the mobile base. According to the ROS specification, we can find that the mobile base 

is controlled by xisvelocity,yisvelocity,andthetaisvelocity, and a 2D planer laser is 

mounted on the mobile base. The navigation is successful on the square-shaped 

robots Robotics (n.d.). 

Table 3.3 General Goal and Task Scheduling Table 

 Time slot 1 Time slot 2 Time slot 3 Time slot 4 

Robot 

Name 

t0 − t1  t1 − t2  t2 − t3  t3 − t4  

R1 Goal1,1 

Task1,1 

+ Goal1,2 

Task1,2 

+ Goal1,3 

Task1,3 

+ Goal1,4 

Task1,4 

+ 

R2 Goal2,1 

Task2,1 

+ Goal2,2 

Task2,2 

+ Goal2,3 

Task2,3 

+ Goal2,4 

Task2,4 

+ 

R3 Goal3,1 

Task3,1 

+ Goal3,2 

Task3,2 

+ Goal3,3 

Task3,3 

+ Goal3,4 

Task3,4 

+ 

The map server was used to store the created map file. All heterogeneous service 

robots used the map stored in the map server to navigate obstacles from one location 

to another. amcl (Adaptive Monte Carlo Localization) file and move base file for each 

Robot were maintained as launch files to localize and move the Robot in the given 

environment. ( eg.ROS scan, ROS odometry, ROS initial pose and ROS particle cloud) 

topics were used in the amcl launch file for each Robot for the localization. (eg.ROS 

topic cmd vel, ROS topic goal, ROS topic odem, ROS topic local plan, ROS topic global 

plan ,ROS topic footprint.) were used for remapping the ROS topic move base node 

for each Robot. 

3.10 Thread Management 

Since we need to control and coordinate multiple robots simultaneously, threads can 

be used to complete the task efficiently. Furthermore, a thread is a lightweight process 

inside a process. Therefore, concurrency can be developed using the threads quickly. 

The Thread library in Python implements multiple threads in our application. These 

threads can complete each task independently. 

3.11 ROS Implementation 

ROS Melodic Morenia distribution was installed in Ubuntu 18.04 LTS to complete the 

experiments with TurtleBot, Husky and TiaGO robots. We have installed the 

DesktopFull Install version in Ubuntu. Then, catkin make command is used to create 



47 

the workspace for our project. It has created a CMakeLists.txt file. catkin create pkg 

command is used to create different ROS packages for our application. We have 

created several launch files to execute the ROS applications. There is a command 

named as roslauch to launch the ROS program. The running program can be 

interrupted by pressing the ctrl+c command in key bord. One of the main errors we 

received was the launch file permission error. However, it can be eliminated easily 

using the chmod command in ubuntu operating system. The roscore must be executed 

first to execute all the other processes. The roscore is the primary process that 

manages all other processes executed on the ROS environment.  
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CHAPTER 4 

Evaluation and Results 

We have conducted the experiments with Web interface I to V for simple instructions 

and measured the response time of the robot start and stop with the web interface. 

The initial experiment was conducted without the web interface. We have used the 

following notation for our experiments as shown below table 3.1. All experiments 

were completed in a simulation environment with Gazebo. The researchers have 

shown that the system developed with the Gazebo environment can be easily ported 

to the real robots without any changes to the original codes (Takaya et al. 2016a). 

Therefore, all our developed codes can be executed on real robots without any 

modifications. 

 

Fig. 4.1 Single Robot Interaction without Web Interface 

4.1 Experiment 01: Single Robot Interaction with simple instruction 

without using the web interface. 

Initially, the authors completed the experiment with a single robot without using the 

web interface in the Gazebo simulator with TurtleBot3. The authors have issued 

instructions to move the robot forward and move in a circle using the terminal 

interface with the rostopic pub command. We have evaluated the average response 

time of the robot for a Table 4.1 Single Robot Average Start/Stop Response Time 

Without Web Interface 
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StartResponse(s)    

 0.871 0.807 0.787 

 0.657 0.541 0.531 

 0.561 0.512 0.499 

 0.511 0.501 0.476 

StopResponse(s)    

 1.211 1.728 2.161 

 1.039 1.631 1.981 

 1.001 1.431 1.871 

 0.988 1.181 1.761 

Table 4.2 Testing to Determine the Constant c1 in Equations 4.1 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c1 = 

0.23) 

Test02 

(c1 

0.24) 

= 

Test03 

(c1 = 

0.25) 

0.871 0.5  0.0  0.851 0.871  0.891 

0.657 0.5  0.1  0.622 0.632  0.642 

0.561 0.5  1.0  0.363 0.553  0.559 

0.511 0.5  1.5  0.509 0.514  0.519 

0.807 1.0  0.0  0.621 0.631  0.641 

0.541 1.0  0.1  0.545 0.552  0.558 

0.512 1.0  1.0  0.508 0.513  0.518 

0.501 1.0  1.5  0.486 0.490  0.494 

start and stop instructions. We have conducted experiments with different robot 

linear and angular speeds for a start and stop instructions. The experiment results will 

be displayed in table 4.1. The interaction with TurtleBot3 with the terminal without 

using a Web interface is shown in Figure 4.1. The response delay for a start and stop 

of the robot is represented by the equation 4.1and 4.2 where Rs,dstart and 

Rs,dstoprepresents the single robot delay at the start and stop respectively, τd,os 

represents the delay in system call execution in Operating System, τd,ROS is used to 

represents the delay in communicating with ROS topics and c1, c2 are constants. 

  (4.1) 

 (4.2) We have 

determined the constant c1 using the experiment results, assuming the values of τd,os 

and τd,ROS are constant for the given angular and linear speeds. The validation of the 
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constant c1 was completed with three Testing named Test 01, Test 02 and Test 01 with 

three different constant values for c1 = 0.23, c1 = 0.24 and c1 = 0.25. Three Table 4.3 

Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c1 = 0.23) 0.90611 

Test02 (c1 = 0.24) 0.90618 

Test03 (c1 = 0.25) 0.90624 

Table 4.4 Testing to Determine the Constant c2 in Equations 4.2 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c2 = 

0.84) 

Test02 

(c2 

0.85) 

= 

Test03 

(c2 = 

0.86) 

1.211 0.5  0.0  1.156 1.161  1.166 

1.039 0.5  0.1  1.586 1.596  1.606 

1.001 0.5  1.0  2.027 2.042  2.057 

0.988 0.5  1.5  2.457 2.477  2.497 

1.228 1.0  0.0  1.576 2.020  1.596 

1.332 1.0  0.1  2.005 0.552  2.035 

1.431 1.0  1.0  2.426 2.446  2.466 

1.811 1.0  1.5  2.856 2.881  2.906 

test results were calculated using the equation we have derived with the use of 

constant value c1 we have calculated from the initial experimental results as shown in 

Table 4.2. We have used the person() value to find the correlation between the value 

generated from the equation and the experiment response value, as shown in Table 

4.3. The pearson() value is higher for the value c1 = 0.25. Therefore, we can select c1 

= 0.25 as the more accurate value for the equation 4.1. τd,os represents the delay in 

system call execution in Operating System, τd,ROS represents the delay in 

communicating with ROS topics and c1, c2 are constants. 

Figure 4.2 represents the robot’s average start and stop response time for each 

instruction. The average start response time gradually decreases when the linear and 

angular speed increases, while the average stop time increases when the linear and 

angular speed increases. 

We have determined the constant c2 using the experiment results, assuming the 

values of τd,os and τd,ROS are constant for the given angular and linear speeds. The 

validation of the constant c2 was completed with three Testing named Test 01, Test 02 

and Test 03 with three different constant values for c2 = 0.84, c2 = 0.85 and c2 = 0.86. 

Three 
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Table 4.5 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c2 = 0.23) 0.52004 

Test02 (c2 = 0.24) 0.52022 

Test03 (c2 = 0.25) 0.52039 

Single Robot Start Response without Web Interface 

Linear Speed

 
Single Robot Stop Response without Web Interface 

 

Fig. 4.2 Single Robot Interaction without Web Interface 

test results were calculated using the equation we have derived with the use of 

constant value c2 we have calculated from the initial experimental results as shown in 

Table 4.4. We have used the person() value to find the correlation between the value 

generated from the equation and the experiment response value, as shown in Table 

4.5. The pearson() value is higher for the value c2 = 0.86. Therefore, we can select c2 

= 0.86 as the more accurate value for the equation 4.2. τd,os represents the delay in 

system call execution in Operating System, τd,ROS represents the delay in 

communicating with ROS topics and c1, c2 are constants. 
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4.2 Experiment 02: Single Robot Interaction with simple instruction with 

web interface without autonomous robot registration. 

The authors developed the web interface to interact with the robot using the ROS 

Bridge Server and JavaScript library ROS Web Tools (http://robotwebtools.org/). The 

authors have issued instructions to move the robot forward and in a circle using the 

buttons provided in the Web interface with the robot. We have evaluated the average 

response time of the robot for a start and stop instructions. We have conducted 

experiments with different robot linear and angular speeds for a start and stop 

instructions. The experiment results will be displayed below in table 4.6. The 

interaction with TurtleBot3 with the terminal with Web interface is shown in the 

following Figure 4.3. The response delay for a start and stop of the robot is 

represented by the equation 4.3and 4.4 where Rs,dstart and Rs,dstoprepresents the single 

robot delay at the start and stop respectively, τd,Web represents the delay in 

communication through Web interface, τd,ROS is used to represents the delay in 

communicating with ROS topics and c3, c4 are constants. 

  (4.3) 

  (4.4) 

 

Fig. 4.3 Single Robot Interaction with Web Interface 

Figure 4.4 represents the robot’s average start and stop response time for each 

instruction. The average start response time gradually decreases when the linear and 

angular speed increases, while the average stop time increases when the linear and 

angular speed increases. According to the analysis, the authors have identified that 

web communication is slightly faster than communication through the terminal. 
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We have determined the constant c3 using the experiment results, assuming the 

valTable 4.6 Single Robot Average Start/Stop Response Time With Web Interface 

StartResponse(s)    

 0.811 0.789 0.766 

 0.753 0.732 0.699 

 0.611 0.601 0.544 

 0.571 0.577 0.501 

StopResponse(s)    

 1.031 1.402 1.981 

 1.001 1.267 1.812 

 0.981 1.101 1.602 

 0.911 0.999 1.201 

Table 4.7 Testing to Determine the Constant c3 in Equations 4.3 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c3 

0.24) 

= 

Test02 

(c3 = 

0.25) 

Test03 

(c3 = 

0.26) 

0.811 0.5  0.0  0.811  0.831 0.851 

0.753 0.5  0.1  0.585  0.595 0.605 

0.611 0.5  1.0  0.515  0.521 0.528 

0.571 0.5  1.5  0.485  0.490 0.495 

0.789 1.0  0.0  0.571  0.581 0.591 

0.732 1.0  0.1  0.505  0.552 0.518 

0.601 1.0  1.0  0.475  0.511 0.485 

0.577 1.0  1.5  0.461  0.465 0.469 

Table 4.8 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c3 = 0.24) 0.76559 

Test02 (c3 = 0.25) 0.76737 

Test03 (c3 = 0.26) 0.76901 

Single Robot Start Response with Web Interface 
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Fig. 4.4 Single Robot Interaction with Web Interface 

ues of τd,Web and τd,ROS are constant for the given angular and linear speeds. The 

validation of the constant c3 was completed with three Testing named Test 01, Test 

02 and Test 03 with three different constant values for c3 = 0.24, c3 = 0.25 and c3 = 

0.26. Three test results were calculated using the equation we have derived with the 

use of constant value c3 we have calculated from the initial experimental results as 

shown in Table 4.7. We have used the person() value to find the correlation between 

the value generated from the equation and the experiment response value, as shown 

in Table 4.8. The pearson() value is higher for the value c3 = 0.26. Therefore, we can 

select c3 = 0.26 as the more accurate value for the equation 4.3.τd,Web represents the 

delay in communication through the Web interface, τd,ROS is used to represents the 

delay in communicating with ROS topics and c3, c4 are constants. 

We have determined the constant c4 using the experiment results, assuming the 

valTable 4.9 Testing to Determine the Constant c4 in Equations 4.4 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c4 

0.95) 

= 

Test02 

(c4 = 

0.96) 

Test03 

(c4 = 

0.97) 
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1.031 0.5  0.0  1.031  1.036 1.041 

1.001 0.5  0.1  1.516  1.526 1.536 

0.981 0.5  1.0  2.001  2.016 2.031 

0.911 0.5  1.5  2.486  2.507 2.526 

1.102 1.0  0.0  1.506  1.516 1.526 

1.267 1.0  0.1  1.991  2.006 2.021 

1.101 1.0  1.0  2.476  2.496 2.516 

1.981 1.0  1.5  2.961  2.986 3.011 

Table 4.10 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c4 = 0.95) 0.57113 

Test02 (c4 = 0.96) 0.57116 

Test03 (c4 = 0.97) 0.57119 

ues of τd,Web and τd,ROS are constant for the given angular and linear speeds. The 

validation of the constant c4 was completed with three Testing named Test 01, Test 

02 and Test 03 with three different constant values for c4 = 0.95, c4 = 0.96 and c4 = 

0.97. Three test results were calculated using the equation we have derived with the 

use of constant value c4 we have calculated from the initial experimental results as 

shown in Table 4.9. We have used the person() value to find the correlation between 

the value generated from the equation and the experiment response value, as shown 

in Table 4.10. The pearson() value is higher for the value c4 = 0.97. Therefore, we can 

select c4 = 0.97 as the more accurate value for the equation 4.4.τd,ROS is used to 

represents the delay in communicating with ROS topics and c3, c4 are constants. 

Table 4.11 Pearson value (r) for Experiment 01 and Experiment 02 Comparison 

ExperimentDetails PearsonV alue(r) 

Start Response with  0.93188 

Start Response with  0.81706 

Start Response with  0.82985 

Stop Response with  0.77143 

Stop Response with  0.97121 

Stop Response with  0.94949 

4.3 Experiment 03: Single Robot Interaction with simple instruction with a 

web interface with autonomous robot registration. 

The Robot Registration Engine was developed to collect all robot details, including all 

ROS topics necessary to subscribe and publish. The ROS Topic Identification Algorithm 
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was developed to select the relevant ROS topics for each action defined in the user 

instruction. We have evaluated the average response time of the robot for a start and 

stop instructions. We have conducted experiments with different robot linear and 

angular speeds for a start and stop instructions. The experiment results will be 

displayed below in table 4.12. The interaction with TurtleBot3 with the terminal with 

Web interface is shown in Figure 4.6. The response delay for a start and stop of the 

robot is represented by the equation 4.5and 4.6 where Rs,dstart and Rs,dstoprepresents 

the single robot delay at the start and stop respectively, τd,Web represents the delay in 

communication through Web interface, τd,ROS is used to represents the delay in 

communicating with ROS topics, τd,RT represents the delay in ROS topic identification 

and c5, c6 are constants. 

  (4.5) 

  (4.6) 

 

Fig. 4.5 Single Robot Interaction with Web Interface 

Figure 4.7 represents the robot’s average start and stop response time for each 

instruction. The average start response time gradually decreases when the linear and 

angular speed increases, while the average stop time increases when the linear and 

angular speed increases. According to the analysis, authors have identified that 

autonomous robot communication is slightly slower than communication through the 

Web without 
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Fig. 4.6 Single Robot Interaction with Web Interface Auto Registration 

Table 4.12 Single Robot Average Start/Stop Response Time With Web Interface 

Autonomous 

StartResponse(s)    

 1.011 1.001 0.981 

 1.001 0.987 0.956 

 0.987 0.872 0.789 

 0.861 0.761 0.712 

StopResponse(s)    

 1.345 1.765 2.552 

 1.241 1.451 2.222 

 1.109 1.431 1.988 

 1.011 1.344 1.765 

autonomous registration. 

We have determined the constant c5 using the experiment results assuming the 

values of τd,Web, τd,Web and τd,RT are constant for the given angular and linear speeds. 

The validation of the constant c5 was completed with three Testing named Test 01, 

Test 02 and Test 03 with three different constant values for c5 = 0.11, c5 = 0.12 and c5 

= 0.13. Three test results were calculated using the equation we have derived using 

the constant value c5 we calculated from the initial experimental results as shown in 

Table 4.13. We have used the person() value to find the correlation between the value 

generated from the equation and the experiment response value, as shown in Table 

4.14. The pearson() value is higher for the value c5 = 0.13. Therefore, we can select c5 

= 0.13 as the more accurate value for the equation 4.5.τd,Web represents the delay in 

communication through the Web interface, τd,ROS is used to represent the delay in 

communicating with ROS topics, τd,RT represents the delay in ROS topic identification 

and c5, c6 are constants. 
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We have determined the constant c6 using the experiment results assuming the 

valTable 4.13 Testing to Determine the Constant c5 in Equations 4.5 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c5 

0.11) 

= 

Test02 

(c5 = 

0.12) 

Test03 

(c5 = 

0.13) 

1.011 0.5  0.0  1.181  1.201 1.221 

1.001 0.5  0.1  1.081  1.091 1.101 

0.987 0.5  1.0  1.054  1.061 1.067 

0.861 0.5  1.5  1.046  1.051 1.056 

1.001 1.0  0.0  1.071  1.081 1.091 

0.987 1.0  0.1  1.044  1.051 1.057 

0.872 1.0  1.0  1.036  1.041 1.046 

0.761 1.0  1.5  1.035  1.039 1.043 

Table 4.14 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c5 = 0.11) 0.54836 

Test02 (c5 = 0.12) 0.55785 

Test03 (c5 = 0.13) 0.56558 

Table 4.15 Testing to Determine the Constant c6 in Equations 4.6 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c6 

1.115) 

= 

Test02 

(c6 = 

1.16) 

Test03 

(c6 = 

1.17) 

1.345 0.5  0.0  1.345  1.350 1.355 

1.241 0.5  0.1  1.914  1.924 1.934 

1.011 0.5  1.0  2.482  2.497 2.512 

0.861 0.5  1.5  3.051  3.071 3.091 

2.552 1.0  0.0  1.924  1.934 1.944 

2.222 1.0  0.1  2.492  2.507 2.522 

1.988 1.0  1.0  3.061  3.081 3.101 

3.765 1.0  1.5  3.629  3.654 3.679 

Table 4.16 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c6 = 1.15) 0.47464 

Test02 (c6 = 1.16) 0.47460 

Test03 (c6 = 1.17) 0.47456 
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Single Robot Start Response with Web Interface Auto 

Linear Speed

 
Single Robot Stop Response with Web Interface Auto 

 

Fig. 4.7 Single Robot Interaction without Web Interface 

ues of τd,Web, τd,Web and τd,RT are constant for the given angular and linear speeds. The 

validation of the constant c6 was completed with three Testing named Test 01, Test 

02 and Test 03 with three different constant values for c6 = 1.15, c6 = 1.16 and c6 = 

1.17. Three test results were calculated using the equation we have derived using the 

constant value c6 we calculated from the initial experimental results as shown in Table 

4.15. We have used the person() value to find the correlation between the value 

generated from the equation and the experiment response value, as shown in Table 

4.16. The pearson() value is higher for the value c6 = 1.17. Therefore, we can select c6 

= 1.17 as the more accurate value for the equation 4.6.τd,Web represents the delay in 

communication through the Web interface, τd,ROS is used to represent the delay in 

communicating with ROS topics, τd,RT represents the delay in ROS topic identification 

and c5, c6 are constants. 
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Table 4.17 Pearson value (r) for Experiment 02 and Experiment 03 Comparison 

ExperimentDetails PearsonV alue(r) 

Start Response with  0.86692 

Start Response with  0.93539 

Start Response with  0.98509 

Stop Response with  0.82333 

Stop Response with  0.91021 

Stop Response with  0.89119 

Table 4.18 Multiple Robots Average Start/Stop Response Time With Web Interface 

Autonomous 

StartResponse(s)    
SingleRobot 1.011 1.001 0.981 

TwoRobots 1.129 1.078 1.016 

FourRobots 1.456 1.241 1.112 

StopResponse(s)    
SingleRobot 1.345 1.765 2.552 

TwoRobots 1.674 1.987 2.987 

FourRobots 1.987 2.134 2.456 

4.4 Experiment 04: Homogeneous Multiple Robot Interaction with simple 

instruction with a web interface with autonomous robot 

registration. 

The authors have developed the launch file to create multiple robots in the same 

Gazebo environment. Initially, two TurtleBot robots were spawned in the empty 

Gazebo world at two different locations. The simple move instructions were issued to 

both robots simultaneously and evaluated the average response time for the start and 

stop instructions. The separate namespaces were used to identify each ROS topic for 

each robot. The first robot was named robot1, and the second was named robot2. The 

interaction with multiple two TurtleBot with the terminal with Web interface is shown 

in Figure 

4.8. The response delay for a start and stop of the robot is represented by the equation 

4.7and 4.8 where Rm,dstart and Rm,dstoprepresents the multiple robots delay at the start 

and stop respectively, τd,Web represents the delay in communication through the Web 

interface, τd,ROS is used to represents the delay in communicating with ROS topics, τd,RT 

represents the delay in ROS topic identification and c7, c8 are constants. α and β 

represent the number of robots in the environment. For example, when the number 

of robots is two, then α = 2 and β = 2 and When the number of robots is four, then α 

= 4 and β = 4. 
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  (4.7) 

  (4.8) 

 

Fig. 4.8 Multiple Two Robots Interaction with Web Interface Auto Registration 

Secondly, the authors have spawned another four robots in the same Gazebo 

environment for the experiment. Separate namespaces were given for each robot to 

avoid conflicts with the same ROS topic. The simple move instructions were issued to 

both robots simultaneously and evaluated the average response time for the start and 

stop instructions. The experiment results will be displayed below in table 4.18. The 

interaction with multiple four TurtleBot with the terminal with Web interface is shown 

in the following Figure 4.9. 

 

Fig. 4.9 Multiple Four Robots Interaction with Web Interface Auto Registration 

The main launch file used to create two robots in the gazebo environment is shown 

in Figure 4.10. The launch file, which describes the robot’s position and namespaces 



62 

with robot description, are defined in Figure 4.11. Loading each robot is completed by 

another launch file named as described in Figure 4.12. 

 

Fig. 4.10 Main Launch File Two Launch Two Robots 

 

Fig. 4.11 Launch file to describe Position and Robot Description 

 

Fig. 4.12 One Robot Launch File 

Figure 4.13 represents the average start and stop response time for the single 

robot, two robots, and four for each instruction where linear speed is changed. 

However, the angular speed is kept constant to avoid collision among the robots. The 

average start response time gradually increases when the number of robots increases, 

while the average stop time increases when the number of robots increases. 

We have determined the constant c7 using the experiment results assuming the 

values of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds. 
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The validation of the constant c7 was completed with three Testing named Test 01, 

Test 02 and Test 03 with three different constant values for c7 = 0.022, c7 = 0.032 and 

Multiple Robots Start Response with Web Interface Auto 

Linear Speed

 
Multiple Robots Stop Response with Web Interface Auto 

 

Fig. 4.13 Multi Robot Interaction with Web Interface 

c7 = 0.042. Three test results were calculated using the equation we have derived with 

the use of constant value c7 we have calculated from the initial experimental results 

as shown in Table 4.19. We have used the person() value to find the correlation 

between the value generated from the equation and the experiment response value, 

as shown in Table 4.20. The pearson() value is higher for the value c7 = 0.022. 

Therefore, we can select c7 = 0.022 as the more accurate value for the equation 

4.7.τd,Web represents the delay in communication through the Web interface, τd,ROS is 

used to represent the delay in communicating with ROS topics, τd,RT represents the 

delay in ROS topic identification and c7, c8 are constants. α and β represent the number 
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of robots in the environment. For example, when the number of robots is two, then α 

= 2 and β = 2 and When the number of robots is four, then α = 4 and β = 4. 

We have determined the constant c8 using the experiment results assuming the 

valTable 4.19 Testing to Determine the Constant c7 in Equations 4.7 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c7 

0.022) 

= 

Test02 

(c7 = 

0.032) 

Test03 

(c7 = 

0.042) 

1.011 0.5  0.0  1.011  1.031 1.051 

1.001 1.0  0.0  0.969  0.979 0.989 

0.981 1.5  0.0  0.946  0.953 0.960 

1.129 0.5  0.0  1.011  1.031 0.989 

1.078 1.0  0.0  0.969  0.979 0.960 

1.016 1.5  0.0  0.946  0.953 1.051 

1.456 0.5  0.0  1.011  0.953 0.989 

1.242 1.0  0.0  0.969  1.031 0.960 

Table 4.20 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c7 = 0.022) 0.49650 

Test02 (c7 = 0.032) 0.49418 

Test03 (c7 = 0.042) 0.49246 

Table 4.21 Testing to Determine the Constant c8 in Equations 4.8 

StartResponse(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c8 

1.20) 

= 

Test02 

(c8 = 

1.20) 

Test03 

(c9 = 

1.20) 

1.345 0.5  0.0  1.345  1.370 1.395 

1.765 1.0  0.0  1.345  2.009 2.059 

2.552 1.5  0.0  1.949  2.647 2.722 

1.674 0.5  0.0  2.552  1.370 1.395 

1.987 1.0  0.0  1.345  1.999 2.049 

2.987 1.5  0.0  1.949  2.627 2.702 

1.987 0.5  0.0  2.552  1.370 1.395 

2.134 1.0  0.0  1.345  1.999 2.049 

Table 4.22 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 
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Test01 (c8 = 1.20) 0.858045 

Test02 (c8 = 1.25) 0.855090 

Test03 (c8 = 1.30) 0.855204 

ues of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds. The 

validation of the constant c8 was completed with three Testing named Test 01, 

Test 02 and Test 03 with three different constant values for c8 = 1.20, c8 = 1.25 and c8 

= 1.30. Three test results were calculated using the equation we have derived with 

the use of constant value c8 we have calculated from the initial experimental results 

as shown in Table 4.21. We have used the person() value to find the correlation 

between the value generated from the equation and the experiment response value, 

as shown in Table 4.22. The pearson() value is higher for the value c8 = 1.20. Therefore, 

we can select c8 = 1.20 as the more accurate value for the equation 4.8.τd,Web 

represents the delay in communication through the Web interface, τd,ROS is used to 

represent the delay in communicating with ROS topics, τd,RT represents the delay in 

ROS topic identification and c7, c8 are constants. α and β represent the number of 

robots in the environment. For example, when the number of robots is two, then α = 

2 and β = 2 and When the number of robots is four, then α = 4 and β = 4. 

4.5 Experiment 05: Move the robots to a specific location with a web 

interface with autonomous robot registration. 

Authors have completed the experiment to move the robot(single robot, two robots, 

and four robots) to a given target location by an instruction using the Web interface. 

On average, the robots were placed at different positions to move the same distance. 

The following map represents the initial position and target locations of two and four 

robots as shown in Figure 4.14. The robots linear speed and angular speed are set as 

 and  respectively based on the defined condition to find 

the specific location. 

 
m 10 

( a ) 

1 0 m 
( 𝑥 0 , 𝑦 0 ) 

( 0 , 𝑎 1 ) 

( 0 , 𝑎 − 1 ) 

𝑅𝑜𝑏𝑜𝑡 1 

𝑅𝑜𝑏𝑜𝑡 2 

10 m 
b ) ( 

10 m 
( 𝑥 0 , 𝑦 0 ) 

( 𝑏 1 , 𝑏 2 ) 𝑅𝑜𝑏𝑜𝑡 1 𝑅𝑜𝑏𝑜𝑡 2 

𝑅𝑜𝑏𝑜𝑡 3 𝑅𝑜𝑏𝑜𝑡 4 ( 𝑏 1 , 𝑏 − 2 ) 

( 𝑏 − 1 , 𝑏 2 ) 

( 𝑏 − 1 , 𝑏 − 2 ) 

( 𝑥 1 , 𝑦 1 ) ( 𝑥 2 , 𝑦 2 ) ( 𝑥 1 , 𝑦 1 ) ( 𝑥 2 , 𝑦 2 ) 
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Fig. 4.14 Initial Position and Target Locations (a) Two Robots (b) Four Robots 

Authors have conducted the experiments with a single robot, two robots, and four 

Table 4.23 Average moving Time for Multiple Robots with Single Instruction 

Average move Time 

(s) 

Move to (x0,y0) Move to (x0,y0) 

and (x1,y1) 

Move to 

(x0,y0),(x1,y1) and 

(x2,y2) 

SingleRobot 2.01 4.22 7.01 

TwoRobots 2.24 5.01 7.34 

FourRobots 3.05 6.21 8.01 

Table 4.24 Testing to Determine the Constant c9 in Equations 4.9 

Movetime(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c9 = 1.1) 

Test02 

(c9 = 1.2) 

Test03 

(c9 = 1.3) 

2.01 0.8  0.2  3.01 3.11 3.21 

4.22 0.8  0.2  5.23 5.51 5.87 

7.01 0.8  0.2  8.54 9.11 9.71 

robots with a single instruction to move the robot to a specific location given by (x,y) 

coordinates. The average Time taken by robots to a specific location was measured 

and presented in Table 4.23. The average move time increases with the number of 

robots and distance, as shown in Figure 4.15. The delay for moving a single robot and 

multiple robots is represented by the equation 4.9, and 4.10 where Rs,dmove and 

Rm,dmoverepresent the single and multiple robots average moving Time to specific 

location respectively, τd,Web represents the delay in communication through the Web 

interface,τdis,x,y is used to represent the distance travelled by the robots, τd,ROS is used 

to represent the delay in communicating with ROS topics, τd,RT represents the delay in 

ROS topic identification, τd,pos is used to represent a delay in getting the current 

position and orientation of the robot, and c9 and c10 are constants. α and β represent 

the number of robots in the environment. For example, when the number of robots is 

two, then β = 2 and When the number of robots is four, then β = 4. 

  (4.9) 

  (4.10) 

We have determined the constant c9 using the experiment results assuming the val- 

Table 4.25 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c9 = 1.1) 0.998921 
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Test02 (c9 = 1.2) 0.998843 

Test03 (c9 = 1.3) 0.999294 

Average Move Time for Moving Robots to a Location 

 

Fig. 4.15 Average Move Time for Moving a Robot to a Specific Location 

ues of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds. The 

validation of the constant c9 was completed with three Testing named Test 01, Test 

02 and Test 03 with three different constant values for c9 = 1.1, c9 = 1.2 and c9 = 1.3. 

Three test results were calculated using the equation we have derived with the use of 

constant value c9 we have calculated from the initial experimental results as shown in 

Table 4.24. We have used the person() value to find the correlation between the value 

generated from the equation and the experiment response value, as shown in Table 

4.25. The pearson() value is higher for the value c9 = 1.3. Therefore, we can select c9 = 

1.3 as the more accurate value for the equation 4.9. τd,Web represents the delay in 

communication through the Web interface,τdis,x,y is used to represent the distance 

travelled by the robots, τd,ROS is used to represent the delay in communicating with 

ROS topics, τd,RT represents the delay in ROS topic identification, τd,pos is used to 

represent a delay in getting the current position and orientation of the robot, and c9 

and c10 are constants. α and β represent the number of robots in the environment. For 

example, when the number of robots is two, then β = 2, and When the number of 

robots is four, then β = 4. 

We have determined the constant c10 using the experiment results assuming the 

values of τd,RT , τd,Web and τd,ROS are constant for the given angular and linear speeds. 

The validation of the constant c10 was completed with three Testing named Test 01, 
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Test 02 and Test 03 with three different constant values for c10 = 1.45, c10 = 1.55 and 

c10 = 1.65. Three test results were calculated using the equation we have derived with 

Table 4.26 Testing to Determine the Constant c10 in Equations 4.10 

MoveTime(s) Uxs 

ms−1 

in ωzs 

ms−1 

in Test01 

(c10 

1.45) 

= 

Test02 

(c10 = 

1.55) 

Test03 

(c10 = 

1.65) 

2.24 0.8  0.2  2.90  3.00 3.10 

5.01 0.8  0.2  4.35  4.65 4.95 

7.34 0.8  0.2  7.25  7.85 8.05 

3.05 0.8  0.2  2.90  3.00 3.10 

6.21 0.8  0.2  5.80  6.20 6.40 

8.01 0.8  0.2  11.6  12.5 13.00 

Table 4.27 Pearson value (r) for each Testing 

TestName PearsonV alue(r) 

Test01 (c10 = 1.45) 0.900510 

Test02 (c10 = 1.55) 0.904809 

Test03 (c10 = 1.65) 0.903141 

the use of constant value c10 we have calculated from the initial experimental results 

as shown in Table 4.26. We have used the person() value to find the correlation 

between the value generated from the equation and the experiment response value, 

as shown in Table 4.27. The pearson() value is higher for c10 = 1.55. Therefore, we can 

select c10 = 1.55 as the more accurate value for the equation 4.10. τd,Web represents 

the delay in communication through the Web interface,τdis,x,y is used to represent the 

distance travelled by the robots, τd,ROS is used to represent the delay in communicating 

with ROS topics, τd,RT represents the delay in ROS topic identification, τd,pos is used to 

represent a delay in getting the current position and orientation of the robot, and c9 

and c10 are constants. β represents the number of robots in the environment. For 

example, when the number of robots is two, then β = 2, and When the number of 

robots is four, then β = 4. 

4.6 Experiment 06: Robot Interaction with multiple instructions with a 

web interface with autonomous robot registration. 

Robots working in a real environment may get multiple instructions sequentially to 

complete multiple tasks. Our system must be able to handle the multiple instructions 

that are issued by users sequentially. A state transition machine is one of the most 
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optimal solutions to handle this research problem Sen Gupta et al. (2002) Park et al. 

(2003) Bauer et al. (2018). 

We have completed the experiment with the multiple instructions issued by the 

user sequentially with the state transition diagram. The sample interaction between 

the user instruction through the web interface and the robot is shown in Figure 4.16. 

This diagram represents only three user instructions that the user issues to control the 

robot. The experiment was conducted with three instructions to move the robot to 

three different locations. The target locations were represented as (x0,y0),(x1,y1) and 

(x2,y2). These ta get locations were selected to ensure all robots move an equal 

distance on average. 

 

Fig. 4.16 Multiple Instructions and Robot Interaction 

The initial robot positions for two and four robots are represented in the map given 

in Figure 4.18. The robots were initially placed concerning the target locations where 

each robot must move the same distance. The blue colour circle represents the initial 

robot position. The green colour square represents target locations given by user 

instructions. The target locations are identified to ensure all robots travel equal 

distances on average. 

The system is implemented by handling multiple instructions one by one issued by 

the user using a state transition diagram with the states’ description as shown in Figure 

4.17. The robot state is saved in the ROS topic to retrieve the robot state from Time 

to Time. When the robot is ready, it will accept the user’s instructions and complete 

the assigned work accordingly. 

The equation representing the delay occurs because multiple instructions issued 

by the user were developed using the mathematical notation. We have used δij as 

State transition time from i to j, ∀(i,j) ∈{1,2,3,4,5,6}, Sδ as Time taken to save the state 

𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 ( 𝑺 𝟎 ) 
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( 𝑺 𝟏 ) 

Ready ( 𝑺 𝟐 ) 
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Move ( 𝑺 𝟐 ) 
𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑀𝑜𝑣 𝑒𝑡𝑜 ( 𝑥 0 , 𝑦 0 ) 

𝑼𝒔𝒆𝒓 : 𝑚𝑜𝑣𝑒𝑡𝑜 ( 𝑥 1 , 𝑦 1 ) 

 

𝑻𝒖𝒓𝒕𝒍𝒆𝑩𝒐𝒕 : 𝑆𝑢𝑠𝑝𝑒𝑛𝑑 
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in ROS topic,Rδ as Time taken to retrieve the state from ROS topic,ϵn as Transition delay 

by n instructions where n ∈{1,2,3,...,l}. Total state transition delay time for single 

instruction n = 1 is shown in the equation number 4.11. Total state transition delay 

time for multiple instructions n = 1,2,3,..l is shown in the equation number 4.12. The 

delay for moving a single robot and multiple robots to a specific location with multiple 

instructions sequentially is represented by the equation 4.13 and 4.14 where Rs,dmIns 

and Rm,dmInsrepresent the single and multiple robots delay in moving to specific 

  
   

𝑆0:𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒  
𝑆1:𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑 𝑆𝑡𝑎𝑡𝑒  
𝑆2:𝑅𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒  
𝑆3:𝑀𝑜𝑣𝑒 𝑆𝑡𝑎𝑡𝑒  
𝑆4:𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒  
𝑆5:𝐷𝑖𝑎𝑙𝑜𝑔 𝑆𝑡𝑎𝑡𝑒  
𝑆6:𝐸𝑥𝑖𝑡 𝑆𝑡𝑎𝑡𝑒  
𝑆0 →𝑆1 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 ℎ𝑎𝑠 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝑑.  

𝑆1 →𝑆2 𝑖𝑓 𝑅𝑜𝑏𝑜𝑡 𝑖𝑠 𝑟𝑒𝑎𝑑𝑦 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡𝑠.  

𝑆2 →𝑆3 𝑖𝑓𝑀𝑜𝑣𝑒 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆2 →𝑆4 𝑖𝑓𝑊𝑜𝑟𝑘 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆2 →𝑆5 𝑖𝑓𝑑𝑖𝑎𝑙𝑜𝑔 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆3 
𝑆4} → 𝑆2 𝑖𝑓𝑎𝑛𝑦 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑖𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑.  

𝑆5 
𝑆3 
𝑆4} → 𝑆6 𝑖𝑓𝑎𝑛𝑦 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑.  

𝑆5 
  

Fig. 4.17 State Transition Diagram. 
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Fig. 4.18 (a) Initial positions of Two robots (b) Initial positions of Four robots 

location respectively. 

 . (4.11) 

 

  (4.13) 

  (4.14) 

4.7 Experiment 07: Heterogeneous Multiple Robot Interaction with three 

levels of instruction. 

Our system was evaluated using the two robots ”turtlebot” and ”Tiago” on the gazebo 

simulator. (Python–mhttp.servercommand) was implemented to publish the web 

pages for the web interface, which mainly works with java scripts. Finally, the 

rosbridge Server was implemented to provide the interface between ROS and non-

ROS clients. In level 01 instruction, the robots were instructed to move 50m with the 

velocity of 1 ms−1. Figure. 4.19 shows the web interface where users can select the 

experiment level for each input for all robots. In the level 02 instruction, the robots 

were given a specific location to reach from the current position. In the level 03 

m 10 
a ) ( 

m 0 
( 𝑥 0 , 𝑦 0 ) ( 𝑥 1 , 𝑦 1 ) ( 𝑥 2 , 𝑦 2 ) 

( 0 , 𝑎 1 ) 

( 0 , 𝑎 − 1 ) 

𝑅𝑜𝑏𝑜𝑡 1 

𝑅𝑜𝑏𝑜𝑡 2 

10 m 
b ) ( 

10 m 
( 𝑥 0 , 𝑦 0 ) 

( 𝑥 1 , 𝑦 1 ) ( 𝑥 2 , 𝑦 2 ) 

( 𝑏 1 , 𝑏 2 ) 𝑅𝑜𝑏𝑜𝑡 1 𝑅𝑜𝑏𝑜𝑡 2 

𝑅𝑜𝑏𝑜𝑡 3 𝑅𝑜𝑏𝑜𝑡 4 ( 𝑏 1 , − 𝑏 2 ) 

( − 𝑏 1 , 𝑏 2 ) 

( 𝑏 − 1 , 𝑏 − 2 ) 
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instruction, the robots had to use a map stored in the map server. Each robot was 

given a different goal to reach with obstacles in the environment. 

We have conducted experiments with the system using the two robots with level 

01, level 02, and level 03 instructions with twenty different instructions. The twenty 

instructions were developed using different synonyms for the given verb move. 

Unfortunately, some synonyms were not implemented in the ontology. Therefore, it 

has generated errors for synonyms not in the ontology. 

1. Level 01: Move 50m with velocity 1ms−1. 

2. Level 02: Move to the point (20, 20) with velocity 1ms−1. 

3. Level 03: Move to the given goal in the map. 

We have conducted the experiments with the instructions shown in Table 3.2 to 

test our system using a gazebo simulation environment with turtlebot and Tiago 

robots. Table 4.28 represents the results of the experiments. According to the 

experiment results, the error rate increases from level 1 to level 3 instructions. Levels 

1 and 2 are 

 

Fig. 4.19 Web Interface Table 

4.28 Experiment Results 

Instruction 

Level 

Language 

Translation 

Errors 

Error 

Rate 

Interpretation 

errors 

Error 

Rate 

Interpretation 

errors with 

navigation 

Error 

Rate 

Level 01 2 0.10 3 0.15 0 0.00 

Level 02 3 0.15 4 0.20 0 0.00 

Level 03 0 0.00 5 0.25 6 0.30 
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independent of navigation errors because they do not have any navigation but 

language translation and interpretation errors. 

We have used the running time complexity analysis of the algorithm with the Big 

O notation, where we have assumed that the number of robots as i, the number of 

nodes as n, the number of topics as t, and the number of classes which are used to 

build the ontology as c. 

Robot Registration Algorithm() 

This algorithm has four nested loops starting from the number of robots in the initial 

loop. Therefore, the Big O value of the Robot Registration Algorithm is O(i×n×t×c). 

Get Position and Orientation Algorithm () 

This algorithm is used to get the current position and orientation of the robots; 

therefore, it does not depend on the number of robots. Therefore, the Big O value of 

the Get position and orientation Algorithm is O(n × t × c). 

Level 01 Interpretation Algorithm () 

This algorithm needs to send the command to all robots using the loop and select all 

ROS topics. Therefore, the Big O value of the Level 01 Interpretation Algorithm () is O(i 

× t × c). 

when the nodes, topics and classes are fixed 

 
 1 10 100 1000 

Number of Robots 

 

Fig. 4.20 Running Time Vs Static Inputs 
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Level 02 Interpretation Algorithm () 

In this algorithm, we need to send the command to all robots using the loop. 

Therefore, the Big O value of the Level 02 Interpretation Algorithm () is O(i × t × c). 

Level 03 Interpretation Algorithm () 

Here we need to apply the instructions for all robots using the loop. Each node ( eg 

/scan and move base) is selected using the next level of the loop. We need to remap 

the topics in amcl and move base launch files using the loop. Therefore, the Big O 

value of the Level 03 Interpretation Algorithm () is O(i×n×t×c). A summary of the Time 

Complexities is given in Table 4.29. 

Therefore, the Big O value of the Registration Algorithm and Level03 Interpretation 

Algorithm has the same value as O(i×n×t×c). In addition, the Level 01 Interpretation 

Algorithm and Level 02 Interpretation Algorithm have the same value as O(i × t × c). 

when the nodes, topics and classes are increased by factor 
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Fig. 4.21 Running Time Vs dynamic Inputs 

Figure 4.20 represents the running time of the algorithm against the number of 

robots where we assume the number of nodes, the number of topics, and the number 

of classes of ontology as static. Then it indicates that the running Time is increasing 

slowly as a quadratic function like y = x2. 
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Figure 4.21 represents the running time of the algorithm against the number of 

robots where we assume the number of nodes, the number of topics, and the number 

of classes in ontology as dynamic. Then it indicates that the running Time is increasing 

faster as cubic functions like y = x3. 

4.8 Experiment 08: Heterogeneous Multiple Robot Interaction with 

Semantic instruction with a web interface with autonomous robot 

registration. 

Heterogeneous multiple robot control with very high-level instruction is one of the 

challenging issues in research groups in robotics. We have evaluated our system in the 

Gazebo environment using three robots turtlebot, husky and TiaGo. The virtual 

environment, available in Python httpserver (Python – mhttp), was executed to 

implement necessary web pages with java scripts for the web interface. We have used 

the rosbridge Server to work as an interface between ROS and non-ROS clients. The 

user has added the instruction on the web interface provided by the system to interact 

with the multiple robots. Table 4.31 shows the instruction types used to test our 

system. Type I was a Table 4.29 Running Time Analysis 

 

   
 

 

Robot Registration Algo- 

rithm() 

i=i n=n t=t c=c O(i × n × t × c) 

Get Position and Orientation 

Algorithm() 

i=1 n=n t=t c=c O(n × t × c) 

Level 01 Interpretation 

Algorithm() 

i=i n=1 t=t c=c O(i × t × c) 

Level 02 Interpretation 

Algorithm() 

i=i n=1 t=t c=c O(i × t × c) 

Level 03 Interpretation 

Algorithm() 

i=i n=n t=t c=c O(i × n × t × c) 

general instruction with no synonym or semantic issue. The synonym was added to 

instruction Type II, where a synonym analysis algorithm processed it. The semantics 

of the instruction are not clear in instruction Type III. Instruction type IV has both 

synonym and semantic issues. The synonym and semantics were not programmed for 
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the instruction Type V where the user has to handle the synonym and semantic issues. 

The system was tested with many instructions, the Type I to Type V. 

Table 4.30 Goal and Task Scheduling Table 

 Time slot 1 Time slot 2 Time slot 3 Time slot 4 

Robot 

Name 

t0 − t1 t1 − t2 t2 − t3 t3 − t4  

Turtlebot A(2,2) + 

rotate(5) 

FreeTime 

  

+ 

Husky D(5,5) + 

rotate(10)  

FreeTime F(0,5) 

rotate(10) 

+ 

TiaGo FreeTime 

 

H(0,1) + 

rotate(15)  

The identification of the synonym and the semantic issues were performed by our 

algorithms accurately. Furthermore, we have completed the time complexity analysis 

of our algorithm to measure the system’s performance using the Big O notation. The 

time 

 

Fig. 4.22 Husky, Turtlebot and TiaGo Robots in Empty World 

complexities of all algorithms are shown in Table 4.32. Time complexity is calculated 

using the number of loops used by each algorithm where n is the input size. The graph 

of the time complexity for all algorithms is shown in Figure 4.23. According to the time 

complexity analysis, we can identify that the Robot Registration Algorithm and ROS 

Topic Identification Algorithm have poor performance because time complexity is 

O(n4). 

Table 4.31 Instruction Types used for Testing 

Instruction Type Description Example 

Type I Instruction without synonym or 

semantic issue 

Move to A and clean 

Type II Instruction with synonym shift to B and clean 

Type III Instruction with semantic issue Move to roof and clean 

Type IV Instruction with synonym and 

semantic issue 

Shift to sky and clean 
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Type V Instruction with synonym and 

semantic issue (Not programmed 

where user involvement is needed) 

Proceed to sea and clean 

Table 4.32 Time Complexity of Algorithms 

Algorithm Name Time Complexity 

Big O notation 

in 

Robot Registration Algorithm() O(n4)  

Synonym Analysis Algorithm() O(n2)  

Semantic Analysis Algorithm() O(n3)  

Get Position and Orientation Algorithm() O(n)  

ROS Topic Identification Algorithm() O(n4)  

Time complexity analysis with Big O notation for each type of instruction is shown 

in Table 4.33. Command Interpreter have used the Synonym Analysis Algorithm(), and 

 

Fig. 4.23 The Graph of the Time Complexity of all algorithms 

Semantic Analysis algorithm() where Synonym Analysis Algorithm() has taken O(n2), 

and Semantic Analysis algorithm() has taken O(n3) running time-based on the 

asymptotic notation in algorithm analysis. Therefore instruction type II is poor 

compared to instruction type III. Instruction type V is worse because user interaction 

is needed to solve the synonym and semantic issue in the instruction since synonyms 

and semantics are not programmed. 

Table 4.33 Instruction Types with Time Complexity 

Types Algorithms used in 
Command Inter- 
preter 

Time 
Com- 
plexity 

Algorithms used in 
Robot Registration and 
Command pub- 
lishing Engine 

Time 
Complex- 
ity 

Type I Analysis algorithm is 

not needed 

O(1) RR Algorithm()+ ROS TI 

Algorithm() 

O(n4) 
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Type II Synonym Analysis 

Algorithm() 

O(n2) RR Algorithm()+ ROS TI 

Algorithm() 

O(n4) 

Type III Semantic Analysis 

Algorithm() 

O(n3) RR Algorithm()+ ROS TI 

Algorithm() 

O(n4) 

Type IV Synonym Analysis 

Algorithm()+ Semantic 

Analysis Algorithm() 

O(n3) RR Algorithm()+ ROS TI 

Algorithm() 

O(n4) 

Type V Synonym Analysis 
Algorithm() + Synonym 
Analysis 
Algorithm()+Human 

Intervention is needed. 

O(n3) RR Algorithm()+ ROS TI 

Algorithm() 

O(n4) 

In addition to the above-discussed time complexity analysis for instruction type I 

to V, we have conducted two types of experiments with the Gazebo environment with 

Turtlebot, Husky and TiaGo robots. In the first experiment type, we have moved all 

heterogeneous robots to a given goal in the open world in the Gazebo. The second 

type Table 4.34 Experiment Results for without Navigation 

Robot  Goal without Navigation  

Experiment Goal 01 Success 

rate 

08.0010.00 

Goal 02 Success 

rate 

10.0012.00 

Goal 03 Success 

rate 

12.0002.00 

Goal 04 Success 

rate 

02.0004.00 

Turtlebot 0.65 0.85 0.90 0.95 

Husky 0.50 0.65 0.70 0.80 

TiaGo 0.45 0.55 0.65 0.85 

Table 4.35 Experiment Results for with Navigation 

Robot  Goal with Navigation  

Experiment Goal 01 Success 

rate 

08.0010.00 

Goal 02 Success 

rate 

10.0012.00 

Goal 03 Success 

rate 

12.0002.00 

Goal 04 Success 

rate 

02.0004.00 

Turtlebot 0.40 0.55 0.75 0.80 

Husky 0.35 0.40 0.55 0.70 

TiaGo 0.30 0.45 0.60 0.75 
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Fig. 4.24 Experiment without Navigation Success Rate 

of experiment is to navigate all heterogeneous robots to a given goal with obstacles in 

the Gazebo. All three robots (turtle bot, husky, and Tiago) in an open world in the 

Gazebo are shown in Figure 4.22. Experiments were conducted using the system 

above multiple robots with movement and navigation using 20 type IV instructions. 

Users can update the goal and task assigned for each robot for the different schedules 

in Table 

4.30. We have added the self-rotation for each robot to simulate the task completed 

 

Fig. 4.25 Experiment with Navigation Success Rate 

by robots based on the scheduled task. We found some errors in Robot Registration 

Algorithm and ROS Topic Identification Algorithm() for movements and navigation. 
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There were more ROS topic settings than the robot’s movement in an open world in 

navigation. 

The results of the experiment are represented in the Table for three robots 

Turtlebot, Husky and TiaGo where we have tested 20 times for each goal at four 

different time slots as (8.00 -10.00 am), (10.00 -12.00 noon), (12.00 -2.00 pm), (2.00-

4.00 pm). We received different ontology searching errors, robot registration errors, 

ROS topic identification, and command publishing errors in each time slot. Therefore, 

we gradually minimized the error with the experienced we had in each experiment 

with the timing. The success rate is measured with 20 tests. It defines the number of 

successful tests without errors out of 20 tests for each robot in each type of 

experiment. 

The results of experiment type 01 (without navigation) are shown in Table 4.34. 

According to the analysis, we have identified that the turtlebot has a higher success 

rate compared to other robots, as shown in Figure 4.24. 

The results of experiment type 02 (with navigation) are shown in the table 4.35. 

The success rate is also increasing, similar to experiment 01, as shown in Figure 4.25. 

The running time of the Robot Registration Algorithm and ROS Topic Identification 

Algorithm is O(n4) where n is the number of actions defined in the user instruction. 

These two algorithms had the highest time complexity compared to other algorithms 

we have developed in our system. 

In general, the delay in response time for the start decreases when the linear and 

angular speed increases. However, the delay in response time for the stop increases 

when the linear and angular speed increases. In addition, a delay occurs when the 

robot is controlled without the Web interface because of the delay with system call 

execution through the operating system and communication with ROS functions. 

When a robot is controlled through the Web without auto registration, a delay occurs 

in communication through the Web and communication with ROS through the ROS 

Bridge server. When the auto registration was added to the system, we needed to add 

the delay taken by the algorithm for the ROS topic identification. The delay time 

increases with the number of robots increased. When the robot is sent to a specific 

location, we need to add Time taken to get the current position and orientation for 

the delay time. When multiple instructions control a robot, we use a state transition 

system. Therefore, we need to add the Time taken by the state transition system for 

saving and retrieving the state to the delay time to get more accurate results. 

According to the analysis, the authors have identified that web communication is 

slightly faster than communication through the terminal  
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CHAPTER 5 

Discussion 

5.1 Problem and Solution 

Here we discuss the main problem in the research and the solution achieved. One of 

the research problems we have solved with our solution is providing an environment 

that hides all difficulties and complexities of programming a robot or multiple robots 

concurrently with a simple interface. Another research problem we have solved is 

learning ROS from scratch and developing a comprehensive robotic application that 

can provide a simple interface for controlling robots through the Internet. We have 

developed the interfaces to manage and control multiple robots through a web 

interface. The other main research problem is to develop an algorithm that can be 

used to register all robots by getting all software-related specifications and hardware 

specifications. We successfully developed the algorithm to register all reboots 

concurrently through the web interface. The other research problem is identifying the 

relevant ROS topics and nodes for the given user instruction. The ROS topic 

identification algorithm was completed successfully with the use of ontology. 

Moving all robots to the given location is another research problem we selected to 

solve. Therefore, the algorithm was developed to move all robots to a specific location 

in the environment of the gazebo simulator. Finally, another research problem is 

analysing the algorithms’ time complexity using Big O notation. We have completed 

the complexity analysis of the algorithm to compare its performance of the algorithm. 

5.2 Research Findings 

One of the research findings was identifying the limitations and issues with the current 

and previous research works by thoroughly studying all existing research papers. One 

of the other research findings was designing and developing the control and managing 

algorithms for all robots through the Web interface with user instructions without 

considering all software and hardware differences of all robots. According to the 

experiments we have conducted with a web interface with multiple robots, the 

research finding was that communication and control of multiple robots could be 

achieved with speed as close to the speed without a web interface. One of the other 

research findings was deriving the mathematical equation for the delay in each 
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experiment and the algorithm’s time complexity to decide each algorithm’s 

performance.  
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CHAPTER 6 

Conclusion 

This research study has developed a system to issue instruction through the web 

interface and controls multiple robots simultaneously. Previous research work for 

control and communication with multiple robots through the internet had several 

limitations and issues. Initially, all multiple robots need to register with Robot 

Registration Engine. The autonomous robot registration and autonomous ROS topic 

identification algorithms were implemented successfully. One of the research 

components that we completed was the development of the Robot Registration 

Engine to collect each robot’s details in our system through the web interface. This 

was completed very successfully with our algorithms. When a user has given 

instructions, the system must identify the corresponding ROS topic with our Ros topic 

identification algorithm. The ROS topic identification algorithm was implemented very 

successfully.We have analyzed the delay time in response to all experiments. The 

delay time is increased with the introduction of these algorithms. We have derived 

the mathematical equations for each delay time which varies based on the inputs and 

system characteristics. The experiment result indicated that the autonomous robot 

registration was successful, and the communication performance through the Web 

decreased gradually with the number of robots registered. The running time of the 

Robot Registration Algorithm and ROS Topic Identification Algorithm is O(n4). 

The main objective is to develop an algorithm to interact and control multiple 

robots through the web interface with autonomous robot registration and 

autonomous ROS topic identification. We found that the number of resources we 

could use for the ROS was minimal. Therefore, one of the leading research project 

objectives is to learn the ROS from scratch and develop control applications with 

different robots with some automation. We have successfully achieved this objective 

by studying the available resources. We have studied ROS from the beginning and 

developed a good application with multiple robots through a web interface. 

Many research groups completed robot control and communication with ROS, but 

according to our research studies, we did not find any research for autonomous robot 

registration using any algorithms. Therefore, one of the leading research project 

objectives is to develop an algorithm that can register all robots concurrently through 

the Web interface. We successfully developed Robot Registration Engine with our 

Robot Registration algorithm through the web interface. 
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According to the previous studies, we did not find any algorithm developed to 

identify the relevant ROS topics and nodes for subscription and publication. Therefore, 

one of the leading research project objectives is to develop an algorithm that can 

identify the relevant ROS topics and nodes to complete the issued task by the user. As 

a result, we successfully implemented the algorithm to identify the relevant ROS topics 

and nodes for subscription and publication. 

Managing multiple robots with a Gazebo environment through a web interface is 

complex. Most of the time, managing the errors with ROS and Gazebo is very tedious 

and time-consuming because fewer resources are available online for ROS and 

Gazebo. Therefore, one of the leading research project objectives is to learn the ROS 

and gazebo environment from scratch and simulate the environment for the 

experiments. As a result, we simulated multiple robots in Gazebo to successfully make 

the experiments even though we got more issues at the beginning of the simulation 

process. 

Analyzing the algorithm is very important to find the performance of each 

algorithm. There are several algorithm analysis techniques. Big O notation is the 

optimal way to represent the algorithm’s complexity. One of the leading research 

project objectives is to develop an optimal algorithm to get the correct output and 

analyze the performance of the algorithms. We successfully developed all algorithms 

and evaluated the performance using the best time complexity analysis technique. 

Performance evaluation with response time is another research problem that we 

want to solve. Several experiments must be completed with different web interfaces 

with different amounts of robots for different scenarios. Again, we need to derive the 

mathematical equations from representing each scenario’s delay in response time. 

Therefore, another main objective is to perform analysis with derived mathematical 

equations for each scenario with different web interfaces. We have successfully 

evaluated the performance in terms of delay in response time and derived the 

mathematical equation for each scenario. 

According to the experiments we have conducted with a web interface with 

multiple robots, the research finding was that communication and control of multiple 

robots could be achieved with speed as close to the speed without a web interface. 

6.1 Contribution 

The main contribution to my research work are summarized below: 

First, I discovered and proposed a new algorithm for autonomous, multiple robot 

registration in a simulated Gazebo environment. According to the previous research 

studies described in chapter 02, I did not find any research on autonomous robot 
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registration. Once a robot is connected through the Web interface, all ROS topics and 

nodes related to each robot are collected and stored to use later. One of the main 

limitations of the ROS is that robotic programming very difficult and but autonomous 

registration solve this issue since it collects all ROS topics and nodes necessary to 

publish and subscribe. 

I discovered and proposed a new algorithm for ROS topic identification when a 

user issued a command to control robots through the web interface. However, 

according to the previous research studies described in chapter 02, I did not find any 

research on ROS topic identification algorithms. This task minimizes the robot’s 

programming difficulties with ROS since our algorithm can find relevant ROS topics for 

each robot to publish and subscribe to control. 

I discovered and developed the web interface to control multiple robots with 

simple commands to move robots forward and circle simultaneously using the threads 

in python language. However, according to the previous research studies described in 

chapter 02, I did not find any research on multiple robot controls through the web 

interface. Some research was done to control single robots through web interfaces 

without autonomous registration. 

I discovered the worst-case complexity of the autonomous robot registration 

algorithm and ROS topic identification algorithm. This analysis results can be used by 

other researchers when they want to get an idea of the algorithm’s performance. 

I discovered and derived mathematical equations to represent the delay in 

response time for the different scenarios with all experiments with other 

characteristics. Furthermore, I found and validated the values for all constants in each 

mathematical equation. 

6.2 Limitation 

When we consider real robots, different mechanical components are necessary to 

complete a task. Therefore, the robot’s response time depends on the mechanical 

components’ delay. Therefore, the response delay time we have calculated will be 

significant and can be changed when implemented with real robots. Furthermore, 

these response times can be changed depending on the robot type. The kinematics 

and dynamics of the robot were not considered because all experiments were 

completed in a simulation environment. 

All simulations were conducted only in an empty world in the Gazebo 

environment. When the navigation algorithms are implemented with the Robot 

Registration algorithm, we can implement robot control in the environment with 

obstacles on the given path. This is another limitation of our solution. 
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The other limitations of our project is a simulation of the system with the Gazebo 

simulator. I have simulated multiple robots in the Gazebo environment and used the 

namespace to identify each robot uniquely. The launch files were developed to spawn 

all multiple robots successfully at different places. All experiments were completed in 

the simulated environment and did not use real-time robots for testing. Of course, we 

can enhance all results by implementing all experiments in a real environment with 

robots. 

If the robots are not implemented with the ROS, then our solution will not be able 

to use because we have developed an algorithm to work with only a ROS-based 

system. However, we have not implemented any algorithm to control the robots with 

other middleware. 

Our experiments were conducted with user commands to move all robots forward 

with different linear speeds, move all robots to a circle with different angular speeds 

from different positions and move all robots to specific locations. We have not 

considered the synchronization of all robots, access control of all robots, collision 

avoidance of all robots and relative motion of all robots. These limitations were not 

considered in all experiments we have implemented to get the results. Navigation 

algorithms were not implemented through the web interface when we controlled 

multiple robots. 

We have designed a state transition engine that can handle the multiple 

instructions issued by users sequentially. A state transition machine is one of the most 

optimal solutions to handle multiple instructions sequentially.We have not 

implemented the state transition engine to work with instructions in a simulated 

environment. 

Performance evaluation with response time is another research problem that we 

want to solve. Several experiments must be completed with different web interfaces 

with different amounts of robots for different scenarios. Again, we need to derive the 

mathematical equations from representing each scenario’s delay in response time. 

The evaluation results can be slightly different from real-world implementation results 

because we have derived all mathematical equations with some assumptions. This can 

be another limitation of our evaluation. 

There can be some robots that are not using the ROS but may be using their 

middleware then. Our system may need to be fixed with this kind of robot. Then we 

need to have a mapping with ROS and other middleware to work with our system. This 

will be another limitation of our implementation. 

CHAPTER 7 
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Future Works 

7.1 Future Works 

Working with multiple instructions sequentially is very important when considering 

real robots. However, we have only designed the state transition diagram to work with 

multiple robots, which can be implemented in future works. The state transition 

diagram we have developed can be converted into program code and implemented in 

real robots to work with multiple instructions. 

The semantics and synonyms of the user instructions can be implemented with the 

ontology. That may provide the very intelligent aspect of the robot. However, we have 

not implemented ontology directly in our solution. The semantics and synonym of the 

instructions can be easily implemented with ontology in future work. 

Our solution conducted all simulations in an empty world in the Gazebo 

environment. As a future work, the navigation algorithms can be implemented with 

the robot registration algorithm. Then the robot can move even with obstacles on the 

given path. 

Many techniques can be used to improve the performance of the algorithms we 

have developed. Dynamic programming, greedy method, parallel algorithms, 

distributed algorithms, and Artificial intelligence-based algorithms. These algorithm 

optimization techniques can be used to improve the performance algorithm. 

All experiments were completed in the simulated environment and did not use 

actual real-time robots for testing. Therefore, we can enhance all results by 

implementing all experiments in a real environment with robots. However, most 

existing research studies indicated that the simulated experiment results are closely 

related to the real environment. Therefore, the actual implementation of the system 

in real robots with a real environment can be completed as future work. 

We have not used ontology directly in our application. However, we have 

simulated the ontology model in our system since working with ontology is not our 

primary objective of the project in identifying the synonym for user commands. 

However, we have used the algorithm to simulate some properties of the ontology to 

get the synonym for user commands. Because synonym identification is additional 

work in our project. In future work, we can create a complete ontology and manage 

the system with a high-processing CPU to get more accurate results. 

We have not considered the synchronization of all robots, access control of all 

robots, collision avoidance of all robots and relative motion of all robots. These 

limitations were not considered in all experiments we have implemented to get the 
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results. Navigation algorithms were not implemented through the web interface when 

we controlled multiple robots. We can develop synchronization algorithms with 

multiple robots for navigation and avoiding collisions with each other. The access 

controlling issue can be easily tested with actual real-time robots. Some algorithms 

were already developed for group formation for multiple robots in some research 

groups. 

Many systems are developed with a state transition engine to complete the 

complicated task. We have designed a state transition engine that can handle the 

multiple instructions issued by users sequentially. Therefore, one of the other main 

research objectives is to design a theoretical state transition machine to work with 

multiple instructions that are issued by users sequentially. We have successfully 

designed the state transition engine theoretically and evaluated its performance. 

However, we have not implemented the state transition engine to work with 

instructions in a simulated environment. This engine can be developed and integrated 

into the system as future work to complete the multiple instructions a user gives. 

Performance evaluation with response time is another research problem that we 

want to solve. Several experiments must be completed with different web interfaces 

with different amounts of robots for different scenarios. Again, we need to derive the 

mathematical equations from representing each scenario’s delay in response time. 

Then, the performance evaluation can be tested with real robots to get more accurate 

results for future work. 

There can be some robots that are not using the ROS but may be using their 

middleware then. Our system may not be working with this kind of robot. Then we 

need to have a mapping with ROS and other middleware to work with our system. This 

will be another limitation of our implementation. We can develop another registration 

engine to get the services of other middleware as web services and control the robots 

being developed middleware other than ROS. 
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Appendix A 

Fragment of Ontology 

 

Fig. A.1 Part of the Ontology Developed 

A.1 Part of the OWL file Created Using Protege Tool 

<?xmlversion = ”1.0”? > 

<!DOCTY PErdf : RDF[ <!ENTITY owl”http : //www.w3.org/2002/07/owl#” > 

<!ENTITY xsd”http : //www.w3.org/2001/XMLSchema#” > 
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<!ENTITY rdfs”http : //www.w3.org/2000/01/rdf − schema#” > 

<!ENTITY rdf”http : //www.w3.org/1999/02/22 − rdf − syntax − ns#” > 

<!ENTITY untitled − ontology − 16 

”http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#” > 

] > 

< rdf : RDFxmlns = ”http : //www.semanticweb.org/staff/ontologies 

/2021/1/untitled − ontology − 16#” xml : base = ”http : 

//www.semanticweb.org/staff/ontologies/2021 

/1/untitled − ontology − 16” xmlns : rdfs = ”http : 

//www.w3.org/2000/01/rdf − schema#” xmlns : owl = ”http : 

//www.w3.org/2002/07/owl# xmlns : xsd = ”http : 

//www.w3.org/2001/XMLSchema#” xmlns : rdf = ”http : 

//www.w3.org/1999/02/22 − rdf − syntax − ns# xmlns : untitled − 

ontology − 16 = ”http : //www.semanticweb.org/ staff 

/ontologies/2021/1/untitled − ontology − 16#” > 

< owl : Ontologyrdf : about = ”http : //www.semanticweb.org/staff 

/2021/1/untitled − ontology − 16”/ > 

<!−−////////////////////////////////////////////////////////ObjectProperties 

////////////////////////////////////////////////////// −− > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#cosistof −− > 

16; 

16; 
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16; 

< rdfs : rangerdf : resource = ”anduntitled − ontology − 16; 

Software”/ > 

< /owl : ObjectProperty > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 

/untitled − ontology − 16#has −− > 

16; 

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16; 

Robot”/ > 

< /owl : ObjectProperty > 

<! −−////////////////////////////////////////////////////// 

Dataproperties 

/////////////////////////////////////////////////// −− > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 

/untitled − ontology − 16#CoG −− > 

16; 

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16; 

Robot”/ > 

< rdfs : rangerdf : resource = ”andowl;real”/ > 

< /owl : DatatypeProperty > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#FootPrint −− > 

16; 

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16; 
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Robot”/ > 

< rdfs : rangerdf : resource = ”andxsd;string”/ > 

< /owl : DatatypeProperty > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#IPAddress −− > 

16; 

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16; 

Robot”/ > 

< rdfs : rangerdf : resource = ”andxsd;decimal”/ > 

< /owl : DatatypeProperty > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#PortNumber −− > 

16; 

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16; 

Robot”/ > 

< rdfs : rangerdf : resource = ”andxsd;integer”/ > 

< /owl : DatatypeProperty > 

 

16; 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#ROSTopicName −− > 

16; 
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<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#RobotName −− > 

16; 

< rdfs : domainrdf : resource = ”anduntitled − ontology − 16; 

Robot”/ > 

< rdfs : rangerdf : resource = ”andxsd;string”/ > 

< /owl : DatatypeProperty > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#move −− > 

< owl : DatatypePropertyrdf : about = ”anduntitled − ontology − 16; move” 

> 

< rdfs : rangerdf : resource = ”andxsd;string”/ > 

< /owl : DatatypeProperty > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/ 

1/untitled − ontology − 16#navigation −− > 

< owl : DatatypePropertyrdf : about = ”anduntitled − ontology − 16; 

navigation” > 

< rdfs : rangerdf : resource = ”andxsd;string”/ > 

< /owl : DatatypeProperty > 

<! −−http : //www.w3.org/2002/07/owl#topDataProperty −− > 

< rdf : Descriptionrdf : about = ”andowl;topDataProperty” > 

< rdfs : subPropertyOf rdf : resource = ”anduntitled − ontology − 

16;ROSTopicName”/ > < /rdf : Description > 

<! −−//////////////////////////////////////////////////////// 

Classes 



101 

//////////////////////////////////////////////////// −− > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 /untitled − 

ontology − 16#Cameras −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;Cameras” > 

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16; 

Hardware”/ > 

< /owl : Class > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#Hardware −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;Hardware”/ > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#Move −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;Move” > 

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16; 

Synonums”/ > 

< /owl : Class > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#ROSNode −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSNode”/ > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#ROSPackage −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSPackage” > 
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< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16; 

ROSTopic”/ > 

< /owl : Class > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#ROSServices −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSServices”/ > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#ROSTopic −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;ROSTopic” > 

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16; 

ROSPackage”/ > 

< /owl : Class > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 

/untitled − ontology − 16#Robot −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;Robot”/ > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#Scanners −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;Scanners” > 

< rdfs : subClassOfrdf : resource = ”anduntitled − ontology − 16; 

Hardware”/ > 

< /owl : Class > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#Software −− > 
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< owl : Classrdf : about = ”anduntitled − ontology − 16;Software”/ > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#Synonums −− > 

< owl : Classrdf : about = ”anduntitled − ontology − 16;Synonums”/ > 

<! −−///////////////////////////////////////////////////// 

Individuals 

////////////////////////////////////////////// −− > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 

/untitled − ontology − 16#/cmd −− > 

16; 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 

ROSTopic”/ > 

< moverdf : datatype = ”andxsd;string” > 

25< /move > 

< cosistofrdf : resource = ”anduntitled − ontology − 16;/cmd”/ > 

< /owl : NamedIndividual > 

 

16; 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 

ROSTopic”/ > 

< moverdf : datatype = ”andxsd;string” > 

16; 
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<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 /untitled − 

ontology − 16#/map −− > 

< owl : NamedIndividualrdf : about = ”anduntitled−ontology−16;/map” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16;ROSTopic”/ > 

< moverdf : datatype = ”andxsd;string” > map< 

/move > 

 

 

16; 

 − − 

;ROSNode”/ > 

< RobotNamerdf : datatype = ” > string” > Turtle 

 

 

 

16; 

16; 
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16; 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 

< hasrdf : resource = ”anduntitled − ontology − 16;RT1”/ > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1/ untitled − 

ontology − 16#/odem −− > 

16; 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 

ROSTopic”/ > 

< RobotNamerdf : datatype = ”andxsd;string” > 

< /RobotName > 

< moverdf : datatype = ”andxsd;string” > 

< /move > 

< cosistofrdf : resource = ”anduntitled − ontology − 16; 

/odem”/ > 

< /owl : NamedIndividual > 

 

16; 

16; 

16; 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies/ 

2021/1 

/untitled − ontology − 16#Go −− > 
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16; 

< owl : sameAsrdf : resource = ”anduntitled − ontology − 16; advance”/ > 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies 

/2021/1/ untitled − ontology − 

16#Proceed −− > 

 

16; 

< owl : sameAsrdf : resource = ”anduntitled − ontology − 16; advance”/ > 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021 /1/untitled − 

ontology − 16#RT1 −− > 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; 

RT1” > 

< ROSTopicNamerdf : datatype = ” > string” > cmd 

 

<! −−http : //www.semanticweb.org/staff/ontologies/2021/1 /untitled − 

ontology − 16#RT2 −− > 

< owl : NamedIndividualrdf : about = ”anduntitled−ontology−16;RT2” > 

< ROSTopicNamerdf : datatype = ” > string” > odem < 

/ROSTopicName > 

< ROSTopicNamerdf : datatype = ” string” > odometry < 

/ROSTopicName > 

< hasrdf : resource = ”anduntitled − ontology − 16;Robot2”/ > 
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< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies/2021 /1/untitled − 

ontology − 16#Robot1 −− > 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 

16;Robot1” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 

Robot”/ > 

< /owl : NamedIndividual > 

 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; 

Robot2” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16 

;Robot”/ > 

< IPAddressrdf : datatype = ” > string” > 

198.34.56.44 < /IPAddress > 

< FootPrintrdf : datatype = ” > string” > 

34 ∗ 45 < /FootPrint > 

< PortNumberrdf : datatype = ” > string” > 

45676 < /PortNumber > 

< RobotNamerdf : datatype = ” > string” > 

Husky < /RobotName > 

< hasrdf : resource = ”anduntitled − ontology − 16;RT2”/ > 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies/ 

2021/1/untitled − ontology − 16#Robot3 −− > 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16 

;Robot3” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 
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Robot”/ > 

< IPAddressrdf : datatype = ” > string” > 

193.45.67.77 < /IPAddress > 

< FootPrintrdf : datatype = ” > string” > 

34 ∗ 56 < /FootPrint > 

< PortNumberrdf : datatype = ” > string” > 

56563 < /PortNumber > 

< RobotNamerdf : datatype = ” > string” > 

TiaGo < /RobotName > 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies/ 2021/1/untitled − 

ontology − 16#Shift −− > 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 

16;Shift” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16; 

Move”/ > 

< owl : sameAsrdf : resource = ”anduntitled − ontology − 16; advance”/ > 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies/ 

2021/1/untitled − ontology − 16#advance −− > 

16; 

16; 

16; 

16; 

16; 

< /owl : NamedIndividual > 
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<! −−http : //www.semanticweb.org/staff/ontologies/2021 /1/untitled − 

ontology − 16#pass −− > 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; pass” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16;Move”/ > 

< /owl : NamedIndividual > 

<! −−http : //www.semanticweb.org/staff/ontologies 

/2021/1/untitled − ontology − 16#progress −− > 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; 

progress” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16 

;Move”/ > 

< /owl : NamedIndividual > 

 

< owl : NamedIndividualrdf : about = ”anduntitled − ontology − 16; walk” > 

< rdf : typerdf : resource = ”anduntitled − ontology − 16;Move”/ > 

< /owl : NamedIndividual > 

< /rdf : RDF > 

Appendix B 

Selected Robots with ROS Topics 

Robot  Ros Topic for 

movement  
The message format for the topic  

Turtlebot    cmd_vel  - ROS Hydro 
and later  
command_velocity-

For ROS Groovy and 

earlier 

cmd_vel_mux  

Vector3  linear Vector3  

angular  
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Husky   

joy_teleop/cmd_vel 

twist_marker_server/c 
md_vel  
move_base/cmd_vel  

Vector3  linear Vector3  

angular  

iRobot  

  

cmd_vel (geometry_msg 

s/Twist) 

cmd_vel_mux   

Vector3  linear Vector3  

angular  

Kobuki 

  

velocity 

(geometry_m 

sgs/Twist) cmd_vel 

(geometry_ms 

gs/Twist) 

cmd_vel_mux  

Vector3  linear Vector3  

angular  

TIAGo  

  
  

cmd_vel (geometry_ms 

gs/Twist)  
  
TIAGo specific 

individual joints 

cmd_vel_mux  

Vector3  linear  
Vector3  angular  
  

  

NAO  

  

cmd_vel (geometry_msg 

s/Twist)  
  
footstep  
(humanoid_nav_msgs/St 

epTarget) 

nao_footstep  
  

  
NAO specific 

individual joints  
  

Vector3  linear  
Vector3  angular  
  
geometry_msgs/Pose2D pose   # step pose as 

relative offset to last leg  
uint8 leg                   # which leg to 

use (left/right, see below)  
  
uint8 right=0               # right leg con 

stant  
uint8 left=1                # left leg cons 

tant  

  

Fig. B.1 Selected Robots with ROS Topics 


