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Abstract Natural language commands are generated by
intelligent human beings. As a result, they contain a lot
of information. Therefore, if it is possible to learn from
such commands and reuse that knowledge, it will be a
very efficient process. In this paper, learning from such
information rich voice commands for controlling a
robot is studied. First, new concepts of fuzzy coach-
player system and sub-coach are proposed for control-
ling robots with natural language commands. Then, the
characteristics of the subjective human decision making
process are discussed and a Probabilistic Neural
Network (PNN) based learning method is proposed to
learn from such commands and to reuse the acquired
knowledge. Finally, the proposed concept is demon-
strated and confirmed with experiments conducted using
a PA-10 redundant manipulator.

Keywords Coach-player system Æ Sub-coach Æ
Natural language commands Æ Subjective decisions Æ
PNN

1 Introduction

Robots found their first real-world application on the
factory floor. Still, heavy industry is the environment in
which robotics plays its most important role. However,
working robots are gradually spreading, gradually
improving, and gradually moving into new areas. If the
dreams of researches come true, in future, robots will
assist the elderly and disabled people into and out of
wheelchairs and beds, be conversant in several lan-
guages, watch over babies, and provide a sympathetic
ear to the lonely [1, 2].

Although, initially, the importance of robots was
found mainly in heavy industries, isolated from people,
now a new important dimension has been added: that is,
the human–robot interaction. The area of human–robot
interaction has been developed into such an extent, even
socially interactive robots have received the attention of
researchers. Socially interactive robots are capable of
showing human like behavior when dealing with another
human, i.e., communicating as peers using natural lan-
guages, gestures, etc. [3].

As the human–robot relationship is becoming more
important, the studies on human–robot communica-
tion have been given a high priority. The importance
of voice communication with robots can be found in
the areas like nursing and aiding elderly people,
helping disabled people, helping people in complex
tasks such as surgery and implementing space re-
stricted systems where the usage of other input-output
devices is not feasible.

Among recent related work, we can identify two lines
of research both of which are equally important in
achieving true human-like behavior. This is a result of
having two viewpoints for the same problem.

One line of research concentrates on embedding
robots with more human-like cognitive capabilities. For
example, Oates et al. [4] presented an unsupervised
learning method that allowed a robotic agent to identify
and represent qualitatively different outcomes of
actions. They used human experience to evaluate the
method. Roy [5] presented a computational model that
was able to learn words from multisensory data. In more
recent interesting work presented in Roy et al. [6], they
proposed a set of representations and procedures that
enabled a robotic manipulator to maintain a ‘‘mental
model’’ of its physical environment by coupling active
vision to physical simulation with the view of creating an
interactive robot, which was able to engage in cooper-
ative task with human. Ballard and Chen [7] and Chen
and Ballard [8] presented a multimodal interface that
was able to learn words from human users in an unsu-
pervised manner in which the users performed everyday
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tasks while providing natural language descriptions of
their tasks.

This line of research is very important; however, due
to extremely demanding technical and theoretical
requirements of such systems, still they have a long way
to go in order to be applied in practical domains.

The other line of research concentrates on controlling
ordinary robots by human-friendly means. By ordinary
we mean the robots that are controlled by conventional
methods and are already being utilized for real work.
For example, Lin and Kan [9] proposed an adaptive
fuzzy command acquisition method for controlling
machines using natural language commands such as
‘‘move forward at a very high speed.’’ In Pulasinghe et al.
[10], similar commands were used to control a mobile
robot handling out-of-vocabulary words. Chatterjee
et al. [11] and Pulasinghe et al. [12] discussed how robot
manipulators could be controlled with fuzzy voice
commands to perform assembling tasks.

The advantage of this line of research is that it en-
ables us to develop intelligent human interfaces for
existing robotic systems.

The work presented in this paper is related to the
second line of research discussed above in the sense that
it concentrates on controlling ordinary robotic systems
by human friendly means rather than developing a robot
with human like cognitive capabilities.

In natural language communication, encountering
words and phrases with fuzzy implications is inevitable.
Therefore, any system that accepts true natural language
commands should be able to understand their fuzzy
meanings. On the other hand, natural language com-
mands are inherently information rich because they are
generated by experienced and intelligent human beings.
They are very useful in machine control because they can
fine-tune the performance of a machine. For example, a
command like ‘‘move slowly’’ may contain much infor-
mation regarding the nature of terrain, the distance to
obstacles, etc. Therefore, learning from such commands
and re-using that knowledge effectively may be quite
useful.

This paper proposes a method of learning from
information rich fuzzy voice commands for controlling a
robot.

First of all, two new concepts, fuzzy coach-player
system and sub-coach, are introduced. The analogy
between the fuzzy coach-player system concept and the
real-world relationship between a coach and a player is
discussed. The sub-coach concept is proposed to elimi-
nate the limitations of the fuzzy coach-player system.
The possibility of learning from natural language
commands is then discussed. Inherent subjective nature
of natural language commands is discussed and a
mathematical model which enables learning from such
commands is proposed. For the interpretation of fuzzy
and non-fuzzy components of natural language
commands, a method of interpretation of fuzzy voice
commands is explained by using simple fuzzy reasoning.
Moreover, implementation details of the sub-coach are

discussed, in which a modified version of the conven-
tional Probabilistic Neural Network (PNN) architecture
is used in the implementation of learning capability of
the sub-coach. Finally, the effectiveness of the present
approach is demonstrated using some experimental re-
sults obtained from a system implemented for control-
ling a redundant manipulator.

The organization of this paper is as follows: Fuzzy
coach-player systems are introduced in Sect. 2. Learning
from fuzzy voice command is described in Sect. 3. Sec-
tion 4 discusses the interpretation of natural language
commands. Implementation of the sub-coach is dis-
cussed in Sect. 5. Section 6 presents the experimental
results and Sect. 7 summarizes what is presented in this
paper and presents conclusions.

2 What are fuzzy coach-player systems?

2.1 Coach player system

Consider the process of controlling a robot to achieve a
complex task using voice commands. In order to do this
cooperative task successfully, some information needs to
be exchanged between the robot and the human. Flow of
information from human to robot is via verbal com-
mands. Flow of the same from robot to human is via
visual observation of robot by human.

The human user may make the robot complete a
certain task in several steps by issuing a series of com-
mands generated by observing the robot’s behavior at
each step. This is similar to the relationship between a
coach and a player in a certain sport or a game.
Therefore, this type of a system can be called a coach-
player system; in particular, it is called a fuzzy coach-
player system when fuzzy commands are used. This
concept is illustrated in Fig. 1.

There are three important features in a coach-player
system.

1. Command interpretation and execution by the player:
Player interprets the fuzzy user command according
to the current context and performs some actions.

Evaluation of
motion result

Voice command for modifying
the player motion

(e.g., move right more speedy)

Direct measurement
of player

PlayerCoach

Fig. 1 Concept of fuzzy coach-player system
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The result will be a change in its state or perfor-
mance.

2. Evaluation of the player by the coach: Coach ob-
serves the change in state or performance of the
player and evaluates it subjectively. This subjective
evaluation depends on the coach’s knowledge, expe-
rience, attitude, etc. Depending on the evaluation, the
coach decides whether to issue another improvement
command or not.

3. Improvement of the player: As a result of obeying to
coach’s commands, the player will continuously im-
prove its performance toward coach’s intended
direction. This will continue until the coach is satis-
fied.

For example, consider a system where a human is
guiding a mobile robot to move from one point to
another. A typical series of commands would be,

• ‘‘move forward slowly’’
• ‘‘move little more forward’’
• ‘‘turn to right’’
• ‘‘move far’’
• ‘‘stop,’’ etc.

The user may continue to command like this until the
robot reaches the destination.

Although this kind of a coach-player system is useful,
there is a disadvantage also: i.e., the need to issue the
same command over and over. By eliminating this, it is
possible to improve the proposed system further. A
concept of a sub-coach is introduced as the solution.

2.2 Sub-coach

Sub-coach is a software agent which stands in between
the user (coach) and the robot (player). It can learn from
fuzzy voice commands issued by the user and can use
that knowledge to control the robot without getting help
from the user. However, the sub-coach can consult the
coach in situations where it does not have sufficient
knowledge to handle a particular situation.

The concept of sub-coach for learning was first pro-
posed in [13]. There the concept was demonstrated with
a crisp decision making sub-coach. The same concept
was further amplified by incorporating both crisp and
fuzzy decisions in [14] and [15].

In a simple coach-player system, the user directly is-
sues commands to the robot. Once a sub-coach has been
introduced to this type of a system, initially, it will be
just an observer. That is, it observes commands issued
by the user and the actions performed by the robot in
response to those commands. Thus, gradually the sub-
coach can build a knowledge which is sufficient to issue
commands to the robot, to perform activities which are
similar to what the robot did during the learning period,
consulting the human user only when required. The
sub-coach concept is illustrated in Fig. 2. Controller

interprets fuzzy voice commands and issues the control
commands to the robot in the required format. The sub-
coach learns from both user commands and the status of
the robot.

3 Learning from fuzzy voice commands

When controlling a robot with voice commands, the
command of the user depends on the state of the robot
world. Here, the robot world includes the robot itself,
the working environment and the final objective to be
achieved. The user evaluates the world state subjectively
using his knowledge and experience, and issues the next
command which he thinks the most appropriate. For
example, when controlling a mobile robot to navigate
through obstacles, if the user thinks that the robot might
clash with an obstacle ahead if it continues to travel at
the current velocity, he might say ‘‘robot, slow down.’’ In
response, the mobile robot will reduce it’s speed. Con-
sequently, the world state will change; thus avoiding
collision.

Therefore, the process of controlling a robot using a
series of voice commands can be seen as changing the
robot world state repetitively until the required target is
achieved.

3.1 Robot world state

Robot world state is defined using two kinds of
parameters. One is, the kind of parameters which defines
the state of the robot itself: for example, velocity, posi-
tion, etc. The other is, the kind of parameters which
indicates the closeness to the final objective: for example,
distance to the target point to be reached, the depth of a
hole drilled, etc.

Assume, during the learning phase, that the human
user controls the robot to complete a set of jobs of
similar nature. Each job is completed in a number of
steps. In each step, the user has to issue a voice com-
mand depending on the current robot world state.

Let S be the complete set of all possible world states
and Si be a general element of the set. Then it follows
that,

Operator
(Coach)

Visual observation

Controller

Subjective evaluation

Fuzzy voice command State

Sub-coach

Robot
(Player)

Fig. 2 Introduction of a sub-coach into a coach-player system
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Si ¼ fx1; x2; . . . ; xp; y1; y2; . . . ; yrg ð1Þ

Here, x1,x2,...,xp are the parameters that define the state
of the robot itself, where p is the number of such
parameters. y1,y2,...,yr are the parameters which indicate
the closeness to the final objective and r is the number of
such parameters. (p+r) is the total number of parame-
ters required to define a world state. Thus, a world state
is a (p+r) dimensional entity and it is a member of a
(p+r) dimensional state-space. All these parameters are
scalar quantities. Whenever a vector is involved, its
components are used as different parameters. We will
come to more concrete definitions once we come to the
implementation.

3.2 Learning by the sub-coach

Let C be the complete set of all valid commands and Cj

be a general element of the set. Assume that the com-
mand issued by the user in response to the world state Si

is Cj. Then, we have

f : S ! C ð2Þ

Here, f is a subjective function which depends on the
knowledge, experience, attitude, etc. of the user. For
example, Ci can be something like ‘‘go very little.’’

Since the robot world state may depend on the values
of various continuous parameters, S would be continu-
ous. Thus, S may contain infinite number of points. On
the contrary, due to the limitations of any feasible sys-
tem, the number of valid commands is limited. There-
fore, we can assume that C is discrete and finite. Thus, f
is a serjective function as shown in Fig. 3 [16].

The objective of learning by the sub-coach during
training is to learn the subjective function f so that in a
later case, it can find the correct command corre-
sponding to a world state not encountered during the
training. However, since C contains only a finite number
of elements, this problem is reduced to a pattern classi-
fication problem where the number of classes is equal to
the number of valid commands. Thus, if the sub-coach
can classify an incoming pattern correctly, it can make
correct decisions.

Theoretically, any element in S can be mapped to any
element in C. Since the elements of S are comprised of
an infinite number of continuous values, if the abrupt
decision changes between very close states tend to be

frequent, the above classification will fail. However, the
argument for decision making based on classification is
further supported by the inherent subjective nature of
human decisions.

3.3 Subjective decision making

The most significant feature in the above explained
decision making process is originated from the fact that
the human user commands are fuzzy in their very nature.
That means, although we define a state of the robot by
various measurable parameters, the human user under-
stands them when he makes a decision only using his
own senses. Therefore, the decisions made by the user
are not objective; rather they are subjective decisions.

Let us consider an example illustrated in Fig. 4.
Assume that the user wants to guide a robot manipu-
lator to move its tip from Source to Target. Also, assume
that the user can move the manipulator tip either up/
down (y axis) or left/right (x axis) using verbal com-
mands. As the first step, the user might say ‘‘move right’’
or ‘‘move down’’. In this case, the exact coordi-
nate positions are Source=(450.80,�132.55) and
Target=(597.94, �291.93). But for his decision, the user
does not use these very accurate information. Instead, he
might think ‘‘what is the best way to move from the
source area to the target area.’’ Thus, the user may take
the same decision to move from another point in the
source area to another point in the target area.

This concept is not valid only for moving between
points. In this example, the subjective decision of the
user depends only on the source position and the target
position. Therefore, a state can be defined using x,y
coordinates of Source and Target; i.e., they are sx, sy, tx
and ty. Then, according to Eq. (1), a state can be defined
as {sx, sy, tx, ty}, whose dimension is 4. Thus, in this case,
a state is a member of a four-dimensional state-space.
According to the above explanation, for two sufficiently

S C

iS

Cf : S Infinite Finite

jC

→

Fig. 3 Relationship between robot world states and commands
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closer members in the state-space, the user may take
similar decisions. Thus, it should be valid for any state-
space as far as the user decisions are subjective.

Therefore, although S can contain an infinite number
of continuous values, frequency of abrupt decision
changes among sufficiently closer states is much smaller
than the theoretical maximum. Thus, the classification
problem becomes less complex.

4 Command interpretation

If a human user commands a robot manipulator with
voice commands to reach a certain point, it has to be
performed in a step-by-step fashion. At each step, there
are two decisions to be made. They are,

1. Direction to move and
2. Distance to move.

After making these decisions, the user has to issue a
voice command which includes both the direction to
move and the distance to move. Out of these two com-
ponents in the command, the direction command com-
ponent is a non-fuzzy decision. The possible decisions
are left, right, forward, backward, up and down. By
looking at the present tip position of the robot, the
target and the placement of obstacles, the user can
subjectively decide the best direction to move.

On the other hand, the distance command compo-
nent is a fuzzy command. That is because, when natural
language commands are used to instruct distances, a
command such as ‘‘move little’’ is more convenient than
that containing numerical values. Therefore, interpre-
tation of these fuzzy motion commands is one of the
tasks to be performed.

The set of allowed commands is shown in Table 1.
Any combination of a direction command component
and a distance command component can be used as a
command. For example, ‘‘go very little right’’ would be a
valid command.

4.1 Fuzzy motion commands

All natural language commands are fuzzy in their very
nature. Their meanings are subjective and context

dependent. For example, what is meant by ‘‘move little’’
by a human is not a fixed value.

In this implementation, it has been assumed that the
actual amount to be traversed in response to a distance
command depends on the distance traversed immedi-
ately before that. This assumption is based on the
observation of natural human tendency.

For example, a human who just traveled 10 km may
consider another 1 km as a short distance, while another
one who just traveled 100 m may consider the same
1 km as a long distance. This kind of an approach has
been adopted in [12]. The similarity between the two
approaches comes from the fact that, in both systems the
actual response to the previous command is used as an
input when interpreting the present command. However,
in the system discussed in this paper, simple fuzzy rea-
soning is used while in [12], a fuzzy neural network has
been used.

In the process of interpreting the meanings of fuzzy
distance commands, following twelve rules are used for
fuzzy reasoning [17, 18]:
R1 : If a is ‘very little’ and l is L then h is VVS
R2 : If a is ‘very little’ and l is M then h is VS
R3 : If a is ‘very little’ and l is H then h is S
R4 : If a is ‘little’ and l is L then h is S
R5 : If a is ‘little’ and l is M then h is B
R6 : If a is ‘little’ and l is H then h is VB
R7 : If a is ‘medium’ and l is L then h is VB
R8 : If a is ‘medium’ and l is M then h is VVB
R9 : If a is ‘medium’ and l is H then h is F
R10 : If a is ‘far’ and l is L then h is F
R11 : If a is ‘far’ and l is M then h is VF
R12 : If a is ‘far’ and l is H then h is VVF

where a is distance command character variable, l is
previous distance, and d is new distance. Fuzzy labels for
the previous distance and the new distance are defined
by,
VVS : Very Very Small
VS : Very Small
S : Small
B : Big
VB : Very Big
VVB : Very Very Big
F : Far
VF : Very Far
VVF : Very Very Far

Table 1 Fuzzy commands used by the human user

Direction command
component (Di)

Distance command
component (di)

go up
go down very little
go right little
go left medium
go forward far
go backward

(a
)

A
M

µ

1

0

Distance command character variable, a

{very little} {little} {medium} {far}

very little little medium far

Fig. 5 Membership functions for action modification
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L : Low
M : Medium
H : High

The distance command character variable a has a
discrete support set and its membership value is either 1
or 0, i.e., a has singleton membership functions. The
membership functions for a and l are shown in Figs. 5
and 6, respectively. Consequent part gives the new dis-
tance, d and the membership functions are shown in
Fig. 7.

The firing strength of the ith rule, ai is computed as,

ai ¼ lAMi
ðaÞ � lPDi

ðlÞ ð3Þ

Here, ‘‘Æ’’ is the algebraic product. Using Larsen’s
product operation rule as the fuzzy implication function,
the ith rule leads to the decision,

lND0i
ðhÞ ¼ ai � lNDi

ðhÞ ð4Þ

Consequently, the membership function lND¢ of the in-
ferred consequence is given by,

lND0 ðhÞ ¼ lND0
1
ðhÞ _ . . . _ lND0

12
ðhÞ ð5Þ

lND0 ðhÞ ¼ a1 � lND1
ðhÞ _ . . . _ a12 � lND12

ðhÞ ð6Þ

To obtain the crisp output value, a defuzzification
strategy is required. Using the well-known Center-of-
Area method, the crisp output value of the new distance,
h0 is obtained as follows:

h0 ¼
Rþ1
�1

P12
i¼1 aihlNDi

ðhÞdh
Rþ1
�1

P12
i¼1 ailNDi

ðhÞdh
ð7Þ

After the crisp value of the distance to be traversed,
h0 is decided, it can be directly used to control the tip

position of the PA-10 manipulator using its tip position
deviation control mode [19]. Initially, there is no dis-
tance traveled in response to the previous command.
Therefore, the initial input value was decided according
to the workspace of the manipulator.

5 Implementation of sub-coach

5.1 Gaining knowledge

From the discussion in Sect. 3.1, the robot-world state
for the motions in three dimensional space is defined as,

Si ¼ fsT
i ; t

T
i g ð8Þ

where si is the current position vector of the robot, ti is
the final target position vector, and

sT
i ¼ ½sxi ; syi ; szi � ð9Þ
tTi ¼ ½txi ; tyi ; tzi � ð10Þ

where ðsxi ; syi ; sziÞ and ðtxi ; tyi ; tziÞ are the x,y,z coordinates
of the current position and of the final target, respec-
tively. Command Ci is defined as

Ci ¼ fDi; dig ð11Þ

where Di is the direction command component and di is
the distance command component.

Possible values of Di and di are shown in Table 1. As
explained above, to interpret the fuzzy distance com-
mands, the actual distance traveled in response to the
previous command is used. Let the actual distance
traveled in response to Ci be li. Possible fuzzy values of li
are low, medium and high.

As explained in Sect. 3.2, gaining knowledge by the
sub-coach means, learning the subjective function f. For
this purpose, a PNN is used.

5.2 Decision making

Decision making by the sub-coach was realized using a
PNN. The PNN architecture used in this paper is a
modified version of the conventional PNN architecture.
The PNN was first proposed in [20]. Because of ease of
training and a sound statistical foundation in Bayesian
estimation theory, PNN has become an effective tool for
solving many classification problems [21–25].

One of the principal advantages of the PNN approach
is that it is very much faster than the well-known back
propagation approach, for problems in which the incre-
mental adaptation time of back propagation is a signifi-
cant fraction of the total computation time [20, 26, 27].

According to the explanation given in Sect. 3.3, the
decision making process of the sub-coach is essentially a
pattern classification problem. The input for the decision
making algorithm is the robot world state. If we consider
the direction decision making as an example, each state
is associated with a direction decision. Since the number

µ  P
D

(l
)

1

0
0 10 20 30 40 50 60 70 80 90 100

L H

Previous distance, l [mm]

M

Fig. 6 Membership functions for previous distance

µ
N

D
(h

)

1

0

VVS
VS

S
B VB VVB F VF VVF

New distance, h [mm]
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Fig. 7 Membership functions for new distance
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of direction decisions is finite, selecting the most suitable
decision is the same as categorizing the input state into
the correct category. Deciding the most suitable distance
and the most possible previous distance is performed in
the same manner.

The PNN architecture used is shown in Fig. 8. The
summation layer and the decision layer are composed of
three parallel segments since this network is used to find
three different values in parallel. That is, finding the
most appropriate direction command, (Di), the most
appropriate distance command, (di), and the most

appropriate actual distance associated with di, (li) is
equivalent to three pattern classifications. These three
segments can be called as segment D, segment d, and
segment l.

In the figure,
N : number of neurons in the pattern layer, or

number of learned states (number of entries in
the knowledge base);

K : number of neurons in the segment D of the
summation layer, or number of possible
direction decisions;

M : number of neurons in the segment d of the
summation layer, or number of possible
distance commands; and

Q : number of neurons in the segment l of the
summation layer, or number of possible
distances traveled in response to the previous
command.

Assume that Si is the input received by the PNN. The
input neurons are merely distribution units that supply
the same input value to all the pattern neurons.

Each neuron in the pattern layer corresponds to a
previously learned state. For example, the weight vector
xj associated with the jth neuron of the pattern layer is
composed of the jth state of the training data set. Each
neuron in the pattern layer forms the dot product of the
input pattern vector Si with its weight vector xj and then
performs a nonlinear operation on the dot product.
Thus, the output of the jth neuron is given by,

/jðSiÞ ¼ exp
�ðSi � xjÞT ðSi � xjÞ

2r2

( )

ð12Þ

where r is a smoothing parameter.
Here, we should observe that the number of neurons in

the pattern layer is equal to the number of training sam-
ples. As the training data set becomes larger, the network
size may grow proportionally. Thus, one of the out-
standing issues associated with PNN is determining net-
work size. Various research have been carried out on
reducing the number of neurons in the pattern layer
[21, 24, 28]. However, in this paper, this issue has not been
addressed because the number of training samples is of a
manageable size, i.e., 55 in experiment 1 and 60 in exper-
iment 2. On the other hand, it is a topic for a separate
research which is out of the scope of the present work.

Weights that connect the pattern layer and the sum-
mation layer are defined as follows:

wðDÞj;k ¼
1 if Dj ¼ Dk

0 otherwise

�

ð13Þ

where k=1,2,...,K,

wðdÞj;m ¼
1 if dj ¼ dm

0 otherwise

�

ð14Þ

where m=1,2,...,M, and

Fig. 8 Probabilistic neural network architecture (PNN)
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wðlÞj;q ¼
1 if lj ¼ lq

0 otherwise

�

ð15Þ

where q=1,2,...,Q.
Each neuron in the pattern layer connects to each

neuron in each segment of the summation layer. For
example, wj,k

(D) is the weight that connects the jth neuron
of the pattern layer to the kth neuron in the segment D
of the summation layer. If the direction decision Dj

associated with the state j is equal to Dk, then wj,k
(D) is 1;

otherwise, it is 0.
Neurons in the summation layer compute the maxi-

mum likelihood of Di, di, and li associated with the state
Si being equal to Dk, dm, and lq. It is given by,

PDk ðSiÞ ¼
PN

j¼1 /jðSiÞwðDÞj;k
PN

j¼1 wðDÞj;k

ð16Þ

PdmðSiÞ ¼
PN

j¼1 /jðSiÞwðdÞj;m
PN

j¼1 wðdÞj;m

ð17Þ

PlqðSiÞ ¼
PN

j¼1 /jðSiÞwðlÞj;q
PN

j¼1 wðlÞj;q

ð18Þ

The decision layer classifies the state Si based on the
output of all neurons in the summation layer by using

D̂ ¼ Dk if PDk ðSiÞ ¼ maxfPD1
ðSiÞ; . . . ; PDK ðSiÞg ð19Þ

d̂ ¼ dm if PdmðSiÞ ¼ maxfPd1ðSiÞ; . . . ; PdM ðSiÞg ð20Þ
l̂ ¼ lq if PlqðSiÞ ¼ maxfPl1ðSiÞ; . . . ; PlQðSiÞg ð21Þ

where D̂; d̂; and l̂ denote the most probable direction
command, the most probable distance command, and
the most probable distance traveled in response to the
previous command respectively.

Here, l̂ needs further explanation. The most probable
distance command d̂ is decided using the distance com-
mands associated with previous states in a small neigh-
borhood of the current state. However, the meanings of
these fuzzy commands are context dependent; i.e., they
depend on the corresponding previous distances trav-
eled. Consequently, the command estimated based on
past data is valid only for a certain context. l̂ is the
context, i.e. the immediate previous distance for which
the command d̂ is valid.

To deduce the correct distance command (di) from
these values, the algorithm shown in Fig. 9 is used. It
can be explained as below.

Assume that d̂ and l̂ are medium and L respectively.
As explained above, these are the distance command and
the actual distance traveled in response to the previous
command corresponding to a small neighborhood. In
other words, for the neighborhood, the distance com-
mand had been ‘‘medium’’ in the context in which the
distance traveled in response to the previous command
was L. User had issued that command after observing
that the actual distance traveled in response to the

previous command was low. Assume that, after inter-
preting this command, the robot had traveled 25 mm.

For the current state, the sub-coach also needs to
issue a similar command. Whatever the distance com-
mand, its interpreted crisp value should be less than
25 mm because beyond that point, the sub-coach doesn’t
know whether there are any obstacles or not. On the
other hand, it should command the robot to travel the
maximum possible distance to ensure the highest
efficiency. Thus, if li is low, then the sub-coach can issue
‘‘medium’’ as the next command. However, if li is
medium or high, then it has to issue ‘‘little,’’ because
otherwise, the interpreted crisp distance will be more
than 25 mm.

Fig. 9 Algorithm to deduce di from d̂

Personal
Computer

Arm
Controller

Microphone

User
PA-10 Portable General
Purpose Intelligent Arm

Fig. 10 The experimental setup
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As explained above, the direction decisions made by
the sub-coach are non-fuzzy. They are, up, down, right,
left, forward, and backward. Assuming that the condi-
tions which influence the direction decision are the same
for all the members in a small neighborhood, the sub-
coach can use D̂ as the actual direction command (Di)
suitable for the current state.

6 Experiments

Two experiments were conducted to demonstrate the
proposed concept. In the first experiment, the objective
was to move the tip or the end effector of a manipulator
in 2D space from any point to a target point on a table
avoiding obstacles. In the second experiment, the
objective was to perform a set of pick and place opera-
tions which involve the motions in 3D space.

For both experiments, the experimental setup is
shown in Fig. 10. It consists of a microphone, a personal
computer, a PA-10 portable general purpose intelligent
arm and the arm controller. The speech recognition
software, the sub-coach program and the operational
control program of PA-10 are hosted in the personal
computer whose operating system is Windows XP. The
speech recognition is performed using IBM Via Voice
commercial software.

The flowchart shown in Fig. 11 shows the operation
of the sub-coach, where Si is the current state for which
a decision is required and Ci is the suitable command
corresponding to the state Si.

6.1 Experiment 1: 2D motion

A view of the experimental setup is shown in Fig. 12. In
this experiment, first the training data were collected and
the PNN was trained. Then, the trained PNN was used
by the sub-coach for decision making.

Four training movements were set so as to cover
different areas of the working space of the robot. They
are shown in Fig. 13, where at each point marked with a
circle, the user has taken a direction decision and a
distance decision. Si, Ci and li at those positions were
used as the training data samples. A portion of the
training data is shown in Table 2. Note here that alto-
gether 55 samples were used for the training.

Once the training has been completed, some test
movements have been performed with the sub-coach
controlling the robot. Three of such test movements are
shown in Fig. 14.

End

Start

Final target
reached?

No

No Consult
the coach

Previous
knowledge

iCExecute

iCFind

iS

Is it possible
to decide Ci ?

Fig. 11 Command generation of the sub-coach using the knowl-
edge base

Fig. 12 View of the experimental setup in experiment 1
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The broken lines indicate all the guided training
movements performed by the human user. The knowl-
edge base was built using these movements. Solid lines
indicate the test movement. At places marked with cir-
cles, the sub-coach has taken a direction decision and a
distance decision. It is observed that the sub-coach alone
can guide the robot arm tip to come very closer to the
final target. To reach the exact target point, more finer
movements are necessary and the knowledge of the sub-
coach is not sufficient for that. Therefore, such finer
movements has to be performed with the consultation of
the human user.

6.2 Experiment 2: 3D motion

A view of the experimental setup is shown in Fig. 15. In
this experiment the training of the PNN was performed
online. The objective was to pick the objects from an
object table and place them in a bin located away from
the object table.

Two object moving motions are shown in the Fig. 16.
Here, the coordinates of the object with reference to the
object table are assumed to be known in advance by
some other means. For example, object coordinates on
the table can be calculated using an image taken from a
camera placed above the table. Therefore, in this
experiment what is learned is the path from the table to
the bin avoiding surrounding obstacles.

During the on-line training, objects placed in different
places of the table were moved to the bin. At the points
marked with circles in the Fig. 16, decisions were made.
First, the sub-coach made the decision and if it is correct
according to the human evaluation, it was executed;
otherwise, the human user issued the correct command.

Figure 17 shows the total number of incorrect deci-
sions made by the sub-coach vs. the total number of
decisions made during 9 pick and place movements.
Once the sub-coach made an incorrect decision, the
knowledge base of the sub-coach is updated using the

correct human user command. Thus, the number of
incorrect decisions is equivalent to the number of
training samples for the PNN.

It is seen that initially the number of errors is
higher due to lack of knowledge. As the knowledge
base grows, the growth of accumulated error is re-
duced and finally saturated. Observe that after about
60 training samples, the learning was converged for
this particular task.

7 Conclusions

The learning of sub-coach has been discussed in the
framework of fuzzy coach-player system by applying a
probabilistic neural network. First, the importance of
learning from information rich natural language com-
mands was discussed and the new concepts of fuzzy
coach-player system and sub-coach were introduced.
Then the characteristics of subjective human decision
making process were discussed and a mathematical
model which could be used for subjective decision
making was developed.

Two experiments were conducted using a PA-10
redundant manipulator. In the first experiment, the sub-
coach was trained with training movements covering
different areas of a table in 2D space where some
obstacles were placed. A training movement was to
move the arm-tip of the robot from a point located far
away to a target point. In doing so, the user commanded
the robot to move its tip little by little avoiding obsta-
cles. At each step, the user took two decisions, i.e.
direction to move and distance to move. From those
decisions, the sub-coach built its knowledge base.

After the training, test movements were made. In the
test movements, all the direction and distance decisions
were performed by the sub-coach without any inter-
vention of a human. It was observed that the sub-coach
alone was able to guide the robot arm-tip to come very
closer to the final target avoiding obstacles successfully.

Table 2 Training data for PNN in experiment 1

i State (Si) Ci li

sxi syi szi txi tyi tzi Di di

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

5 531.70 �120.12 552.34 597.97 �292.00 552.30 Fo L M
6 545.36 �120.41 552.83 597.97 �292.00 552.30 R M H
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

13 550.63 �298.29 552.63 597.97 �292.00 552.30 Fo M Lo
14 569.13 �302.47 552.66 597.97 �292.00 552.30 Fo L M
15 417.99 �230.91 552.27 597.96 �290.96 552.31 R F H
16 418.07 �322.07 552.32 597.96 �290.96 552.31 R L H
17 418.09 �342.08 552.40 597.96 �290.96 552.31 Fo F H
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

55 606.35 �305.18 552.76 597.95 �290.98 552.35 B VL Lo

Ci coach’s Command, li actual distance traveled in response to Ci, Fo forward, R right, B backward, L little, M medium, F far, VL very
Little, H high, Lo low
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For finer movements, the human user intervention is
necessary.

In the second experiment it was required to move the
tip or the end effector of the manipulator in 3D space.

The objective was to pick the objects from an object
table and to place them in a bin located away from the
object table. In doing so, the user commanded the robot
to move its tip from a position in the table to the bin
avoiding obstacles. At each step, the sub-coach took two
decisions, i.e. direction to move and distance to move,
and these decisions were evaluated by the human user. If
the decision was correct, it was executed, whereas if it
was incorrect, the correct decision was issued by the
human; thus improving the knowledge of the sub-coach.
It was observed that after about 60 training samples, the
learning was converged for this particular task.

Thus, we can see that it is possible to hand over
coarse tasks to the sub-coach while finer tasks are
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Fig. 14 Some test movements in experiment 1

Fig. 15 View of the experimental setup in experiment 2
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performed by the human user, in a sophisticated envi-
ronment. For example, in [11] and [12] the authors
presented a natural language controlled robotic manip-
ulator which can be used to perform an assembly task.
However, since the learning was not incorporate in their
work, user needed to issue similar commands repetitively
during an assembling task. Moreover, when performing
multiple assembling tasks of similar nature, similar
command sequences were needed to be repeated. Using
the method presented in this paper, this kind of redun-
dancy can be avoided effectively reducing the burden of
a controlling user. On the other hand, a user may con-
trol more than one robots at the same time, just moni-
toring and helping them as needed.

Although the proposed concept was illustrated with
experiments conducted with a robotic manipulator, the
same method may also be suitably applied for other
robotic systems. The most important feature of the
proposed method is that it utilizes the inherent fuzzy
nature of spoken language commands to generate
probable commands for unknown cases.
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