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Abstract

This paper introduces a pure geometric proof for Ptolemy’s Theorem, without using trigonometry, 
coordinate geometry, complex numbers, vectors or any other geometric inversion techniques focusing 
on cyclic quadrilaterals and employing a generalized identity in relation to a cevian of an arbitrary 
Euclidean plane triangle. Additionally, the paper provides proofs to the converse of Ptolemy’s Theorem 
to which almost no pure geometric complete proof is available, and to the standard Ptolemy’s Inequality, 
to fulfil the research gap in the proofs to some extent. It also includes applications, new corollaries, 
derived from Ptolemy’s Theorem and its converse.  

Keywords: Cyclic quadrilaterals, Equilateral triangles, Inequalities, Mathematical logic, Perpendicu-
lars, Similar triangles.

Introduction 

The Ptolemy’s Theorem of Cyclic 
Quadrilaterals founded and proved by 
Claudius Ptolemaeus who was an eminent 
Greek Mathematician, has been one of the 
prominent and exciting results in a geometry 
of a circle, throughout way back centuries 
ago, even at present not only in Advanced 
Geometry, but also in the other related 
sciences. There have been several alternative 
proofs for the Ptolemy’s Theorem of cyclic 
quadrilaterals in the mathematics literature, 
using some geometric, trigonometric and non-
geometric (Complex number algebra, Vector 
Algebra) approaches. Amarasinghe (2013) 
published a concise elementary proof for the 
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Ptolemy’s Theorem using purely Euclidean 
Geometry (without using trigonometry, 
vector algebra, complex numbers or any other 
inversion techniques), proving some other 
useful properties in a cyclic quadrilateral. In 
this paper, the author adduces an alternative 
proof for the Ptolemy’s Theorem of cyclic 
quadrilaterals, involving a generalized 
corollary proved with respect to a cevian of 
an arbitrary Euclidean triangle covering the 
cases acute, obtuse, and right triangles, as well 
as for the converse of the Ptolemy’s Theorem 
involving Mathematical Logic and different 
Mathematical Proofs. 
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Main Results

Corollary 1
Let ABC∆ be an arbitrary plane triangle such 
that D be an arbitrary point on BC (an internal 
point), with BC=a, AC=b and AB=c. If AD  

is a cevian such that for some k>0,  

then  

(Amarasinghe, 2011; Amarasinghe, 2012).

Figure 1. 
An Euclidean triangle.

                      
Proof of corollary
The proof of the corollary is a conditional 
proof under proof by cases. For the sake of 
simplicity (or without loss of generality), 
assume that ABC∆ is an acute angle triangle. 

Case 1: Assume that AD is not perpendicular 
to BC. 

Proof

Assume that AD is cevian such that 

Then draw the perpendicular AX to BC. 

Thus  DX≠0. Using the Pythagoras Theorem 

respectively for ABD∆ (Obtuse Triangle), and 
ABC∆ (Acute Triangle), it follows that. 

BD    1
      =
DC    k

           (1+k)(b2+kc2)-a2k
AD2 =
                      (k+1)2

BD    1
      =   
DC    k

, and 

These results lead us to 

 since k>0 and 

DX≠0 

Also, it is trivial to see that  

and . Thus, it follows that 

2
2 2

2
2 2

1 1

1

ac AD
k

k kaAD b
k

 − −  + =
 + − + 

and after some elementary algebraic 
manipulation, this leads us to the desired 

result
( )( )

( )

2 2 2
2

2

1

1

k b kc a k
AD

k

+ + −
=

+
.

Case 2: Assume that AD is perpendicular to 
.BC  (Now X is coincided with D )

Proof 
Then similarly, as before, using the Pythagoras 
Theorem, it follows 2 2 2 2 . c a b a DC= + − , as 
well as 2 2 2 2 . b a c a BD= + − . 

Thus, it leads to 
2 2 2

2 2 2

1BD a c b
DC k a b c

+ −
= =

+ −

.  Thus 
2 2 2

2 2 2

a b ck
a c b

+ −
=

+ −
. Therefore 

2 2 2 2

2 2 2 2 2 2

21 1a b c ak
a c b a c b

 + −
+ = + = + − + − 

. Also, 

c2=AD2-DX2+(BD+DX)2=AD2+BD2+2BD.DX

b2=AD2-DX2+(DC-DX)2=AD2+DC2-2DC.DX

               ka
DC  =
           (k+1)

                a
BD  =
           (k+1)

BD      1     c2 - AD2 - BD2
            =      =
DC      k    AD2 + DC2 -b2          
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it follows 
2 2 2

2
a c bBD

a
+ −

= .
Then observe that 

( )22 2 2 2 2 22 2 2
2 2 2 2

2

4
2 4

a c a c ba c bAD c BD c
a a

− + − + −
= − = − = 

 

Observe that

 

2AD= .

Hence it follows that in each case, 
( )( )

( )

2 2 2
2

2

1

1

k b kc a k
AD

k

+ + −
=

+
. 

Now it is not difficult to prove that, if ABC∆

is an obtuse triangle or a right-angled triangle, 

then also
( )( )

( )

2 2 2
2

2

1
.

1

k b kc a k
AD

k

+ + −
=

+
Assume that ABC∆ is an obtuse triangle. 

Without loss of generality, assume that the 

angle ACB is an obtuse angle.

Figure 2.
An obtuse Euclidean triangle.     
  

                                               

    2a2
a2+c2-b2(1+k)(b2+kc2)-a2k

         (k+1)2

    (     (
    (

    (    () )
)

) )a2+b2-c2

a2+c2-b2

     2a2

a2+c2-b2

b2+

2=
c2 -a2 a2+b2-c2

a2+c2-b2

           4a2c2-(a2+c2-b2)2
           =
                   4a2

^

Proof

Assume that AD is cevian such that 1BD
DC k

=
for some 0k > . Then draw the perpendicular 
AX  to extended BC . Thus 0CX ≠ . Using 

the Pythagoras Theorem respectively for 
ABD∆ (Obtuse Triangle), and ADC∆ (Obtuse 
Triangle), it follows that, 

( )22 2 2 2 2 2 22 . 2 .( )c AD DX BD DX AD BD BD DX AD BD BD DC CX= − + + = + + = + + +

, and hence 
2 2 2 2 22 .( ) 2 . 2 .c AD BD BD DC CX AD BD BD DC BD CX= + + + = + + +

. ( )22 2 2 2 2 2 . CAD b CX DC CX b DC DC X= − + + = + +

These results lead us to 

2 2 2

2 2 2

1 2 .BD c AD BD BD DC
DC k AD b DC

− − −
= =

− −
 

since 0k > and 0CX ≠ . Also, it is trivial to 

see that 
1

aBD
k

=
+

 and 
1

kaDC
k

=
+

. 

Thus, it follows that

2
2 2

2
2 2

2 .
1 1 1 1

1

a a kac AD
BD k k k
DC k kaAD b

k

     − − −     + + +     = =
 − −  + 

,after some elementary algebraic manipulation, 
this leads us to the desired result

( )( )
( )

2 2 2
2

2

1

1

k b kc a k
AD

k

+ + −
=

+

Assume that ABC∆ is a right-angled triangle. 
Without loss of generality, assume that the 
angle ACB  is right-angle.^
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  Figure 3
  A right-angled Euclidean triangle.        

Proof

Assume that AD  is a cevian such that 1BD
DC k

=
for some 0k > . Then AC  is automatically 
perpendicular to BC  . Using the Pythagoras 
Theorem respectively for ADC∆ (Right-
triangle), it follows that,

( )
2

22 2 2 2 2 2

1
ac AD b DC b BC BD b a

k
 = = + = + − = + − + 

since 
1

aBD
k

=
+

, and hence this leads us to   

( ) ( )
( ) ( )

( )

2 2 2 2 2 2 22 2 2 2 2 2 2 2 2
2 2

2 2 21 1 1

k a b kb k c a ba k k b kb kb b a kAD b
k k k

+ + + − ++ + + +
= + = =

+ + +,

( )
( ) ( )

( )

2 2 22 2 2 2 2 2
2

2 2

1 1
1 1

kc k b k a kk c kb b kc a kAD
k k

+ + + −+ + + −
= =

+ +.
Thus, this leads us to the required result 

( )( )
( )

2 2 2
2

2

1
 

1

k b kc a k
AD

k

+ + −
=

+
.

Observe that now we have proved that for 
each Euclidean Triangle ABC∆ , the above-
mentioned result obtained for the length of the 
cevian AD , is true.

Theorem 1 

Ptolemy’s theorem
If ABCD is a cyclic quadrilateral such 
that AC and BD  are its diagonals, then 

. . . AC BD AB DC AD BC= + . This is 
referred to as the Ptolemy’s Theorem of Cyclic 
Quadrilaterals.

Novel proof
Assume that ABCD is a cyclic quadrilateral 
such that AC and BD  are its diagonals. 
Suppose AB a= BC b= , CD c=  and AD d=

. Let E  be the point of intersection of the 

diagonals AC and BD , and  let 1BE
ED k

=  

and 1AE
EC m

= for some constants , 0k m > . 

Figure 4. 
A cyclic quadrilateral.            
      

 
                                   
Since BAE = EDC, ABE=ECD and , ABE∆

and EDC∆  are similar. Hence BE a
EC c

= . 

Since AD=EBC, and ADE=ECB , AED∆ and 

^

^ ^^^

^ ^ ^
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BEC∆  are similar. Hence AE ED d
BE EC b

= = . 

Thus 
BE AE a d
EC BE c b

     =     
     

 which leads to 

1AE ad
EC bc m

= = . Hence bcm
ad

= .

Also, observe that 

BE a
EC c
ED d
EC b

   
   
   =
   
   
   

. Therefore,

 1BE ab
ED cd k

= = . Hence cdk
ab

= . Then by using 
the above corollary on cevians to ABD∆ , we 

yield 
( )( )

( )

2 2 2
2

2

1

1

k d ka BD k
AE

k

+ + −
=

+
. 

Similarly, by using the above corollary to BCD∆

, we yield 
( )( )

( )

2 2 2
2

2

1

1

k c kb BD k
EC

k

+ + −
=

+
. 

These two results lead to

( )( )
( )( )

2 2 22

2 22 2 2

1 1
1

k d ka BD kAE
EC mk c kb BD k

+ + −
= =

+ + −

By simplifying, this leads to

( ) ( )( )2 2 2 2 2 2 2 21 1BD k m k m d m a k c kb− = + + − −

By substituting the above values for k  and m, 
this leads to 

2 2 2
2 2 2 2 21 1cd bc cd bc bc cd cdBD d a c b

ab ad ab ad ad ab ab
                 − = + + − −                                     

By simplifying we have 

( )( ) ( )( )( )2BD bc ad bc ad ab cd bd ac bc ad− + = + + −

Case 1:  Assume that bc ad≠ . 
Then it easily follows 

( )( )
( )

2 ab cd ac bd
BD

ad bc
+ +

=
+

.

It is trivial to see that 
1

ACAE
m

=
+

 and 

1
mACEC
m

=
+

. Then observe that 

( )( )
( )

( )( )
( )

( )2 2 2 2 2 2 2 2 2 2
2 2

2 2

1 1
11 1

k d ka BD k k c kb BD k k a b d c
AE EC

kk k

 + + − + + − − + −
 − = − = =

++ +  

( )
( )

2 2 2 22 2 2
2 2

2
1 1  = .

1 1 1 11

k a b d cAC mAC m mAC AC
m m k mm

 − + − − −     − = =       + + + +     + 

By substituting the above values for k  and m, 
this leads to 

( )2 2 2 2

2
1

 =
1 1

bc cd a b d c
ad abAC
bc cd
ad ab

    − − + −        
    + +        

. Hence 
( ) ( )( )2 ad bc ac bd ad bc

AC
ad bc ab cd

− + −
=

+ +

Since by our assumption, bc ad≠ , it easily 

follows that 
( )( )2 ad bc ac bd

AC
ab cd

+ +
=

+
.

Case 2: Assume that bc ad= .

Then since bcm
ad

= , it follows 1m = . That is, 
then E  is the midpoint of AC .

Then by using the Apollonius Theorem for the
ADC∆ , it follows that 2 2 2 22 2AE ED d c+ = +

Observe that by the above-mentioned similar 
triangles

dED EC
b

 =  
 

, and 
1

mACEC
m

=
+

, 
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it follows that

. 
1 1

bc AC
mAC d d AC cdadED

bcm b b bc ad
ad

  
        = = =    + +      +    

Moreover,

 
1 1

AC AC ACadAE
bcm ad bc
ad

= = =
+ +  + 

 

Thus, by the above Apollonius Theorem, it 
follows that

 
2 2

2 2. 2 2ACad AC cd d c
ad bc bc ad

   + = +   + +   

By simplifying this further, since bc ad=

, and rearranging the terms, we yield to the 

desired result, 
( )( )2 ad bc ac bd

AC
ab cd

+ +
=

+
.

Observe that 
cEC BE
a

 =  
 

. Since

1
BDBE
k

=
+

 , it follows 
1

BD cEC
k a

  =   +  

Then from the above proved relation, we have 

( )( )
( ) ( )

22 2 2
2

2

1
11

k c kb BD k BDcEC
a kk

+ + −  
= =   ++  

Substituting for k , we have 

2 2 2
2 2

2 2
2

1

1 1

cd cd cdc b BD
ab ab abBD c

cd cda
ab ab

      + + −            =
   + +   
   

which leads to ( )( )
( )

2 ab cd ac bd
BD

ad bc
+ +

=
+

.
That is in each case

 
( )( )2 ad bc ac bd

AC
ab cd

+ +
=

+
 

and ( )( )
( )

2 ab cd ac bd
BD

ad bc
+ +

=
+

. 

Hence, we yield

( )( ) ( )( )
( ) ( )22 2. 

ad bc ac bd ab cd ac bd
AC BD ac bd

ab cd ad bc
+ + + +

= × = +
+ +

Hence, it easily follows 

. . . AC BD AB DC AD BC= +  which is the 
Ptolemy’s Theorem of Cyclic Quadrilaterals. 
This completes the proposed alternative proof 
of Ptolemy’s Theorem (Alsina & Nelson, 
2007; Amarasinghe, 2023).

Remark 1

It also follows that AC ad bc
BD ab cd

+
=

+
.

Corollary 2

Assume that ABCD is a cyclic quadrilateral 

such that AC and BD  are its diagonals, and  

AB a= BC b= , CD c=  and AD d= . Then 
the intersection point E of the diagonals is the 

midpoint of AC if and only if bc ad= .

Proof of corollary 2
Proof is trivial under the above case 2, if 

1m = .

The converse of the Ptolemy’s theorem 
(converse of Theorem 1)

Let , ,A B C and D be four arbitrary points in 
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