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ABSTRACT

TriML- XAI - Predictive Model For Pre-Hospital Triage With
Transparency

Isuru Madurangee Uyanage
MSec. in Information Technology
Supervisor: Prof. Anuradha Jayakody
December 2024

This study develops a Machine Learning model to predict pre-hospital triage levels with enhanced
transparency, using clinical data such as vital signs and patients' chief complaints. Accurate triage
is essential to prioritize high-risk patients in emergencies. The study evaluates multiple models,
including Logistic Regression, Random Forest, Gradient Boosting, and an FCDNN with various
embeddings. Voting models were also tested, combining Logistic Regression, Random Forest, and
Gradient Boosting. Initial evaluation using a REST API-based test framework showed that each
model performed best at specific triage levels. The FCDNN with GloVe embeddings was selected
for triage level 1, achieving 90% accuracy, 1.00 recall, and a 0.99 F1-score in identifying high-risk
cases. For triage levels 2 and 3, the Random Forest model performed well, with a recall of 0.83, an
F1-score of 0.65, and an accuracy of 90%. For triage levels 4 and 5, Logistic Regression was
chosen, with a recall of 0.74, an F1-score of 0.81, and an accuracy of 60%. These results led to a
novel ensemble approach that enhances the accuracy. The proposed ensemble approach operates
through three specialized APIs corresponding to the FCDNN model, Random Forest model, and
Logistic Regression model. Upon receiving a user request, the Ensemble API invokes these three
APIs to generate individual triage level predictions. These predictions are then combined using a
Hard Voting mechanism, where the triage level with the majority vote is selected as the final
prediction. If the models produce conflicting results (each predicting a different triage level), the
system applies weighted voting, assigning weights to models based on their F1-scores to determine
the most appropriate outcome. Transparency is enhanced using SHAP, providing healthcare
professionals with insights into feature contributions for each prediction. SHAP values reveal the
factors influencing a model’s decision, helping doctors and responders understand why a particular
triage level was assigned. This added interpretability fosters trust, making the model a reliable tool

in critical, time-sensitive medical settings.

SHAP: SHapley Additive exPlanations FCDNN: Fully Connected Deep Neural Network
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