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1 Introduction
Perovskite solar cells (PSCs) have become a promising third-generation photovoltaic 
technology exhibiting superior power conversion efficiencies with affordable manufac-
turing practices [1–3]. Within a decade, the power conversion efficiency (PCE) of PSC 
has improved by 20% with the rapid technological advancement of the photovoltaic field, 
showing signs of rapid early growth of PCS technology. By 2025, it has achieved 27% 
PCE at the laboratory scale, demonstrating substantial progression [4]. Perovskite solar 
cell consists of several layers of materials, including a transparent conductive electrode, 
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Abstract
Perovskite solar cells are promising renewable energy technology that faces 
significant challenges due to the Pb induced toxicity. The current study addresses 
this issue by leveraging machine learning techniques to explore Pb-free perovskite 
materials that ensure environmental sustainability and human safety. A highly 
accurate machine learning model was developed to predict Goldschmidt factor 
and the band gap, aiming to discover lead-free perovskites. Extreme Gradient Boost 
(XGBoost), Random Forest (RF), Gradient Boost Regression (GBR), and Ada Boost 
Regression (ABR) models were employed for this purpose. The findings exhibit that 
XGBoost delivers the most precise and reliable results for Goldsmith tolerance factor 
prediction with an accuracy of 98.5%. Furthermore, GBR model, combined with 
K-nearest neighbors (KNN) model delivers an impressive accuracy of 98.7% for the 
band gap predictions. 49 Pb-free perovskite materials were screened out considering 
the toxicity and the abundance. Utilizing Principal Component Analysis (PCA) and 
K-means clustering, six optimal materials (KBiBr3, KZnBr3, RbBiBr 3, RbZnBr3, MAGeI3, 
and FAGeI3null) were identified as the potential environment-friendly materials for 
photovoltaic applications. These results show the crucial role of machine learning 
and statistical analysis in discovering nontoxic and environmental-friendly perovskite 
materials, advancing the development of sustainable energy solutions.
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an electron transport layer, a perovskite structured light absorbing layer, a hole transport 
layer, and a back electrode. ABX3 is the standard formula of perovskite structure. Here, 
A is denoted as a monovalent cation such as CH3NH3

+, Cs+, Rb+, or their mixtures. B is a 
divalent cation such as Pb2+, Sn2+, Ge2+, or a blend of these metals. X indicates monova-
lent anions, typically halides, such as I-, Br-, Cl-, or a mixture of these halides.

Studies have proved that Pb-based perovskites more favorably achieve higher effi-
ciency levels of PSCs [5, 6]. Pb-based perovskites show extraordinary characteristics 
due to their high absorption all along the visible light range, extended carrier diffusion 
lengths, low-temperature processing, and tunable bandgap [7, 8]. The high absorption 
coefficient allows great light harvesting even with thin absorbing layers. They also exhibit 
efficient charge transport and collections due to long charge carrier diffusion lengths. 
Furthermore, Pb-based perovskites show high defect tolerances, so the effect of defect-
induced trap states on the device performance is minimal [9]. However, the inclusion 
of Pb is a serious issue due to its toxicity to health and the environment [10–12]. When 
solar panels are exposed to the open environment, PbI2 degrades as a substance due to 
moisture. That may result in serious health issues, including cardiovascular diseases and 
neurological and reproductive system damage [13]. In addition, lead contamination in 
water resources and soil has long-term impacts on humans, animals, and plants [3, 14]. 
These detrimental effects of Pb have opened new avenues for discovering Pb-free alter-
natives with suitable photovoltaic properties for solar cells.

The perovskite structure can be found in a diverse range of compounds, allowing for 
a number of material combinations. However, these manifold possibilities mean that 
a large number of materials should be investigated, making it a time-consuming pro-
cess. Currently, the Density Functional Theory (DFT) based simulation is utilized to find 
the appropriate perovskite materials for solar cell applications [15, 16]. However, this 
approach is associated with high computational costs and requires extensive quantum 
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chemistry knowledge. Furthermore, it is common to observe differences between exper-
imental measurements and theoretical predictions [17]. Data-driven research has gained 
widespread attention due to its efficiency and effectiveness [18]. In this approach, pre-
computed materials databases and statistical techniques effectively screen the most 
appropriate candidates. Machine learning (ML) is being increasingly utilized to predict 
crystal structures, develop predictive models for material properties, and develop inter-
atomic potentials [19–22].

Structural formability and band gap of perovskite material plays an important role in 
deciding the appropriateness of perovskite materials for different optoelectronic applica-
tions, particularly solar cells. Structural formability is the ability of a material to fit into a 
perovskite ABX3 crystal structure. The structural formability of the perovskite materials 
is characterized by the Goldsmith tolerance factor (t), which verifies the geometric com-
patibility between A cation and BX6 octahedron. The band gap of the materials is promi-
nent since it decides the photon energy range that a perovskite material can absorb with 
high efficiency, determining the optical and electronic characteristics of the semicon-
ductors [3]. The optimally chosen bandgap can absorb a significant portion of the solar 
spectrum, hence enhancing the overall efficiency of the solar cell. The bandgap of the 
material can be tuned by compositional engineering by adjusting the A, B, or X sites 
in the perovskite structure. Therefore, while searching for new perovskite materials, the 
application of bandgap enables the rapid identification of suitable materials. Different 
machine learning models have been employed to predict the bandgap of the perovskite 
materials and, thereby, identify the promising candidates for solar cell applications.

In a recent study, CatBoost algorithms has been identified as the best performer in 
bandgap prediction, with the accuracy of 92.3% [23]. Gradient Boosted Regression Trees 
(GBRT) model demonstrated an accuracy of 87% in the bandgap prediction of lead-free 
halide double perovskites [24]. Using the RF model, 1252 perovskite materials were iden-
tified as top candidates based on the formability screening, where bandgap prediction 
reached an accuracy of 87% using the XG Boost regression algorithm [25]. One hundred 
thirty-two stable free hybrid organic-inorganic perovskites (HOIPs) materials were iden-
tified by a combined methodology of ML and DFT calculations in one such study [6]. 
The most accurate model of bandgap prediction was the GBR model, having an accuracy 
rate of 82.7%.

Despite the significant progress made in discovering perovskite materials using ML, 
further research is needed to improve the accuracy of the prediction model and integrate 
additional techniques to identify a few of the most promising materials for experimen-
tal investigations. In this study, Extreme Gradient Boost (XGB), Random Forest (RF), 
Gradient Boost Regression (GBR), and Ada Boost Regression (ABR) models have been 
used to predict the Goldschmidt factor and the band gap to identify Pb-free perovskites. 
Furthermore, the K-nearest Neighbors (KNN) model was applied to enhance the accu-
racy of band gap prediction. This hybrid approach of the band gap prediction adds new 
insights into ML-driven new perovskite material discovery. In the existing studies, a 
large number of possible perovskite materials have been screened out; however, no sys-
tematic approach has been applied to refine the selection further, except the DFT based 
calculations. Therefore, Principal Component Analysis (PCA), a statistical technique, 
was employed in the predicted data, facilitating the identification of the most appropri-
ate nontoxic perovskite materials for photovoltaic applications.
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2 Methods
The methodology followed for conducting this study has been demonstrated as a flow 
chart in Fig. 1.

2.1 Data processing

A well-curated HTSperoDB high-throughput perovskite database, which is well-known 
for its extensive computational dataset, was used as the primary data source for band 
gap prediction [26]. The dataset employed for Goldsmith tolerance factor prediction 
was based on a previously published study [27]. The categorical dataset in HTSperoDB, 
phase details, was converted into a binary feature using one-hot encoding method by 
Python programming within a Google Colab environment. Missing values were identi-
fied as null entries in the dataset and all rows containing missing values were removed. 
The remaining dataset was filtered to retain only structurally valid and thermodynami-
cally stable perovskite materials by excluding non-perovskite phases and thermodynami-
cally unstable materials based on their stability score. This data pre-processing approach 
filters out reliable datasets, ensuring the accuracy of the analysis.

2.2 Feature selection

This machine learning approach selected three critical target properties, including form-
ability, structural stability, and band gap of perovskite materials, to ensure compre-
hensive and precise modelling. In formability and structural stability, ionic radii were 
selected as the key features that determine the effective formation of the perovskite 
materials. The model utilized the Goldschmidt tolerance factor indicates in Eq. (1).

t = rA + rX√
2(rA + rX)  (1)

Where rA, rB, and rX, are the ionic radius of the A, B site cations, and X site anions, 
respectively.

The size of the A, B, and X ions determines the Goldschmidt tolerance so that ionic 
radii affect the structural stability of the perovskite structure. To retain the 3D perovskite 
structure, the value of t should lie between 0.81 and 1.00 range [28]. Deviations from this 
range can lead to distortions or instability in the crystal structure. Therefore, calculating 
the Goldschmidt tolerance factor using ionic radii makes it possible to predict the struc-
tural stability and likelihood of forming a stable perovskite crystal structure.

Fig. 1 Flow chart of ML framework
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In the band gap model, ionic radii, electronegativity, and ionization energy were 
selected as primary features as they have a theoretical correlation with the electronic 
structure of perovskite materials. These properties primarily influence crystal geometry, 
bond character, and energy level distribution, which affect the band gap of the materials. 
Consequently, the light absorption of the perovskite material and the efficiency of the 
solar cell are also affected [29].

Lattice dimensions and bond angles within the ABX3 perovskite structure are gov-
erned by the ionic radius. The size disparities of A, B, and X site ions change the vol-
ume of the unit cell and cause octahedral tilting of the BX6 framework. These structural 
changes affect orbital overlaps between metal and halide ions, altering band dispersion 
and bandgap width. Smaller or mismatched ionic radii can distort the crystal structure, 
decreasing orbital coupling and broadening the bandgap, whereas perfectly matched 
ionic sizes tend to create favorable electronic properties [30].

In the case of electronegativity, it affects the distribution of electron density within the 
crystal lattice, which is crucial for forming the band structure and determining the band 
gap. Larger electronegativity differences between ions can result in enhanced polariza-
tion within the material. This phenomenon affects the energy level shifting, the positions 
of the valence band and the conduction band to the Mulliken theory in electronegativity 
[31]. Consequently, it influences the electronic properties and overall performances [32].

The selected third characteristic is the ionization energy, which is required to eject an 
electron away from an ion or an atom. Specifically, the ionization energy of the A-site 
cation affects the lattice strain, which impacts the bandgap indirectly. Materials with 
lower ionization energy tend to have more shallower valence bands, leading easier elec-
tron excitation under solar illumination. This leads to narrower band gaps and enhanced 
photon absorption. Conversely, high ionization energy results in deeper valence bands 
and wider bandgaps [33]. Therefore, regulating ionization energy is important for opti-
mizing light absorption and charge generation in PSCs.

2.3 Model selection

In selecting the model, different ML models, including Extreme Gradient Boost (XGB), 
Random Forest (RF), Gradient Boost Regression (GBR) and Ada Boost Regression (ABR) 
were compared, and the best suitable highly accurate models were selected to be fur-
ther optimized. Each model has its typical data ideal for data processing, and sampling 
verification methods like cross-validation and independent test results can determine 
each model?s accuracy. The optimal model for the data set has been selected out of these 
methods.

2.4 Model training

The model learns to recognize patterns within training data through an iterative process 
of parameter adjustment in a manner that reduces differences between observed and 
predicted values. Here, the data was divided into two sub-datasets; 75% of the data was 
taken for model training, and the remaining 25% was used to test the performance of the 
model. This split makes it easy for the model to be tested on unseen data, hence allowing 
for a better estimate of the capacity of the model to be generalized.
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2.5 Model evaluation

ML model evaluation is a process of assessing the ability of the trained model to per-
form on novel or unseen data. This evaluation confirms that the model generalizes 
well beyond the trained dataset and delivers accurate and reliable predictions in real-
world scenarios. The commonly available model evaluation methods are independent 
tests, cross validations, and bootstrapping. In this study, the generalization error of the 
method was evaluated using the independent test. Because the model aims to predict 
unknown samples, a testing set is necessary to assess the generalization ability of the 
model accurately. The error obtained from the testing set serves as an approximation of 
the generalization error. As this study involves regression tasks, regression models were 
utilized to evaluate the model, including Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and R2.

2.6 Hyperparameter selection

To optimize model performance and ensure robust generalization, hyperparameter tun-
ing was conducted for each machine learning model using grid searching method. The 
optimized hyperparameters are tabulated in Table 1.

2.7 Model application

Various new perovskite materials were generated, systematically exploring the possible 
combinations of elements to predict the selected critical properties.

The elements highlighted in Fig. 2 indicate the candidates selected for substitution at 
the A, B, and X sites of the ABX3 perovskite structure, based on established perovskite 
chemistry principles. A-site cations (shown in brown) are typically large monovalent 
ions such as K+, Rb+, Cs+ These ions occupy the cuboctahedra voids in the perovskite 
lattice and contribute to structural stability through size matching, assessed via the 
Goldschmidt tolerance factor [34]. In addition to these selected A site cations, MA+ 
(CH3NH3

+) and FA+ (HC(NH2)2
+) were also selected as suitable candidates due to their 

proven compatibility with the perovskite crystal structure and their widespread use in 
high-performance hybrid PSCs.

Cations such as Bi³+, Zn²+, Ge²+, and Sn²+, which have different valence values, were 
chosen as the B-site (green). These cations play a direct role in defining the electronic 
structure and bandgap of the material. X-site anions (blue), primarily halides such as 
Cl-, Br-, and I- bridge B-site cations and influence band edge positions, optical absorp-
tion, and ionic mobility [35]. Some elements, such as In, Ba, and Ag, have suitable ionic 
sizes and oxidation states that permit them to occupy either the A site or the B site in the 
ABX3 perovskite structure, depending on the specific composition and crystal chemis-
try. Hence, they are colored with a combination of brown (A site) and green (B site) in 
Fig. 2 to represent their dual-site potential.

Table 1 Values of the optimized hyperparameters used in each model
Model List of optimized hyperparameters Values of optimized hyperparameters
GBR n_estimators, learning rate n_estimators=100, learning rate=0.1
XG Boost n_estimators, learning rate n_estimators=100,

learning rate=0.1
ABR max_depth, n_estimators max_depth=3, n_estimators=100
RF n_estimators, verbose n_estimators=1000, verbose=1
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By exploring all possible combinations of these elements, 1,680 unique perovskite 
materials were generated through a systematic algorithm that iterates over all possible 
combinations of selected components. Then, the filtering criteria were applied based on 
the Goldsmith tolerance factor and the bandgap range (Table 2) to identify the formable 
perovskite materials with optimal bandgaps for solar cell applications.

The selected elements were chosen based on a combination of factors, namely form-
ability in perovskite-type structures, compatibility with solution processing, non-toxic-
ity, and abundance. This element selection strategy supports the generation of a diverse 
and realistic dataset for machine learning predictions and material screening.

The toxicity and the abundance of the elements were considered to filter out the final 
set of perovskite materials. To evaluate toxicity and resource abundance, we employed 
several indicators. For toxicity, four primary measures were utilized: the elements' radio-
activity, compliance with the European Union's Restriction of Hazardous Substances 
(RoHS) directive, the attributes of concern listed by the European Chemical Agency 
(ECHA), and the compound toxicity.

To evaluate the resource abundance of the selected materials, global crustal abun-
dance values were obtained from the United States Geological Survey. Furthermore, 
material criticality and supply risk information were based on the European Commis-
sion's Critical Raw Materials Report (2023). An algorithm based on these indicators, 

Table 2 The data filtering criteria
Goldsmith Tolerance Factor 0.81 to 1.00
Bandgap Range 1.3 to 1.6 eV

Fig. 2 The standard perovskite structure and selected elements for A, B, and X sites of the perovskites. A-site cat-
ions in brown, B-site cations in green, and X-site anions in blue
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both non-toxic and abundant perovskite materials, was selected, ensuring the safety and 
sustainability of solar cell applications.

3 Results and discussion
3.1 Goldsmith tolerance factor prediction

The first subset of 537 data points was built to predict the Goldsmith tolerance fac-
tor of the perovskite material, which determines its structural formability. For the 
selected models, the results of regression tasks are depicted in Table  3. According to 
the results, the XGBoost model attains the lowest MSE and MAE values of 0.00014 and 
0.0070, respectively, which are nearest to zero alongside the highest R² value of 0.9850, 
approaching one.

Figure 3 presents the actual versus predicted values for the Goldschmidt tolerance fac-
tor. Notably, the XGBoost model demonstrates a concentration of data points close to 
the central reference line, revealing higher accuracy compared to other models. These 
findings exhibit that XGBoost delivers the most precise and reliable predictions over 
other evaluated models for Goldsmith tolerance factor prediction.

Table 3 ML model type with their corresponding result for goldsmith tolerance factor prediction
ML model MSE MAE R2

XG Boost 0.00014 0.0070 0.9850
GBR 0.00017 0.0092 0.9821
RF 0.00036 0.0098 0.9629
ABR 0.00129 0.0272 0.8693

Fig. 3 Demonstration of results of different ML models used in predicting Goldsmith tolerance factor (a) XGBoost 
(b) GBR (c) RF (d) ABR. The red dots represent the data points, and the blue line represents the ideal case of predic-
tion (prediction=true data)
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3.2 Band gap prediction

The band gap is a crucial parameter in the exploration and development of novel 
perovskite materials for photovoltaic applications. Consequently, the second subset of 
data with 218 data points was curated to predict the bandgap of the perovskite materials.

As per the comparison of four different models indicated in Table  4, The Gradi-
ent Boost Regression (GBR) stands out as the best suited model, achieving the lowest 
MSE and MAE values of 0.4531 eV2 and 0.6169 eV respectively, along with the highest 
R² value of 0.7815. Figure 4 illustrates the actual bandgap value vs. the predicted band-
gap values. The tight clustering of red dots around the ideal prediction line compared to 
other models demonstrates the effectiveness of the GBR model in predicting the band 
gap values.

Nonetheless, the accuracy of the models in predicting bandgap parameters, reflected 
by the MAE, MSE, and R² values, does not reach the high levels observed for tolerance 
factor predictions. This may be attributed to the smaller dataset available for bandgap 

Table 4 ML model type with their corresponding result for band gap
ML model MSE

(eV2)
MAE
(eV)

R2

GBR 0.4531 0.6169 0.7815
ABR 0.9140 1.2053 0.5733
XGBoost 0.6005 1.5574 0.4486
RF 0.6486 1.5359 0.4562

Fig. 4 Demonstration of results of different ML models used in predicting band gap (a) GBR (b) ABR (c) RF (d) 
XGBoost
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predictions, which has 218 data points. Small datasets are particularly susceptible to 
overfitting, where models learn noise rather than the underlying data patterns. GBR 
can include regularization techniques that help mitigate this risk. While XGBoost also 
has strong regularization capabilities, its complexity can make it more problematic to 
tune effectively fig. 4 for smaller datasets. Further, the XG Boost cannot harness the full 
potential of a limited dataset without hyperparameter tuning. In RF, the model can suf-
fer from overfitting with small-sized datasets as it relies on the aggregation of multiple 
decision trees.

3.2.1 Band gap model optimization

A significant deviation between the predicted and actual band gap values was observed 
in the selected model. The K-nearest neighbors (KNN) model was employed to address 
this disparity, proving the highest accuracy for this process.

Using the actual band gap values as outputs and the predicted values as inputs from 
the GBR model, a relationship equation between the two sets of values was generated 
using the KNN model. Subsequently, this equation was applied to the predicted band 
gap values of newly found perovskites, resulting in optimized band gap values. The scat-
ter plot after optimization is displayed in Fig. 5.

The optimized bandgap gap values are further aligned with the ideal prediction line, 
exhibiting an improvement in accuracy and optimization. This is reflected in the fact 
that the MAE decreases from 0.4531 eV to 0.0421 eV while MSE values decrease from 
0.6169 eV2 to 0.1088 eV2, approaching zero. In addition to that, the R2 value has signifi-
cantly enhanced from 0.7821 to 0.9873, moving closer to 1, exhibiting a strong correla-
tion between the actual value and the optimized band gap value.

It has been reported that the highest accuracy achieved by the artificial neural network 
(ANN) model for bandgap prediction yielded an R² value of 0.9409 [36]. Our optimized 

Fig. 5 Scatter plot of actual band gap vs. optimized band gap after optimization
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Gradient Boosting Regression (GBR) model, combined with the K-nearest neighbors 
(KNN) model, outperformed this result, achieving an R² value of 0.9873. A more recent 
study by Subham and Chatterjee also reported an R² value of 0.9216 using the CatBoost 
Regression for bandgap prediction [23].

3.3 Final selection of optimal perovskite materials

Using the trained models, band gaps and Goldsmith tolerance factor values for all 1628 
perovskite materials were predicted. The optimum range for band gap and Goldsmith 
tolerance factor values were determined based on the findings of the literature. It was 
identified that 0.81-1.00 is the optimal range of the Goldsmith tolerance factor for the 
stable formation of perovskite and the band gap within the 1.3–1.6 eV range for pho-
tovoltaic application [27]. This criterion filtered out 139 perovskite materials. Subse-
quently, 49 lead-free materials were selected after assessing their toxicity and abundance.

3.3.1 Principal component analysis and data cluster analysis

After identifying 49 nontoxic perovskite materials, principal component analysis (PCA) 
was performed to retain the essential information. PCA facilitates understanding the 
relationships among the different properties, reducing the complexity of the dataset 
and highlighting the key factors. To further refine the dataset, K-means clustering was 
applied to divide the materials into several groups according to their similarity in shared 
parameters such as band gap and structural compatibility.

This method enabled the classification of materials into distinct groups with corre-
sponding properties, further streamlining the selection process. The combined PCA and 
K-means clustering approach is instrumental for narrowing down identified perovskite 
materials for further analysis.

As per Fig. 6; Table 5, the dataset has been divided into four distinct clusters (clus-
ters 0, 1,2, and 3). Table 5 illustrates a detailed list of materials assigned to each cluster. 
According to the reports, the optimum band gap value for the best performance of the 
PSC is recorded as 1.53 eV to 1.56 eV for single junction solar cells [37]. Therefore, clus-
ters 0 and 2 can be excluded as the predicted bandgaps are outside the optimum range. 
This exclusion narrows the focus to Cluster 1 and Cluster 3, which consists of perovskite 
materials with band gap values closer to the ideal range, making them more appropri-
ate in photovoltaic applications. If the synthesis feasibility is taken into consideration, 
cluster 3 can be isolated as it contains Al, Bi, Zn, K, Rb, Ge, which are abundant and 
cost-effective.

Further, there are established methods for fabricating iodide and bromide-based 
perovskites, making these materials easy to incorporate into existing manufacturing sys-
tems. In cluster 1, only five perovskite materials have bandgap values that lie between 
the ideal bandgap range. However, four of them are Ag based, making them less feasible 
for large-scale applications as Ag is quite expensive. This economic limitation further 
reduces the practical applicability of the cluster 1 materials for photovoltaic applica-
tions. As a result of the above reasons, six materials, including KBiBr3, KZnBr3, RbBiBr3, 
RbZnBr3, MAGeI3, FAGeI3 from cluster 3 can be selected for further research.

A couple of studies have reported the synthesis of hybrid Ge iodide perovskites using 
complex methods such as hot co-precipitation, which is a multi-step process requir-
ing elevated temperatures and an inert reaction atmosphere, often involving hazardous 
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substances like hypophosphorous acid (H3PO2) and concentrated hydroiodic acid (HI) 
[38]. Another method, the hot-injection technique, also relies on relatively high temper-
atures and must be conducted under vacuum conditions [39]. In addition to that, the 
relatively complex solvothermal synthesis of 0D Rb7Sb3Br16 has also been reported [40]. 
Nevertheless, Shiyu Yue and coworkers have demonstrated a simpler, room-temperature 
reactions using generalized and adaptable methods to synthesize Ge-based perovskites 
(MAGeI3, and FAGeI3) [41]. These findings confirm the experimental feasibility of syn-
thesizing the identified potential materials. Therefore, future research is encouraged to 
explore and develop facile, scalable manufacturing techniques for these newly identified 
compounds.

4 Summary and conclusions
Our research addresses the significant challenges and opportunities associated with 
replacing lead in perovskite solar cells by applying machine learning. The findings sug-
gest XGBoost is the most precise and reliable model in predicting the Goldsmith tol-
erance factor, and GBR is the best model for bandgap prediction. The accuracy of the 
bandgap prediction model was enhanced by utilizing the KNN model, achieving over 
98% accuracy. By incorporating health and sustainability perspectives, potential can-
didates were effectively filtered out from the vast compositional range of perovskites. 

Table 5 Cluster based material classification after PCA
Cluster 0 AgSiBr3, CsBiI3, CsTiBr3, CsVBr3, CsYBr3, CsZnI3, KBiI3, KGaI3, KScBr3, KTiBr3, 

KVBr3, KZnI3, RbBiI3, RbScBr3, RbTiBr3, RbVBr3, RbZnI3, MANaF3, FANaF3

Cluster 1 AgGaI3, AgHfI3, AgScBr3, AgZnI3, CsAgCl3, CsAgBr3, InSiI3, KAgCl3, 
KAgBr3, RbAgCl3, RbAgBr3, MANaI3, MASrBr3, FANaI3, FASrBr3

Cluster 2 AgCrBr3, AgFeBr3, AgInBr3, AgMgBr3, AgScI3, AgZrBr3, InAlI3, RbYBr3

Cluster 3 AgAlI3, KBiBr3, KZnBr3, RbBiBr3, RbZnBr3, MAGeI3, FAGeI3

Fig. 6 Clusters and Representative points
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Forty-nine ABX3 perovskite materials were identified as promising alternatives to lead-
containing perovskites. Then, utilizing PCA and K-means clustering six lead free materi-
als, including KBiBr3, KZnBr3, RbBiBr3, RbZnBr3, MAGeI3, and FAGeI3 were identified 
as optimal candidates for photovoltaic application due to their synthesis feasibility and 
ideal bandgap. In conclusion, our research emphasizes the pivotal role of machine learn-
ing in identifying new materials in promoting sustainable energy technologies.
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