

Development of a Non-Invasive Algorithm for Anemia Detection in Women in Sri Lanka

W.I. Umaya Senanayake (MS23040380)

A THESIS SUBMITTED TO SRI LANKA INSTITUTE OF INFORMATION TECHNOLOGY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN INFORMATION TECHNOLOGY (TECHNOLOGY/MANAGEMENT/SYSTEM) December 2024 I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Anuradha Jayakody

Approved for MSc. Research Project:

MSc. Programme Co-ordinator, SLIIT

Approved for MSc:

Head of Graduate Studies, FoC, SLIIT

Declaration of originality

This is to certify that the work is entirely my own and not of any other person, unless explicitly acknowledged (including citation of published and unpublished sources). The work has not previously been submitted in any form to the Sri Lanka Institute of Information Technology or to any other institution for assessment for any other purpose.

Student Name: W. I. U. Senanayake

Student Number: MS23040380

Signature:

Date: 03.11.2024

Abstract

Project Title

W. I. U. Senanayake MSc. Information Systems **Supervisor:** Prof. Anuradha Jayakody 03.11.2024

Anemia continues to be a considerable health issue for women in Sri Lanka, impacting physical and cognitive growth, general health, and economic efficiency. Diagnostic methods, like blood tests, are invasive, time-consuming, and could be out of reach for populations with limited resources. A non-invasive algorithm is created to detect anemia in Sri Lankan women in this thesis. The algorithm utilizes readily available clinical and demographic information to decrease reliance on conventional blood tests. According to that —Development of a Non-Invasive Algorithm for Anemia Detection in Women in Sri Lanka^{II} entitled as the research title of this thesis.

The research involves data collection from women across varied demographics and regions, combined with vital health parameters and physical indicators relevant to anemia detection. Advanced machine learning models are trained on this data to identify patterns associated with anemia, offering accurate predictions without the need for invasive procedures. A core aim of the study is to enhance early detection, enabling timely intervention and reducing the overall prevalence of anemia among women.

The high sensitivity rate of the algorithm allows for effective anemia detection with minimal input data, according to key findings. Furthermore, its non-invasive characteristics make it appropriate for application in rural regions where healthcare resources are scarce.

The system successfully provides a non-invasive, accurate, and accessible method for anemia detection, using fingertip imaging and machine learning to predict anemia in real-time. With a compact device integrated into a web app, users can monitor their health easily, while healthcare providers can remotely access patient data for timely interventions. The system's cost-effectiveness and ease of use make it particularly valuable for resource-limited settings, offering a scalable solution for anemia management and broader public health impact.

Acknowledgements

My deepest gratitude goes out to all those who stood by me throughout the creation of my thesis, focusing on the development of a non-invasive algorithm for anemia detection in women in Sri Lanka. Without the essential aid, backing, and resources from different individuals and organizations, this project would not have been achievable. Without these individuals and organizations, this project would not have been achievable.

To begin with, I want to extend my heartfelt gratitude to my academic supervisor, Prof. Anuradha Jayakody, for his constant support, knowledge, and insightful suggestions throughout this research project.

They've helped me refine my thoughts and make this project a thorough guidance with their help I also appreciate the faculty and staff at SLIIT University for creating a supportive environment for research and for granting access to resources that allowed this project to achieve its fullest potential.

I also want to express my gratitude to the healthcare workers and research participants in Sri Lanka who willingly shared their time and insights, enabling the collection of important data for this study. Their contribution has been essential in guaranteeing the practical significance and usability of this study.

My friends and family are especially grateful for their unwavering encouragement, patience, and understanding during the long hours of work. The assistance they provided inspired me to keep going and remain driven, despite facing obstacles.

In conclusion, I appreciate everyone, both identified and not, who offered moral and technical assistance throughout this project. This research symbolizes not just my own hard work, but also the invaluable contributions of a collaborative team of individuals, whose generosity and commitment have been greatly cherished.

Table of Contents

Abstract	III
Acknowledgements	IV
Table of Contents	V
List of Figures	VII
List of Tables	IX
Chapter 1	1
Introduction	1
1.1 Study Background	1
1.2 Study Area	4
1.3 Analysis for Existing Anemia Screening	5
1.4 Aim and Objectives	8
1.5 Dissertation Brief	11
1.6 Significance of the Research Compared to Existing Research	16
1.7. Ethical Considerations	17
1.7 Information Constance and Transparency	18
1.9 Suggest Development	19
1.10 Data Privacy and Compliance	20
1.11 Risk Assessment	22
Chapter 2	25
Literature Review	25
2.1 Introduction	26
2.2 Provenance of Anemia in Women in Sri Lanka	27
2.3 Machine Learning Approach	38
2.4 Challengers in Implementation	29

Chapter 3	30
Methodology	31
3.1 Introduction	32
3.2 Requirement Assessment	33
3.3 Resource Assessment	33
3.4 Budget Estimation	35
3.5 Scope of the Project and Project Boundary	36
3.6 Project Boundary	35
3.7 Methodology for the Development	37
3.8 Gantt Chart	37
3.9 Data Used	38
3.10 Device Design	38 39
3.11 Algorithm Development	40
3.12 Analysis Techniques	41
Chapter 4	44
Results, Discussion and Validation	44
4.1 Introduction	44
4.2 Anemia Detective Smart Device	45
4.3 Web Application and Data	47
Collection	
4.4 : Matching Learning Algorithm	66
4.5 Validation, Integration and Testing	67
4.6 Unit Testing	68
4.7 Integration Testing	69
4.8 System Testing	70
4.9 Acceptance Testing	74
4.10 Discussion	77
4.11 Weak Points	01
4.12 Potential Future Upgrades	81 82
4.13 Test results and Outcomes	83
Chapter 5	84
Chapter 5 Conclusion	85
15.1 Conclusion	86
15.2 Recommendations	
Bibliography	88
Appendices	88
	88
	89

List of Figures

Figure	Page
Figure 1.1 Government surveys for anemia carried out	2
Figure 1.2 Anemia Prevalence by Region	3
Figure 1.3 Anemia Prevalence by Age Group in Women	4
Figure 3.2 Use case diagram for user and the system	33
Figure 3.3 ER diagram for user and the system	34
Figure 3.4 Gantt chart for the project	37
Figure 3.5 Sample of captured fingertip	39
Figure 3.6 Anemia patients finger caption	42
Figure 3.7 Non - anemia participations finger caption	42
Figure 4.1 Smart device	44
Figure 4.2 How it works	44
Figure 4.1 login interface for users	47
Figure 4.2 Chat with health care provider	47
Figure 4.3 Update personal information	48
Figure 4.4 Anemia test result send to patient	48
Figure 4.5 Dashboard of admin	51
Figure 4.6 Full user list	51
Figure 4.7 User groups	52
Figure 4.8 Full patient list	52
Figure 4.9 Data management by admin	56
Figure 4.10 Database management by admin	56
Figure 4.11 Algorithm management by admin	57
Figure 4.12 Report handling by admin	57

Figure 4.13 Database management of admin side	58
Figure 4.14 Dashboard of medical officer	60
Figure 4.15 View patient health data	60
Figure 4.16 Adding anemia educational resources	62
Figure 4.17 After view of adding educational resource	62
Figure 4.18 Send prescription for patient	63
Figure 4.19 Anemia detected patients	63
Figure 4.20 Comparison curve of hemoglobin values	87
Figure 6.1 Background analysis questionnaire	96
Figure 6.2 Interface designing questionnaire	99
Figure 6.3 Agile methodology	109
Figure 6.4 Index	110
Figure 6.5 Web page CSS styling	111
Figure 6.6 Dashboard Styling	111
Figure 6.7 Dashboard mapping	112
Figure 6.8 Dashboard icons	112
Figure 6.9 Console	113
Figure 6.10 Server connection	113
Figure 6.11 php Units	114
Figure 6.12 Locking dependencies	114
Figure 6.13 Setting validations	115

List of Tables

Table	Page
Table 1.1 Mild, moderate, severe of anemia	6
Table 3.1 Budget estimation	32
Table 4.1 AnemiaDetect VS conventional blood test values	85