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ABSTRACT  

Real instruments, devices, and components are found to be nonlinear and are represented by 

nonlinear analytical models. Accordingly, linear systems (or models) have idealized representations. 

However, it is realized far more convenient to analyze, simulate, design, and implement nonlinear 

devices through the use of linear models. Also, regarding some devices, the degree of nonlinearity may 

not be significant. In such cases, nonlinear devices are often “approximated” by linear models. Against 

that background, this paper explores several important methods of linearization of nonlinear physical 

devices with practical examples.  

KEYWORDS: Nonlinear instruments, linearization methods, linearization using the local slope, 

linearization using energy equivalence 

1  INTRODUCTION 

Real instruments and components are nonlinear (Chen and Chen 2013; Wang et al. 2011; Lang et 

al., 2017) and they may be represented by nonlinear analytical models. Linear systems (or models) are 

in fact idealized representations, and they are represented by linear differential equations in the time 

domain or by transfer functions of polynomial ratios in the frequency domain. It may not be possible to 

represent a highly nonlinear device by a single linear model in its entire range of operation.  For small 

“changes” in response about some operating condition, a linear model may be used, which is valid in 

the assumed neighborhood of the operating condition. Commonly, linearization about an operating 

condition is done based on the “local slope” (or the first derivative) of the nonlinearity at the operating 

condition. Such linearization is not always feasible or satisfactory depending on the nature of the 

nonlinearity. Then, problem-specific and ad hoc approaches may have to be used to deal with system 

nonlinearities. The common methods of instrument linearization are the following (De Silva, 2023): 

slope-based analytical linearization over a limited range of operation about an operating condition (for 

both state-space models and input-output models); slope-based linearization using experimental input-

output data (leading to experimental models); static linearization through recalibration or rescaling; 

linearization based on an equivalent model (using some criterion of equivalence such as energy);  

describing function method (this method also uses a criterion of equivalence—fundamental frequency 

component of the output); linearization using analog hardware; and feedback linearization. 

This paper addresses two common methods of linearization: slope-based analytical linearization 

over a limited range of operation about an operating condition, and linearization based on an equivalent 

model through a criterion of energy equivalence. It presents two practical examples to illustrate these 

two methods of linearization.             
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2 NONLINEARITIES IN INSTRUMENTS 

All physical devices are nonlinear to some degree. Broadly speaking, the nonlinear behaviour in 

instruments may be classified into two types: geometric (including kinematic) nonlinearity, specifically 

in a “mechanical” instrument, and physical (including kinetic) nonlinearity. Geometric nonlinearity 

stems primarily from large deflections or large motions, resulting in the introduction of nonlinear terms 

(e.g., trigonometric terms such as sine, cosine, and tan) in the representation of its input-output behavior. 

Kinematic relations of a robotic arm are an example of geometric nonlinearity. Physical nonlinearity 

results from the deviation from the linear (ideal) behaviour of its physical relations due to such causes 

as electrical and magnetic saturation, deviation from Hooke’s law in elastic elements, plasticity, 

Coulomb and Stribeck friction, creep at joints, aerodynamic damping, backlash in gears and other loose 

components, and component wear out. Nonlinear Newton’s 2nd law equation (i.e., kinetic nonlinearity) 

in a mechanical system also falls into the category of physical nonlinearity. Thus, many practical 

methods of linearization of instruments have been reported (Živanović, et al., 2004; Grützmacher, et al. 

2018; Islam and Mukhopadhyay, 2019) Nonlinearities (particularly, physical nonlinearities) in devices 

are often manifested as some peculiar characteristics.  

Saturation: Nonlinear devices may exhibit saturation (see Figure 1(a)). When saturated, the output 

of the device remains unchanged even when the input changes. This may be the result of causes such as 

magnetic saturation, which is common in magnetic-induction instruments, transformer-like instruments 

and other electro-magnetic instruments with a ferromagnetic core, differential transformers (in the 

current-magnetic field curve, where the magnetic field strength saturates); electronic saturation, as in 

amplifiers (in the input-output behavior, where the output saturates); elastoplastic behaviour in material 

(in the strain-stress curve, where the stress saturates as the strain increases); and in mechanical 

components like nonlinear springs (in the displacement-force curve, where the spring force saturates).  

Ideal Relay: A special, ideal case of saturation is the “two-state switching function” or an ideal 

relay. In this case, the device saturates at two different (usually opposite) states, and does not have a 

linear (or variable) region in between. Then, the device can switch between these two states only. 

Dead Zone: A dead zone is a region in which a device would not respond to an excitation (input). 

Stiction in mechanical instruments with Coulomb friction is a good example. Because of stiction, a 

component will not move until the applied force (input) reaches some minimum value. Once the motion 

is initiated, the subsequent behaviour can be either linear or nonlinear. Another example is the backlash 

in loose components such as gear wheels that do not mesh perfectly (where, the rotation is the input and 

the transmitted torque is the output). Bias signal in electronic instruments is a third example. In them, 

until the bias signal reaches a specific level, the circuit action will not take place, as in reverse bias of a 

diode until a breakdown (here, input is bias voltage, and output is transmitted current). A dead zone with 

subsequent linear behaviour is shown in Figure 1(b). In the case of stiction or Coulomb friction, if the 

input of the instrument is a motion (displacement or velocity) and the output is the corresponding force 

in the instrument, then the behaviour corresponds to an ideal relay (see under saturation) rather than a 

dead zone.  

Hysteresis: Nonlinear devices may produce hysteresis. In hysteresis, the value of the input–output 

curve at a particular point becomes different depending on the direction of the input (see Figure 1(c)), 

resulting in a hysteresis loop. This behavior is common in loose components such as gears that have 
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backlash; in components with nonlinear damping, such as Coulomb friction; and in magnetic instruments 

or magnetic circuits (here, input is the magnetizing current, and output is the magnetic field strength) 

with ferromagnetic media and under various dissipative mechanisms (e.g., eddy current dissipation). For 

example, consider a coil wrapped around a ferromagnetic core. If a dc current is passed through the coil, 

a magnetic field is generated. As the current is increased from zero, the field strength will also increase. 

Now, if the current is decreased back to zero, the field strength will not return to zero because of the 

residual magnetism in the ferromagnetic core. A negative current has to be applied to demagnetize the 

core. It follows that the field strength vs. current curve looks somewhat like Figure 1(c). This is magnetic 

hysteresis. 

The presence of a hysteresis loop alone does not imply that the instrument is nonlinear. For 

example, linear viscous damping also exhibits a hysteresis loop in its force–displacement curve. This is 

a property of any mechanical component that dissipates energy (then, area within the hysteresis loop = 

energy dissipated in one cycle of motion). In general, if force in a device depends on the displacement 

(as in the case of a spring) and the velocity (as in the case of a damping element), the value of the force 

at a given value of displacement will change depending on the direction of the velocity. In particular, 

the force when the component is moving in one direction (say positive velocity) will be different from 

the force at the same location when the component is moving in the opposite direction (negative 

velocity), thereby producing a hysteresis loop in the force–displacement plane. If the relationship of the 

displacement and velocity to the force is linear (as in viscous damping), the hysteresis effect is linear. If 

on the other hand the relationship is nonlinear (as in Coulomb damping and aerodynamic damping), the 

resulting hysteresis is nonlinear. 

Hysteresis Loop and Energy Dissipation: When the two axes represent “force” and 

“displacement,” it is known that the area of the hysteresis loop allows the net work to be done (or 

dissipated energy) in one cycle of movement. In this case, the input is the force and the output is the 

displacement. Note the loop arrows in Figure 1(c). Since “work done” is given by the integral of “force” 

× “incremental displacement,” the area projected on to the y-axis (i.e., output axis or displacement axis) 

gives the work done. It is clear from Figure 1(c) that this area is greater in the forward direction of the 

loop (forward arrow) than in the backward movement. Hence, the net area is positive and is equal to the 

area of the hysteresis loop, indicating an overall net work done (or energy dissipation). 

Jump Phenomenon: Some nonlinear instruments exhibit an instability known as the jump 

phenomenon (or fold catastrophe) in the frequency response (transfer) function curve that is determined 

experimentally. This is shown in Figure 1(d). As the frequency increases, the jump occurs from A to B; 

and as the frequency decreases, it occurs from C to D. In particular, note the bending of the resonant 

peak, corresponding to either a hardening instrument (where, the resonant frequency increases from the 

linear value, and the peak bends forward) or a softening instrument (where, the resonant frequency 

decreases from the linear value, and the peak bends backward). Furthermore, the experimentally 

determined transfer function of a nonlinear instrument may depend on the magnitude of the input 

excitation (The experimental transfer function of a linear instrument does not depend on the magnitude 

of the input). 

Note: It should be clear that the segment AC in the nonlinear frequency response curve cannot be 

determined experimentally (it has to be determined either analytically or by interpolation of the 

experimental curve).  

Limit Cycles: A notable property of a nonlinear system is that its stability may depend on the 

system inputs and/or initial conditions.  In particular, nonlinear instruments may produce limit cycles. 
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An example is given in Figure 1(e) on the phase plane (2-D) of velocity vs. displacement. A limit cycle 

is a closed trajectory in the state space that corresponds to sustained oscillations at a specific frequency 

and amplitude, without decay or growth. The amplitude of these oscillations does not depend on the 

initial location from which the response started (unlike in a linear instrument). In addition, an external 

input is not needed to sustain a limit-cycle oscillation. In the case of a stable limit cycle, the response 

will move onto the limit cycle irrespective of the location in the neighborhood of the limit cycle from 

which the response was initiated (see Figure 4.1(e)). In the case of an unstable limit cycle, the response 

will move away from it with the slightest disturbance, and it follows that an unstable limit cycle cannot 

be determined experimentally. 

Frequency Creation: A linear device, when excited by a sinusoidal signal, will generate a response 

at the same frequency as that of the excitation, at a steady state. On the other hand, at a steady state, a 

nonlinear instrument may create frequencies that are not present in the excitation signals. These created 

frequencies might be harmonics (integer multiples of the excitation frequency), subharmonics (integer 

fractions of the excitation frequency), or nonharmonics. 

 

Figure 1. Common manifestations of nonlinearity in physical devices: (a) Saturation, (b) Dead 

zone, (c) Hysteresis, (d) Jump phenomenon, (e) Limit cycle response. 

3 SLOPE-BASED LINEARIZATION  

In the approach described now, linearization is carried out by determining the partial derivatives of 

the nonlinear terms, with respect to the independent variables, at the considered operating point. 

Typically, this linearizing point is the normal operating condition of the system. Of necessity, the normal 

operating condition has to be in a steady state or a equilibrium state.  

3.1 Operating Condition in an Equilibrium State 

In a steady state, by definition, the rates of changes of the system variables are zero. Hence, the 

steady state (equilibrium state) is determined by setting the time-derivative terms in the system equations 

to zero and then solving the resulting algebraic equations. This may lead to more than one solution, since 
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the steady-state (algebraic) equations themselves are nonlinear. The real (i.e., non-complex) steady-state 

(equilibrium) solutions will correspond to one of the following three types: 1. Stable (Here, given a slight 

shift, the system response eventually returns to the original steady state); 2. Unstable (Here, given a 

slight shift, the system response continues to move in the direction of the shift, away from the original 

steady state); 3. Neutral (Here, given a slight shift, the system will remain in the shifted condition). Next, 

the analytical linearization is illustrated using a practical example. This example involves a state-space 

model and an input-output model in two combined physical domains (mechanical and electrical). Hence, 

it is a multi-physics example. 

3.2 Example of Slope-based Linearization 

The robotic spray painting system of an automobile assembly plant employs an induction motor 

and pump combination, to supply paint at an overall peak rate of 15 gal/min to a cluster of spray-painting 

heads in several painting booths.  The painting booths are an integral part of the production line in the 

plant.  The pumping and filtering stations are in the ground level of the building and the painting booths 

are in an upper level.  Not all booths or painting heads operate at a given time.  The pressure in the paint 

supply line is maintained at a desired level (approximately 275 psi or 1.8 MPa) by controlling the pump 

speed, which is achieved through a combination of voltage control and frequency control of the induction 

motor. An approximate model for the paint pumping system is shown in Figure 2(a). 

(a)   

 

 

 

 

 

 

 

 

Figure 2. (a) A model of a paint pumping system in an automobile assembly plant;
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(b) 
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Figure 2. (b) Free-body diagrams of the energy storage elements. 

The induction motor is linked to the pump through a gear transmission of efficiency  and speed ratio 

1:r (a speed reducer is used, with r < 1),  and a flexible shaft of torsional stiffness pk . The moments of 

inertia of the motor rotor and the pump impeller are denoted by mJ and pJ , respectively.  Note: The 

pump inertia pJ may include the “added-mass effect” of the paint. The gear inertia is neglected (or, if 

the dissipation is neglected, could be lumped with mJ , based on energy equivalence).  The mechanical 

dissipation in the motor and its bearings is modelled as a linear viscous damper of damping constant mb

.  The load on the pump (i.e., much of the paint load plus any mechanical dissipation) is also modelled 

by a viscous damper, and its equivalent damping constant is pb .  The magnetic torque mT generated by 

the induction motor is given by 

0 0 0

2 2
0

( )

( )

m
m

m

T q
T

q

  

 

−
=

−
  (1) 
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Here m is the motor speed; the parameter 0T depends directly (quadratically) on the phase (ac) voltage 

supplied to the motor; the second parameter 0 is the speed of the rotating magnetic field of the motor 

and is directly proportional to the line frequency of the ac supply; the third parameter q is greater than 

unity, and this parameter is assumed constant in the control system. Now, taking the motor speed m , 

the pump-shaft torque pT , and the pump speed p as the state variables, the state equations for this 

(nonlinear) model are systematically derived.   

In the steady-state operating condition of the system, suppose that the motor speed is steady at m

. We can obtain expressions for p , pT and 0T  (at this operating point), in terms of m and 0 . Voltage 

control of the motor is achieved by varying T0 and frequency control by varying 0 .  The state model 

will be linearized about the operating condition and expressed it in terms of the incremental variables

ˆ
m , ˆ

pT , ˆ
p , 0T̂ , and 0̂ .  The (incremental) output variables are the incremental pump speed ˆ

p and the 

incremental angle of twist of the pump shaft.   

The nonlinearities of the device that are not included in the present model include the following: 

Backlash and inertia of the gear transmission have been neglected in the model.  This assumption is not 

quite valid in general.  Also, the gear efficiency , which is assumed constant here, usually varies with 

the gear speed; Usually there is some flexibility in the shaft (coupling) that connects the gear to the drive 

motor; Energy dissipation (in the pump load and in various bearings) has been lumped into a single 

linear viscous-damping element.  In practice, this energy dissipation is nonlinear and distributed; At least 

part of the pump load may be included as an “added inertia” to the pump rotor (usually this is not a 

constant). Alternatively, the pump load may be more accurately represented by a torque vs speed curve.  

Now the state-space model of the device is derived. Let gT = reaction torque on the motor from the 

gear. Output speed of the gear transmission is mr . Also, power = torque  speed. Hence, by definition, 

the gear efficiency is given by,
Output Power

Input Power

p m

g m

T r

T





= = . This gives, g p

r
T T


= . The free-body 

diagrams for the energy storage elements are shown in Figure 1(b). There are two independent A-type 

elements and a T-type element in this device (De Silva, 2023). For them, the following three constitutive 

equations are written: Newton’s 2nd law (Torque = Inertia  Angular Acceleration) for the motor:

m m m m m g m m m p

r
J b T T b T T  


= − + − = − + −  (2) 

Here, we have substituted the previous result involving efficiency. Hooke’s law (Torque rate = torsional 

stiffness  twisting speed) for the flexible shaft: 
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( )p p m pT k r = −   (3) 

Newton’s 2nd law for the pump: 

p p p p pJ T b = −  (4) 

Eqs. (2)-(4) are the three state equations, with the state vector[ ]T
m p pT  , which represent a 

“linear” model with input Tm.  Strictly, the system is nonlinear with two inputs 0 and 0T  (note the 

torque-speed characteristic curve of the motor, given by eq (1) and sketched in Figure 3). Here 0 = 

speed of the rotating magnetic field of the motor (proportional to the line frequency), and 0T depends 

quadratically on the phase voltage. Adjusting 0 corresponds to frequency control and adjusting 0T

corresponds to voltage control. The fractional slip S of the induction motor is, 

0

0

( )mS
 



−
=  (5) 
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Figure 3. Torque-speed characteristic curve of an induction motor. 

 

From eq (1) we note the following: When 0m = we have 0mT T= .  Hence, 0T = starting torque of 

the motor. When 0mT = , we have 0m = .  Hence, 0 = no-load speed. This is the synchronous speed 

(Under no-load conditions, there is no slip in the induction motor, i.e., actual speed of the motor = speed

0 of the rotating magnetic field). Differentiate eq (1) separately wrt 0T , 0 , and m .   
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0 0
12 2
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( )

( )
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m

T q

T q

  


 

 −
= =

 −
 (say)    (6) 

2 2 2 2
0 0 0 0 0 0 0 0 0

22 2 2 2 2 2
0 0 0

[( )(2 ) ( )2 ] [( ) ( 1) ]

( ) ( )

m m m m m m

m m

T T q q q T q q

q q

           


    

 − − − − − + −
= = =

 − −
   (7) 

2 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2 2 2
0 0

[( )( 1) ( )( 2 )] [( 1) ( ) ]

( ) ( )

m m m m m
e

m m m

T T q q T q q
b

q q

         

    

 − − − − − − + −
= = − = −

 − −
  (8) 

Since q > 1, we have 1 0  , 2 0  , and 0eb  . eb = electrical damping constant of the motor. In a 

steady state, the rates of changes of the state variables are zero. Hence set 0m p pT = = = in eqs.  

(2) – (4). We get 0 m m m p

r
T b T


= − − , 0 ( )p m pk r = − , 0 p p pT b = − .  

Accordingly, 

p mr =  (9) 

p p mT b r=  (10)

2 0 0 0

2 2
0

( )
    (from (1))

( )

m
m m m p m

m

T q
T b r b

q

  
  

 

−
= + =

−
, or 

2 2 2
0

0

0 0

( )( )

( )

m m p m

m

b r b q
T

q

   

  

+ −
=

−
  (11) 

The increment of the motor torque from the operating point is: 

0 0 1 0 2 0

0 0

ˆ ˆ ˆˆ ˆ ˆ ˆm m m
m m e m

m

T T T
T T b T

T
     

 

     
= + + = − + +   
     

  (12) 

Take the increments of the state eqs. (2)-(4), and substitute (12).  We get the linear state-space model: 

1 0 2 0
ˆ ˆˆ ˆ ˆ( )m m m e m p

r
J b b T T    


= − + − + +  (13)     

ˆ ˆ ˆ( )p p m pT k r = −   (14) 

ˆˆ ˆ
p p p p pJ T b = −     (15) 

State vector  ˆˆ ˆ 
T

m p pT  =


x , Input vector 0 0
ˆ ˆ

T

T  =
 

u , Output vector ˆˆ
T

p p pT k =
 

y   
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A =

( ) ( ) 0

0

0 1

e m m m

p p

p p p

b b J r J

k r k

J b J

 − + −
 

− 
 

− 

;    B =

1 2

0 0

0 0

m mJ J  
 
 
  

; C =
0 0 1

0 1 0pk

 
 
 

;  

 D = 0; eb = electrical damping constant of the motor; mb = mechanical damping constant of the motor. 

In frequency control, 0
ˆ 0T = . To get the linear input-output differential equation, we 

eliminate the state variables ˆˆ  and m pT from the state eqs. (13)-(15). We get: 

3 2 2

3 2

2

2 0

ˆ ˆ ˆ
[ ( )] [ ( ) ( )]

ˆ ˆ( )

p p p p

m p m p p m e p m p m e

p

p m e p p

d d r J d
J J J b J b b k J b b b

dtdt dt

r b
k b b rk

  



  


+ + + + + + + +

+ + =

                     (16)

  

This is a 3rd order differential equation (the system is 3rd order, and the state-space model is 3rd order).  

 

Observation from Result (16): 

When 0̂ is changed by the “finite” step 0
ˆ , the RHS of eq. (16) will change by a finite amount. 

Hence, the LHS also must change by a finite amount. In this process, suppose that lowest order term ˆ
p

instantaneously changes by a finite amount. That means, the higher order terms (higher derivatives)

ˆ
pd

dt


and

2

2

ˆ
pd

dt


have to change by “infinite” amounts, instantaneously (Note: The derivative of a step 

is an impulse—infinite). Then the LHS will change by an “infinite” amount, which violates the equation. 

Hence, only the highest derivative (

3

3

ˆ
pd

dt


) will change instantaneously. The lower derivatives will not 

change instantaneously. 

The following somewhat general observations can be made from this example: 1. Mechanical 

damping constant mb comes from bearing friction and other mechanical sources; Electrical damping 

constant eb comes from the electromagnetic interactions in the motor, 2. The two damping parameters 

occur together (and should be treated together as a single unit, in analysis, simulation, design, control, 

etc.). For example, whether the response is underdamped or overdamped depends on the sum and not 

the individual damping parameters. This is a consequence of electro-mechanical coupling. 
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Note: If the characteristic curve corresponding to eq. (1) is experimentally determined, the damping 

parameter “b” that is determined from the curve, will contain mechanical damping (e.g., in bearings) as 

well since the torque is measured outside the bearings. 

4 EQUIVALENT MODEL APPROACH OF LINEARIZATION 

Another way to linearize a nonlinear model is through some criterion of equivalence. Here, a linear 

model that is equivalent to the nonlinear model is determined, based on some physical criterion. 

Approximating a distributed-parameter model by a lumped-parameter model by using energy 

equivalence is commonly done. Similarly, energy equivalence is a practical and convenient criterion of 

equivalence for linearizing a nonlinear device. Specifically, the energy absorbed (or dissipated, or work 

done) in executing a response cycle is used as the criterion for equating the two models. This approach 

is illustrated now using an example. 

4.1   Example of Linearization based on Energy Equivalence 

The nonlinear damper (e.g., a fluid damper) model (Figure 4(a)) has the constitutive relation,  

| |f cx x=  (17) 

Here, f = damping force; x = relative displacement; 
dx

x
dt

= = relative velocity; c =  damping 

parameter. When a harmonic (sinusoidal) force of frequency is applied to the damper, at steady state, 

the dominant sinusoidal component of the displacement will be 0 sin( )x x t = + ; ox = displacement 

amplitude, and  =  phase angle of the displacement with respect to the force.  

For the linear viscous damper model (Figure 4(b)), the constitutive relation is,  

f bx=  (18) 

Here, b = viscous damping coefficient. Also, for both dampers, 

0 sin( )x x t = +  (19) 

0 cos( )x x t  = +  (20)  

For the nonlinear damper, energy dissipation per excitation cycle is,   
cycle cycle

dx
u f dx f dt

dt
 = =  . 

Substitute (17) and (20): 

(2 )

2 3 3 2

0

/

 cos ( ) cos( )
cycle

u c x x dt cx t t dt

  

 

    
−

−

 = = + +  . Change 

variables: t  = + . Then, 
(2 )

at    ,   0;  At    ,  2 . Also,   t t d dt
  

    
 

−
= − = = = = . 

Substitute:
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2 /2

3 2 2 3 2 3

0 0

0 0

cos cos 4 cos   ( : cos 0 when 0 to )
2

u cx d cx d Note

 


         = =  =   

/2
2

3 2 2 3 2 3 3 2

0 0 0

00

1 1
4 cos (1 sin ) 4 sin sin 4 (1 )   

3 3
cx d cx cx




       
 

= − = − = − 
 

 . Hence,

3 2

0

8

3
u cx  =   (21) 

For the linear damper, as for the nonlinear damper, 

 
(2 ) 2 2

2 2 2 2 2 2 2

0 0 0

/ 0 0

1
cos ( ) cos 1 cos 2          

2
cycle

u b x dt bx t dt bx d bx d

    

 

        
−

−

 = = + = = +     

 
2

2 2

0 0

0

1 1 1
sin 2 2 0          

2 2 2
bx bx



    
 

= + =  + → 
 

 

2

0u bx  =   (22) 

For the energy equivalence in one cycle, u u =  with eqb b= . Hence, 
2 3 2

0 0

8

3
eqb x cx  = , or, 

0

8

3
eqb cx 


=   (23) 

It is seen from the result (23) that the equivalent damping constant depends on both the excitation 

frequency and the response amplitude (hence on the excitation amplitude). This is a common 

characteristic of a nonlinear system and also seen in the describing function method. Therefore, the 

equivalent damping constant has to be changed during the use of this linear model, depending on the 

excitation frequency. The requirement that the equivalent linear model has the same displacement 

amplitude and frequency as the nonlinear damper, is not a limitation, as we deal with an “equivalent” 

model.  

Note: At steady state (i.e., as 0 → ) 0eqb → , and the model will be able to provide very large speeds 

even with a very small excitation force. At very high frequencies (i.e.,→) eqb → , and the model 

will not move. Both situations are quite realistic.   

 

Figure 4. (a) A nonlinear fluid damper; (b) A linear viscous damper. 

x x

( )f t ( )f t

| x |cx bx

(a) (b)
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Figure 5. Damping behavior: (a) Nonlinear damping; (b) Linear viscous damping. 

From the damping characteristics shown in Figure 5, it is clear that the nonlinear damping (Figure 

5(a)) has an infinite slope at zero force (and at zero speed) unlike the linear viscous damping (Figure 

5(b)), which has a finite slope. Note: Infinite slope means zero damping constant because, slope in Figure 

5 is
x

f




while the damping constant is

f

x




. Hence, local linearization (based on the local slope) is not 

practical in this type of nonlinear damping, particularly for low speeds (and low damping forces). 

5 CONCLUSIONS 

This paper addressed the linearization of nonlinear physical devices. In particular, the local slope-

based linearization and the method that uses energy equivalence were examined. Illustrative examples 

of practical devices were analysed, to demonstrate the application of the two methods. Other possible 

methods of linearization were also indicated. 
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