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a b s t r a c t

One challenge in designing side-by-side robotic wheelchairs is to improve the comfort of the users,
caregivers and surrounding people in crowded environments. Among different scenarios that a side-by-
side robotic wheelchair has to deal with, crossing pedestrians is a common situation. Yet techniques
developed for tackling the problem of passing pedestrians have still failed to take into account enough
factors related to human walking behavior, therefore the navigation plan is not natural. To tackle this
problem, this paper proposes a novel navigationmodel for side-by-side roboticwheelchairs that considers
the Friendly Link factor and Preferred Walking Velocity related to the comfort of wheelchair users,
caregivers and pedestrians. The model is carried out based on an experimental observation and data
collection. The developed model is then validated by comparing the distance errors between the moving
solutions of the new model and previous methods with the real solutions of humans based on a natural
walking scenario. The experimental results show that the performance of the proposed technique is
significantly better than that of previous techniques.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Theworld population is aging and the demand for in-house care
for the elderly is increasing [1]. The number of disabled people has
also increased [2]. Meanwhile, the proportion of people of working
age has been decreasing, thus increasing the cost of labor-intensive
services, including care services for the elderly and disabled. This
has drawn the attention of robotic researchers for developing au-
tonomous devices, including autonomous wheelchairs, to support
them. As a result, many kinds of assistant wheelchair robots have
been developed to support people [3–7].

Under this research direction, developing wheelchairs that can
autonomouslymovewith a caregiver in a peer-likemanner is a rel-
atively new initiative. Inmany situations, people usingwheelchairs
have difficulties in controlling them. As a result, in some envi-
ronments, e.g. hospitals or nursing homes, a caregiver has to take
control of the moving function of the wheelchair, thus putting an
extra burden on the caregiver. Therefore, the idea of developing
robotic wheelchairs that can move alongside a caregiver, thereby
easing their workload, has drawn much attention recently.

However, to be truly acceptable to humans, robotic assis-
tants in general, and robotic wheelchairs in particular, need to
not only satisfy the technical requirements, but also meet the
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psychological needs of the users [8–10], i.e. they should give com-
fort to users and surrounding people while working. In the case
of robotic wheelchairs, when walking in pairs, maintaining a side-
by-side formation is a natural habit of humans (Fig. 1). It is a more
comfortable motion pattern for a friendly pair rather than, for
example, walking one after the other. This is explained referring
to the psychological benefits it brings to both members of the pair
[11–13]. Therefore, the robotic wheelchairs should be able tomove
alongside their caregivers in a suitable human-like manner; this is
called a side-by-side robotic wheelchair.

Developing a side-by-side robotic wheelchair is not a trivial
problem [3]. Many factors need to be considered, such as keeping
a stable relative distance to the caregiver, moving at a preferred
velocity, reducing the acceleration changes, avoiding static and
moving obstacles, etc. [14–23].

During a navigation session, among various different scenarios
that a side-by-side robotic wheelchair has to deal with, passing
pedestrians is a common problem. Fig. 2 depicts five main modes
in which a walking pair can pass another pedestrian walking in the
opposite direction on a pathway (a to e).

In modes (a) and (b), the pair tries to maintain their side-by-
side formation during the passing period. In modes (c) and (d),
the pair switches from side-by-side formation to leader–follower
formation, where one person follows the other person while pass-
ing. In mode (e), the pedestrian’s trajectory disturbs the side-by-
side formation of the pair. As can be seen from our observations,
which are described in detail in Section 3, the majority of people
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Fig. 1. Maintaining side-by-side formation is a natural habit of humans in walking.

Fig. 2. Passing behavior between a pair and a pedestrian (i and j are a walking pair andm is a pedestrian walking in the opposite direction).

prefers the passing modes (a) or (b) if the pathway is not too
narrow.

Based on our investigation, although a large number of studies
have been conducted for passing pedestrians, most of those solu-
tions are developed for robots moving alone; not with a human
moving alongside. Among the few studies which were conducted
for a side-by-side robot and human pair avoiding obstacles, there
are three main approaches [3–5].

In the navigation solution developed by Sato et al. [5,24] the
wheelchair goes to a side of the caregiver by default. While fol-
lowing the caregiver, assuming that agent i is the caregiver and
agent j is the wheelchair, the wheelchair j changes its relative po-
sition with the caregiver i from side-by-side formation to leader–
follower formation (wheelchair follows the caregiver) if an obsta-
cle or a pedestrian is found, i.e. the robot always chooses passing

mode (c). This allows both the caregiver and the wheelchair to
avoid collisions with the obstacle or pedestrian. However, this
model does not reflect the reality that people prefer passingmodes
(a) and (b) to other modes, i.e. this model is not capable of pro-
ducing natural human-like motions; or it lacks the methods to
maximize the comfort of people when passing pedestrians.

Ferrer et al. [4] developed amobile robot to accompany a person
based on social-force and proxemics concepts inwhich theirmodel
mainly focuses onmaintaining a comfortable distance between the
robot, its companion, and surrounding people. Yet, some important
factors are ignored, e.g. in real-world scenarios, the robot not only
has to take into account the navigation plan to move alongside a
caregiver, but the caregiver himself and the surrounding people
also have their own predictions and reactions based on the past
and future actions of the robot. One of the main disadvantages of
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this method is that it does not have any mechanism for suggesting
to the robot that modes (a) and (b) are the most preferred modes
chosen by the caregiver and the pedestrian.

In a more comprehensive navigation model developed by
Morales et al. [3], eight factors that influence the decisions of a
walking pair are considered. Subsequently, an extended model
was developed by the authors [21], considering nine factors. These
navigation models have been developed under a hypothesis that
a walking pair has to consider nine factors related to them before
making a new step if they want to maximize their comfort. Tech-
nically, the pair tries to maximize a utility function of eight or nine
variables, which are based on corresponding influencing factors. As
a result, these navigation models are capable of moving a robotic
wheelchair alongside a caregiver, allowing both the caregiver and
thewheelchair user tomaintain a comfort level similar to a normal
walking pair of people. However, both these models are limited
to certain static environments and do not take into account the
presence of the pedestrian; they lack a suitable method to pass a
pedestrian.

This paper presents an improved navigation model for side-by-
side robotic wheelchairs by incorporating the Friendly Link factor,
in order to overcome the above-mentioned limitations. In addition,
the authors suggest amethod to predict the next PreferredWalking
Velocity of people. That helps the new model predict better the
next positions that all people in the scene intend to take, hence
the side-by-side robotic wheelchair can navigate alongside the
caregiver as the caregiver’s companion; the wheelchair is able to
mimic the movements of a human. This model is created based
on data collected by observing the behavior of walking pairs in a
hallway. Using collected data, themodel was developed, calibrated
and validated. Later, using a different data set, the model was
tested in order to verify its performance.

2. Related studies

2.1. Walking habits of pairs

Common walking habits of humans, as individuals and as pairs,
have been investigated in several studies [12,13,17,23,25,26]. Hel-
bing &Molnar [23] describe factors that affect people during walk-
ing as a combination of attractive and repulsive forces. According
to their explanation, these hidden forces drive people to walk from
a starting point to the destination in a safe manner, avoiding colli-
sions with static and dynamic obstacles in the pathway. Later, Xu
et al. [26] improved that model with a new factor called ‘bonding
force’. Around the same period, Costa et al. [12] discovered that
when people walk in pairs, they normally move in side-by-side
formation rather than in other formations, unless the environment
is particularly crowded or the pathway is too narrow. Moussaid
et al. [13] had similar observations when they studied human
walking behavior.

Several authors proposed concepts represented as ‘personal
space’ and ‘social distance’. The concept of proximitywas proposed
by Hall [17], who discovered the presence of certain social dis-
tances, called hidden dimensions, between people when they are
standing in a group or in a public location. When people main-
tain these social distances, they normally feel more comfortable.
Kendon et al. [25] proposed further personal spaces and social
distances when they studied people’s positions in conversations.
Although some of these studies are conducted in static environ-
ments, they can be generalized into moving situations as well
[3,4,9].

A common finding of all the above studies is that, when people
stand, walk or chat, they normally obey hidden rules of social and
personal factors including spatial formation, distances between
people in a group, or distances between one person and other

people or obstacles in the environment. When these rules are
obeyed, people normally feel more comfortable; their psychologi-
cal needs are better satisfied.

2.2. Walking alongside a robotic wheelchair

Realizing the factors affecting moving or chatting, many efforts
have been made in developing a robotic wheelchair that can act
more naturally in crowded environments. A preliminary effort
relevant here is the study of Gockley et al. [27], whose robot can
follow a human in a natural manner. Iwase et al. [28] developed
a robotic wheelchair with a pre-defined non-reactive area that
allows it tomove alongside a caregiver and stopwhen the caregiver
stops. A more sophisticated solution come from Kobayashi et al.
[5,24,29–31], in which their robotic wheelchair can not only move
alongside a caregiver but can also detect the caregiver’s posture
to change its moving direction. Moreover, their robotic wheelchair
can implement the leader–follower mode to avoid collision with
a static obstacle or a pedestrian from the opposite direction, or
multiple wheelchairs can move with only one caregiver.

In another direction, Prassler et al. [32] developed a side-by-
side robotic wheelchair with a prediction model. This model pre-
dicts the partner’s velocity in the next step based on past dis-
crete trajectories. Therefore the robotic wheelchair is able to move
more smoothly alongside the caregiver, and is more comfortable
for the wheelchair users and their partners. Later, Wu et al. [6]
proposed a prediction method based on Neural Network for a
robotic wheelchair. Their model can learn from the statistical data
to predict the next positions that the caregiver intends to move.
That helps their robot move alongside a caregiver in a static envi-
ronment with no obstacles.

We consider that the solution provided by Morales et al. [3]
is the most advanced model that can be employed by a side-by-
side robotic wheelchair. The model employs the largest number
of related factors that affect robots and humans in a side-by-side
walking session. As a result, the robot takes into account many
related factors before making a decision for its next movements.
The solution was developed further for a situation in which the
pair needs to pass a static obstacle in the pathway [21]. So far, this
model has only been developed for passing static obstacles in static
environment.

In this paper, we rely on [3,21] to develop a model that can
tackle the passing problem with a pedestrian. Our model enables
the robot to pass a pedestrian, based on reasoning about the
movements of all people in the scene. By adding a new factor
discovered in our study, our model can better predict the next
movements of all people in the scene and can propose movement
plans similar to human behavior, hence it helps the side-by-side
robotic wheelchair to be able to mimic the movements of a real
human during a walking session with his partner.

3. Data collection set up

The purpose of the data collection step was to understand hu-
man decisions in side-by-sidewalkingmodewhen crossing pedes-
trians. Particularly, we focused on walking sessions of a caregiver
and a disabled person or patient sitting in a robotic wheelchair.
In a walking session with a caregiver and a robotic wheelchair,
normally we have a leader (the caregiver) and a follower (the
robotic wheelchair) moving along with the leader. However, we
believe that the wheelchair user will feel more comfortable if he
does not need to entirely depend on leader while walking. In some
circumstances, based on the observation of actions and reactions of
the leader and other people in the scene, the follower may actively
propose and execute a plan, as humans normally do. Therefore,
we set up a walking scenario in which both members of the pair
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Fig. 3. Data collection: the walking environment settings.

were treated as equal; they simply walked as a pair, maintaining
their relationship during the walk but one person did not need to
entirely depend on the other.

This data collection step needed to answer twoquestions:when
a pair encounters a pedestrian, how does the passing process
happen? Apart from the factors that we know, what are other
factors that affect this process?

3.1. Data collection

The scenario of the data collection involved a pair and a pedes-
trian walking around in two parallel indoor corridors as illustrated
in Fig. 3. The width and length of both corridors were 2.0 m and
9.0 m respectively. Along with the Gonzalez et al. study [33] that
considered only a 5.0 m length for the passing procedure of two
people, we believe that this 9.0 m length gave enough time and
space to allow three people to walk and cross each other in a
natural manner.

Here, LRs are the laser range finders with a maximum radius
of 5 m, set up at 10 Hz scanning speed. m is a pedestrian moving
inversely to the member i and his partner j. A and B mark the
midpoints at each end of the corridors, and are the starting point
and the destination of the pairs respectively. In the opposite di-
rection, B and A are the starting point and the destination of the
pedestrians respectively. In the setting, people knew in advance
the final destinations of their walking sessions. We employed the
work of Leigh et al. [34] to record the trajectories of people in
the scene. In addition, we marked the ground with stickers and
used two video cameras to record the walking sessions. The data
from LRs and video camera were used to determine positions of
people in the scene, in which the videos help to refine the people’s
positions in cases of doubt about the recorded data from the LRs.
We also observed people’s views of the pathway and of the other
people in the scene. All the data that could be used to identify
people in the study was eliminated, hence volunteers participated
anonymously.

We set up the scenarios with moving rules for the walking
sessions. In both corridors, both people i and j started walking
from A at the same time and in the same direction toward the
same destination B. While walking, the pair was asked to act as
friends by starting a friendly conversation at the starting point
beforemoving, andmaintain their intimate relationship during the
walking session. Also, both members of the pair were asked to
actively move in a natural way to bring comfort to their partners
and other pedestrians in the scene as humans normally do. By
arranging this setting, we simulated factual scenarios in which a

Table 1
Data collection: the crossing sessions. Crossing modes refer to Fig. 4.

No Passing mode Quantity

1 a 15
2 b 11
3 c 0
4 d 0
5 e 1

caregiver escorts a patient/disabled person to wander around or
move from one location to another. In the opposite direction, one
person was asked to act as a pedestrian moving from B to A. He
startedwalking at the same time the pair started. Participantswere
asked not to walk in a rush, but to consider their walking sessions
as strolling around a park or on a street.

Fourteen participants joined our study; their ages ranged from
45 to 65 with the average age around 55, three were men and the
others were women. All the people lived in one residential area.
They had no research relation to our project. We randomly mixed
them in groups following the above settings; each group had one or
two walking sessions in each corridor, then they swapped to form
another group. People were asked to obey the above moving rules,
and all had their own conversations during the walking sessions,
without any prepared scripts.

After eliminating some walking sessions from the final results
because they violated the moving rules (some pairs did not try to
maintain the relationship, or all the people in the scene suddenly
stopped in the pathway to start a new conversation of three people,
or two members of the pair start walking at the same time, etc.),
a total of 27 sets of crossing sessions were recorded, and are
summarized in Table 1. This data was used to establish a novel
navigation model for the side-by-side walking mode in crossing
situations.

3.2. Trajectory standardization

To make it easier to analyze the data, we applied a standardiza-
tion process for collected trajectory sets as follows:

• We defined the time when the pedestrian crosses the first
person of the pair as the central point C of each trajectory
set T . Each trajectory set T is comprised of three trajectories
of three people in one corridor.

• From C , we moved forward each trajectory in T for 1 s and
discarded the rest of them. Because we only focused on the
passing procedure, and after C + 1 s, the passing procedure
was totally completed, we did not need to analyze the parts
after C + 1 s.

• From C , we moved backward each trajectory in T for n
seconds, where n is a natural number, until we reached
the starting point of that trajectory, or to a point that we
cannot move backward further. Yet, because we have three
individual trajectories in one set T , thus with each T , we
may have more than one value of n corresponding to it.
In those cases, we chose the smallest value of n. We kept
all the trajectory parts from C − nSec to C + 1 s. All the
outside portions of the trajectories were discarded from the
trajectory data.

• Because themovements of each person in the upper corridor
were in the opposite direction to those in the lower corridor,
we rotated all the trajectory sets in the lower corridor by
180◦ so that all the pairs’ moving directions (and hence, all
the pedestrians’ moving directions) are the same.
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Fig. 4. Five passing stages observed in the study.

3.3. Observation

3.3.1. Five passing stages
We analyze the collected data for understanding the passing

behavior. In each walking session, it was seen that participants
underwent five stages, from Stage 1 to Stage 5, as illustrated in
Fig. 4. At Stage 1, people started walking. They needed a few
movements to reach a stable walking status, including their own
velocities, direction to the destination, and side-by-side formation
(for the pair), etc. When people entered Stage 2, they achieved
a stable walking status. At this stage, people moved directly to
the destination. After continuing walking, people entered Stage
3, called Transforming, in which they started finding a way to
avoid collision with the moving obstacles. Stage 3 was completed
when people completely proposed a trajectory plan for passing the
moving obstacles in front of them, and then they entered Stage 4—
Passing. In this stage, people simply performed their proposed tra-
jectories to pass people in front. After passing, people entered Stage
5—resuming their normal walking behavior to the destination.

In the above stages, we consider that Stage 3 has the major role
in the passing process. As illustrated in detail in Fig. 5, Stage 3 starts
happening when the pedestrian starts diverting from his straight
pathway to the destination tomove toward one side of the corridor
(to the corridor’s wall).

When the pedestrian m enters Stage 3, from time t the pedes-
trian starts diverting his trajectory from a straight line to the
destination. As a result, the angle γm

t starts increasing from zero to
a value higher than zero. Stage 3 is completedwhen the pedestrian
starts redirecting his route directly to the destination, or from time
t + q the angle γm

t+q starts reducing to zero. Similarly, the same
process happens to the pair.

By analyzing the trajectory data, Stage 3may start immediately
after people start walking or after a few steps, and then finish at
the time people cross each other, or one or two steps before that.
To implement this process smoothly, all the people had to observe

others to consider the proposed trajectories that their partners
intended to process. Inmany cases, not all three people in the scene
started Stage 3 at the same time, but oneperson acted as a ‘‘starter’’,
meaning that he was the first person who decided to make one,
or several, movements that deviated from his straight path to the
destination.

The other people rapidly recognized his intention, accepted his
decision, and responded to his actions by starting rerouting, and
then Stage 3 was initiated for everyone. In some situations, when
two ormore people simultaneously acted as a ‘‘starter’’ but quickly
realized that their proposed walking plan may create a conflict,
e.g. these plans may lead to a collision or to a state that they would
not feel comfortable with, they abandoned their initial intention
and then rerouted the walking path.

In all these sessions, people were able to act quickly without
the need of verbal negotiation with their partners. Normally, Stage
3 did not stop at the same time for all people. Some people rapidly
moved toward to one side of the corridor and completed Stage
3 but others walked gradually, following a diagonal path, and
Stage 3 was only completed at the crossing time. Through these
observations, we believe that the ‘‘starter’’ here can be anyone,
i.e. the passing process can be carried out smoothly regardless of
who is the ‘‘starter’’.

Because of random pairing, in some cases some participants
were unfamiliar with their partners. Nevertheless, their passing
processes were smoothly executed, i.e. people implicitly under-
stood the pathway that the others would take. Hence, we believe
that these crossing behaviors are prevalent, not confined to a
particular group of people.

3.3.2. Friendly link
In our observation, we noted another phenomenon. Inmost sit-

uations, people chose the modes (a) and (b) for passing. There was
no clear distinction between these two modes. Not many people
chose modes (c), (d) and (e). This statistical fact demonstrated an
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Fig. 5. Stage 3 of the Passing procedure.

invisible link between the two people in a pair, which was recog-
nized by the pedestrianm, who as a human always tried to respect
the relationship of the pair, and avoid breaking that connection.
When the pairs were asked to keep a friendly relationship, aside
from trying tomaintain their side-by-side walking formation, they
themselves also tried to keep the links from being disrupted by
a third person. From this observation, we assume that when two
people walk together in a friendly manner, they should not be
considered as two entities moving freely but as a linked unit. The
link between them is relatively tenacious and can be implicitly
realized and respected by everyone in the situation without it
being expressed inwords.We call this connection the Friendly Link
(FL).

4. Modeling

Our target was to create a navigation model for a robotic
wheelchair that can move alongside a caregiver in harmony, like
humans in dynamic environments. This model needed to collect
parameters as humans do, and then create a decision for its next
position which can maximize the comfort for all people in the
scene as well as maintaining the optimal relationship for the pair.
In addition, themodel should bring to wheelchair users a feeling of
freedom in navigation, i.e. the feeling of a normal, healthy person,
not an invalid who totally relies on caregivers.

4.1. Setting assumptions

At this step, we assumed these conditions for the model:

• Two people are walking together as a pair, one is the leader
and the other is the follower.

• The starting point A and the destination B are known.
• The leader actively processes a trajectory to the destination.

However his leading role does not eliminate the active status
of the follower, i.e. the follower needs to reason about his
environment to propose an action or reaction, not totally
rely on the leader.

• Both members of the pair try to maintain a friendly rela-
tionship while walking, as a result the side-by-side walking
formation is the preferred mode.

• While walking, the pair encounters a pedestrian moving in
the opposite direction from B to A.

• We assume that all people in the scene not only consider
the best route to their destinations but also respect the
movements of the others.

Once the model was developed, the follower would be replaced by
a robotic wheelchair with a wheelchair user sitting in it. The new
model should allow the robotic wheelchair to take the wheelchair
user to the destination as naturally as that user himself walks.

4.2. Passing process hypothesis

Based on the setting above, we assumed that the passing pro-
cess of a person s (s = i, j,m) undergoes the following steps:

• At time t , at Step (1), the person s determines the past and
current positions and other information (velocity, acceler-
ation, walking direction, etc.) corresponding to movements
of all the people, including himself, in the scene.

• At Step (2), the person s does a scan on all the positions
which he is able to move to, called ‘‘feasible positions set’’.

• With each position in his feasible positions set, he predicts
all the next feasible positions that other people are able to
move to. Each set of all the people i, j,m’s next positions
forms a feasible moving plan P.

• At Step (3), person s compares all the feasible moving plans
P. The plan that he believes can bring the most comfort to
all the people in the scene is called the optimum plan P∗.

• At Step (4), the person s processes his move to the new
position in his feasible position setwhich forms P∗. This step
is finished at time t + 1.

• To continue the nextmovement for the time t+2, the person
s repeats from Step (1) until he finishes the passing process.

4.3. Friendly link factor

So far, we know that the movements of a pair are affected by
nine factors. These factors include distance to other pedestrians
and obstacles O [14], moving toward subgoals S [15,16], relative
distance between two people Rd [17], relative angle Rα [18], rel-
ative velocity RV [19], relative vision Rβ between two people in
the pair [20,21], moving acceleration Ma [14,22], moving velocity
MV [23], and angular velocityMw [14].When a pair walks together,
bothmembers of the pair have a desire to keep all the above factors
at the optimum values. Similarly, with the exception of the desire
to maintain the relative factors (because he is moving alone), the
pedestrian also has a desire tomaintain the factors at the optimum
values.

From the data collection setting in Section 3.1, it can be seen
if there is no pedestrian in front of the pair, and there is no
walking pair in front of the pedestrian, there is no reason for them
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Fig. 6. Friendly link factor.

to suddenly change their moving directions, velocities, or other
factors; i.e. after achieving the optimum status in Stage 2, there
is no reason to explain the occurrence of Stage 3. However, with
the arrival of the people walking in the opposite direction, their
trajectories are changed. It means that the interaction between the
pair and the pedestrian leads to the occurrence of Stage 3, i.e. there
are some factors lead to this occurrence.

Of the nine factors above, one factor which may lead to the
changing walking direction of the pair is the desire to keep far
away from obstacles, in which the pedestrian himself is a moving
obstacle. However, if people simply want to avoid obstacles, then
we cannot explain why their passing modes mostly converge to
two modes (a) and (b). We may also think that the pair wants
to keep their relative vision factor, they may not feel comfortable
when they cannot see each other if the pedestrian disrupts them,
therefore they want to change the walking direction to avoid that.
Yet, the pedestrian moves alone, i.e. he does not need to protect
the relative vision factor, therefore we still cannot explain the
convergence of crossing modes to the two modes (a) and (b).

As discussed in the previous Section 3.3 about the existent of
the FL, we have to consider that the convergence is driven by the
FL factor, i.e. the FL factor has an important role in passing.

We define several variables and their functions to represent the
role and effect of the FL factor in the crossing situation between a
pedestrian and a pair as follows:

It can be seen that the FL is threatened to break if the pedestrian
moves directly toward the space in between the two members
of the pair. This threat is inversely proportional to the distance
between the pair and the pedestrian. We illustrate this problem
in Fig. 6.

Variables and notations used in Fig. 6 are introduced in the
following:

• p̂mt and p̂mt+1 are respectively the current position at time t
and proposed position at time t + 1 of the pedestrian m.

Similarly, (p̂it , p̂
j
t ) and (p̂it+1, p̂

j
t+1) are the respective current

positions at time t and proposed positions at time t + 1 of
the agent i and the agent j.

• µt is the midpoint of the straight line between two points
p̂it and p̂jt ; µt+1 is the midpoint of the straight line between
two points p̂it+1 and p̂jt+1.

• ξt is the distance between p̂mt and µt ; ξt is the distance
between p̂mt and µt+1

• zi and zj are the parts of the Euclidean plane covered by two
angles αi and αj respectively. Their values depends on the
moving directions of the pair and the pedestrian. z1 is the
rest of the Euclidean plane after subtracting zi and zj.

zi =

{
Aang (αi

t+1) if ξt+1 < ξt

Aang (αi
t+1) − Atri(p̂it+1, µt+1, p̂mt ) if ξt+1 ≥ ξt

(1)

zj =

{
Aang (α

j
t+1) if ξt+1 < ξt

Aang (α
j
t+1) − Atri(p̂

j
t+1, µt+1, p̂mt ) if ξt+1 ≥ ξt

(2)

z1 = AEP − zi − zj (3)

αm
= angle(

−−−→
p̂mt p̂

m
t+1,

−−−−→
p̂mt µt+1) (4)

αi
= angle(

−−−→
p̂mt p̂

i
t+1,

−−−−→
p̂mt µt+1) (5)

αj
= angle(

−−−→

p̂mt p̂
j
t+1,

−−−−→
p̂mt µt+1) (6)

ξt = distance(p̂mt , µt ) (7)

ξt+1 = distance(p̂mt , µt+1). (8)

Here, Aang is a part of the Euclidean-plane area, determined by
the inside area covered by an angle variable α. Atri is the inside
area of the triangle determined by three vertices (p̂s, µ, p̂m where
s = i, j). AEP is the entire Euclidean-plane area.
We define an incidence variable θ as follows:

θt+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ +
(αi

− αm)
αi if p̂mt+1 ∈ zi

δ +
(αj

− αm)
αj if p̂mt+1 ∈ zj

0 if p̂mt+1 ∈ z1
δ + 1 if αm

t+1 = 0.

(9)

Here, δ is an adjustment coefficient, it is a constant.
As can be seen from this definition, if the pedestrian m walks

directly to the midpoint of two people in the pair, θ will get the
maximum value δ + 1. If the pedestrian m walks directly to the
leader or the follower, θ will get the value δ. If m is moving far
away from the pair, or following them at a relatively far distance
in which his next step will not interfere with the pair, then θ will
get the minimum value 0. In other cases, if the pedestrianmwalks
toward the pair, θ will get a value in between δ and δ + 1.

If we define a Friendly Link utility that describes the desire to
maintain FL, as fP , in which fP will get the maximum value if no
threat to FL is existent, and fP will get the minimum value if the
threat to FL is greatest, then we have:

fP (ξ, θ ) =

{
f (ξ, θ ) if p̂mt+1 ∈ zi ∪ zj
argmax(fP ) if p̂mt+1 ∈ z1.

(10)
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4.4. Moving utility of one member in the pair

For the purpose of distinguishing this work from the previ-
ous studies, here we briefly describe the results presented in [3]
and [21].

Morales et al. [3] suggested that at a particular time t , both
members of a pair try to determine their next positions at time
t + 1, in which those positions should bring the optimum comfort
to them. They define a utility function U that will receive the
maximum value at time t + 1 if both people achieve the optimum
comfort at time t + 1. U is affected by eight factors mentioned in
Section 4.2. These factors include distance to other pedestrians and
obstacles O, moving toward sub-goals S, relative distance between
two people Rd, relative angle Rα , relative velocity RV , moving accel-
erationMa, moving velocityMV , and angular velocityMw .

Morales et al. proposed a utility function for member i in the
pair (i, j) as follows:

U i(p̂i|p̂j) = kiOf
i
O + kiS f

i
S + kiRd f

ij
Rd

+ kiRα
f ijRα

+ kiRV f
ij
RV

+ kiMa
f iMa

+ kiMV
f iMV

+ kiMw
f iMw

. (11)

Here, fO, fS, fRd , fRα , fRV , fRβ
, fMa , fMV , fMw are individual

utility functions of the eight factors O, S, Rd, Rα , RV ,Ma,MV , andMw

of the person i respectively. k values are the weight constants.
Morales et al. modeled the function fO by using a step function

as follows:

fO(x) = −|(
x
a
)−2b

| (12)

and the other f functions are modeled by using a bell function as
follows:

f (x) =
1

1 + |( x−c
a )2b|

− 1. (13)

In Eqs. (12) and (13), a, b, c are co-efficients, they are constants.
Each individual utility f has a unique set of a, b, c . x is a variable, it
is one of the eight factors O, S, Rd, Rα , RV , Ma,MV , and Mw .

At time t , both members will try to consider the next positions
for time t + 1 which allow the function U i(p̂i|p̂j) + U j(p̂j|p̂i) to be
maximized. By applying this model, the wheelchair robot should
be able to optimize the relationship with the caregiver when the
pair is passing a static obstacle located at a side of the pathway.

Morales et al.’s above model [3] does not consider cases where
obstacles are placed in the middle of the pathway. To tackle the
problem of passing a static obstacle located in the middle of the
walking pathway of a pair, the authors suggested that a vision
factor Rβ should be added to the utility function U mentioned
above [21]. Here, the individual utility function f iRβ

of the agent i
should get the maximum value if the agent i can fully observe his
partner and it should get the minimum value if the agent i cannot
see his partner at all. Similar to the utility function of eight factors
above, function fβ is also modeled by the bell function Eq. (13).

The utility function U proposed in our previous work, which
incorporates fβ is given below. This is an improved version of
Morales et al.’s utility function.

U i(p̂i|p̂j) = kiOf
i
O + kiS f

i
S + kiRd f

ij
Rd

+ kiRα
f ijRα

+ kiRV f
ij
RV

+ kiRβ
f ijRβ

+ kiMa
f iMa

+ kiMV
f iMV

+ kiMw
f iMw

. (14)

Yet, a moving pedestrian is not included in the above previous
studies. Therefore, in the work presented in this paper, we take
another step forward by proposing a further improved utility U
considering moving a pedestrian.

Assume that i is one member of the pair (any member) po-
sitioned at position p̂i, then the member i will have a utility of

U i toward his partner positioned at p̂j and a moving pedestrian
positioned at p̂m as follows:

U i(p̂i|p̂j, p̂m) = kiOf
i
O + kiS f

i
S + kiRd f

ij
Rd

+ kiRα
f ijRα

+ kiRV f
ij
RV

+ kiRβ
f ijRβ

+ kiMa
f iMa

+ kiMV
f iMV

+ kiMw
f iMw

+ kijmP f ijmP . (15)

In this equation, the function fP (Eq. (10)) described in
Section 4.3 is added. k values are the weight constants of each
individual utility. When two people walk together as a pair, they
normally try to optimize these ten factors by maximizing corre-
sponding individual utility functions. When a factor reaches the
optimum value, the corresponding function f will reach the max-
imum value. In some cases it may not be possible to maximize
all individual utility functions. In such cases, they normally try
to reach the best state they can. i.e. the overall function U is
maximized for the given situation. In other words, beforemaking a
new step, both members i and j will try to select the next position
that can maximize the value of their utilities U i and U j.

4.5. Moving utility of the pedestrian

The overall utility of a member in the pair given by Eq. (15) is
the combination of personal utilities considering the relationship
between the two members in the pair. Similarly, the utility of
the pedestrian toward the pair can be calculated. However, only
some of the factors out of the 10 factors mentioned in Eq. (15) are
relevant in the case of a pedestrian moving toward the pair.

Um(p̂m|p̂i, p̂j) = kmO f
m
O + kmS f

m
S + kmMa

f mMa

+ kmMV
f mMV

+ kmMw
f mMw

+ kmij
P f mij

P . (16)

Similarly to members of the pair, before making a new step the
pedestrian will try select a next position that can maximize the
value of the utility Um.

4.6. Moving utility of the scene

We assume that everyone in the scene not only try tomaximize
their personal utilities at each step but also try to respect the others
by cooperating with them to maximize their utilities. Otherwise,
their behavior would not be socially acceptable. Thus, everyone in
the scene contributes toward the quality of the environment. This
can be incorporated into another utility called ‘‘scene utility’’.

Assume that, at time t , the positions of the two members i
and j of the pair, and the pedestrian m in the environment are
represented by the set Pt = {p̂it , p̂

j
t , p̂mt }. Pt+1 = {p̂it+1, p̂

j
t+1, p̂

m
t+1}

is one positions set among all feasible positions sets that they can
move to. Then, at time t , the overall utility of the scene for the next
step is calculated as follows:

Ψt+1(Pt+1) = U i
t+1 + U j

t+1 + Um
t+1. (17)

The new positions set P∗

t+1 is most likely to be chosen if:

Ψt+1(P∗

t+1) = argmax(Ψt+1). (18)

4.7. Modeling the friendly link utility

By considering the role of the FL factor, the passing process
should be tackled by people as follows:

• All people in the scene continuously collect information
relating to ten factors (nine traditional factors plus the FL
factor) to calculate the answer for utility Ψ (Eq. (17)) for
determining the next best positionsP∗ that they should take.
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• At time t , a person s (s = i, j,m) considers that his personal
utility will be rapidly decreased if he continues walking in
the same direction as in the past. As discussed above, one of
the main reasons that leads to this thought is the desire to
protect FL, i.e. to maintain the value of fP . Simultaneously,
he may also judge that utilities of related people walking
in his pathway are being reduced. As a result, this leads to
the down-trend of Ψ . Subsequently, the person s tries to
maintain Ψ by starting changing his trajectory to a new
direction. In this situation, s is the ‘‘starter’’. At the time t ,
all the others in the scene may not simultaneously have the
same feeling as person s, i.e. in their viewpoint, the value of
Ψ may remain unchanged if they keep moving in the same
direction as in the past. However, at time t + 1, after the
person s processes his new direction, the equilibrium of the
past state is changed. Afterward, all people start recomput-
ing Ψ following new changes. Finally, all the others process
new reactions to adapt these impacts.When all the reactions
of the people in the scene lead to a new equilibrium, a
new trajectories set is determined to prepare for passing
process—Stage 3 is started for all people in the scene.

Based on characteristics of Stage 3 and the reasoning above, the
Friendly Link utility should have the following characteristics:

• In a far distance between the pair and the pedestrian, i.e. ξ
gets high values, this utility should not greatly affect the
overall utility of each person. This can be seen from the
real world scenarios, when people are far from each other,
e.g. 100 m, they prefer to walk directly to the destination
rather than considering a detour, i.e. Stage 3 should not
happen too soon. Thus, in this condition, the value of fP
should be approximately maximum.

• When people come close enough, i.e. when ξ is small and θ
is large, the value of this utility should be rapidly decreased,
reflected in the relatively short lifetime of Stage 3.

Based on these characteristics, we modeled the utility fP as a step
function as follows:

f sP = −θ ∗ |(
ξ

a
)−2b

| (s = i, j,m) (19)

where a and b are coefficients. In this equation, we set the max-
imum value of fP to zero to coordinate with other utilities in
Eqs. (15) and (16).

4.8. Implementing the passing process in the robotic wheelchair

Based on the discussion on the passing process of humans in
Section 4.7, it can be seen that each person may estimate different
values of fP (and even other individual utilities) in each circum-
stance. For this reason, the time that Stage 3 occurs is not fixed
and the person who is the ‘‘starter’’ can be anyone. However, the
passing process can still be performed smoothlywithout any prob-
lem. Therefore, we implement the utility Eq. (15) on the robotic
wheelchair as follows:

• Because the robot is the follower, we put the priority to ini-
tialize the passing process on the leader and the pedestrian.
If the leader or the pedestrian starts Stage 3, the robot simply
adapts to the change.

• If the leader and the pedestrian keep walking, and do not
start Stage 3 at a given threshold, the robot will initiate
the process and act as the ‘‘starter’’. The threshold is just
enough for the robot and all people to perform the necessary
maneuvers to successfully start and complete Stage 3. All
co-efficients need to be adjusted to ensure that Stage 3 can
happen at this threshold.

Fig. 7. Sub-goal illustration: positions of people at passing time.

Because the values of these coefficients are not known in advance,
they need to be estimated. The next section will describe the
Parameter calibration.

4.9. Sub-goal estimation

Another important factor contributing to the smooth crossing
process is the ability to predict the sub-goals, which are the po-
sitions that people intend to take when they pass each other. Fig.
7 illustrates these sub-goals. By predicting the sub-goals of others
in passing, people can prepare their trajectories for smooth passing
and for avoiding conflicts. Hence, if the robot knows in advance the
sub-goals of people in passing, itsmotions can bemore natural and
bring more comfort to the people in the scene.

First, we analyzed the positions of all three people at passing
time C for determining their potential sub-goals. The statistical
data is illustrated in Figs. 8 and 9. In Fig. 8, the x-axis shows the
positions of the pedestrian along the width of the corridor; those
positions are considered sub-goals that the pedestrian wants to
pass to before reaching their destination. The y-axis represents the
number of times these sub-goals occur, i.e. the frequency of these
sub-goals. Similarly, Fig. 9 shows the sub-goals of midpoint µ of
the pair and their frequency.

From this statistical data, positions ofµ and the pedestrian tend
to converge to some specific locations in the corridor, hencewe can
use these locations as the sub-goals for them through the following
procedure:

• The pedestrian may have two sub-goals: Smleft and Smright , in
which Smleft is themidpoint of the left side of the corridor, and
Smright is the midpoint of the right side of the corridor.

• Similarly, the pair may have two sub-goals: Spleft and Spright , in
which Spleft is themidpoint of the left side of the corridor, and
Spright is the midpoint of the right side of the corridor.

These sub-goals are illustrated in Fig. 10. There may be a slight
difference between the sub-goal’s positions in the above definition
and the statistical data. However, the corridor is pretty narrow
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Fig. 8. Positions of the pedestrian at passing time.

Fig. 9. Positions of the midpoint µ of the pair at passing time.

and our main purpose is to anticipate whether the pair and the
pedestrian want to go to the left or to the right of the corridor,
therefore the exact sub-goal positions are not important.

Because in most cases, people prefer passing modes (a) and (b),
we can assume that the sub-goals of the pair and the pedestrian
are different in one passing situation. Therefore if the sub-goal
detection process determines that:

• (1) if Sp ≡ Spright and Sm ≡ Smleft : the robot will set its sub-goal
to Srobot ≡ Spright .

• (2) if Sp ≡ Spleft and Sm ≡ Smright : the robot will set its sub-goal
to Srobot ≡ Spleft .

• (3) if (Sp ≡ Spleft and Sm ≡ Smleft ) or (Sp ≡ Spright and
Sm ≡ Smright ): these are atypical situations in which the
pedestrian will move in between two members of the pair,
thus the robot should wait for the next detection loop to re-
determine the sub-goals until situation (1) or (2) is detected,
or until the Friendly Link utility fP affects the overall utility at
a threshold that situation (1) or (2) happens, depending on
whichever comes first. During this waiting period, the robot
keeps the final destinations of all the people as their sub-
goals.

Fig. 10. Sub-goal detection in passing.

To determine the sub-goals of the pair and the pedestrian,
we developed the idea proposed in Murakami et al.’s study [35]
for detecting sub-goals in the new setting showing in Fig. 10 as
follows:

Sm = argmin
{Smg |Sm

visible}

{γm
g } (20)

γm
g = angle(

−−−→
pmt−1p

m
t ,

−−−→
pmt−1S

m
g ) (21)

SP = argmin
{SPg |SP

visible}

{γ P
g } (22)

γ P
g = angle(

−−−−−−−→
p̂leadert−1 p̂leadert ,

−−−−→
p̂leadert−1 SPg ) (23)

where g = (left, right), Svisible = {Sleft , Sright}. leader is the caregiver,
as we set the priority of the caregiver higher than the robot. In this
situation, if agent i is the leader , then agent j is the robot and vice
versa.

4.10. Preferred walking velocity

From the modeled function of the utility fMv , this utility will
reach the maximum value when Mv = cMv . In Morales et al.’s
study [3], the coefficient cMv is determined as the average value of
the statistical walking velocities. Morales et al. assume that people
always prefer to walk at the velocity Mv = cMv at any time in any
walking session.

In our data, the average value of the walking velocity Mv of
the pedestrians and the pairs is cMv = 0.79 m/s; lower than the
average velocity in Morales et al.’s study [3] (cMv = 1.10 m/s). The
high average age, low average height, purpose of the participants’
walk (strolling) may lead to this change. Yet, in real world scenar-
ios, walking velocities of pedestrians are affected by many other
reasons as well, e.g. if pairs focus more on their conversations,
their walking velocities tend to be slower. Even when a person
wanders alone, if he suddenly directs his attention to something
on the pathway, his walking velocity also may also increase or
decrease. Therefore, it is not reasonable to assume that all people
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prefer to walk at a constant velocity cMv , even if that velocity is
the average value of all the observed walking velocities. Sviestins
et al.’s study [36] has addressed this issue and proposed a solution
to predict the next preferred walking velocity of a pair. However
the method is not fully developed and has not considered all the
situations as discussed above. Therefore in this study we proposed
the following solution:

We employ an n-gram model with n = 2, ∆t = 1 s to analyze
the data and compare the actual walking velocity of people at time
t + ∆t (i.e. t + 1) with the following equation:

cMvt+1
=

Mvt−1 + Mvt

2
. (24)

The result indicated that, with an error threshold of 10%, the
value of cMvt+1

in Eq. (24) and the real walking velocityMv matched
in over 81% of samples.Whereas the value ofMv in the real walking
velocity and the constant value cMv matched in less than 75% of
samples.

Hence, we used Eq. (24) to compute the value of cMv at time t+1
instead of using a constant value of cMv , i.e. the coefficient cMv of the
utility fMv is continuously updated during a walking session. Thus,
at time t + 1, fMv reaches its maximum ifMv = cMvt+1

.

4.11. Standard navigation model

For the purpose of verifying the effectiveness of the new
model and the current models for side-by-side walking robotic
wheelchairs, we employed the Morales et al.’s model [3], which
we believe is one of the state-of-art navigation models for side-
by-side robotic wheelchairs. However, because this model was
developed only for static environments with static obstacles, we
slightly modified the model, adding a pedestrian, as follows:

Walking utility of the agent i in the pair:

U i
standard(p̂

i
|p̂j) = kiOf

i
O + kiS f

i
S + kiRd f

ij
Rd

+ kiRα
f ijRα

+ kiRV f
ij
RV

+ kiMa
f iMa

+ kiMV
f iMV

+ kiMw
f iMw

. (25)

Walking utility of the pedestrian:

Um
standard(p̂

m) = kmO f
m
O + kmS f

m
S + kmMa

f mMa

+ kmMV
f mMV

+ kmMw
f mMw

. (26)

The formula of overall walking utility Ψ of the entire environ-
ment is as follows:

Ψstandard = U i(p̂i|p̂j) + U j(p̂j|p̂i) + Um(p̂m). (27)

5. Parameter calibration and performance evaluation

5.1. Parameter calibration

The coefficients needed to be calibrated in order to have a
working model; we set up the following steps:

(1) We used the trajectory data for calibrating the new model.
After eliminating the walking sessions that did not follow
modes (a) and (b) because they were atypical, 26 crossing
sessions, or 26 trajectory sets, remained.

(2) A simulator was developed for calibrating coefficients. A
grid was applied to the navigation environment with cell
dimensions of 20 × 20 cm.

(3) We replaced one member of the pair with our simulated
agent, which represents our roboticwheelchair. Because the
pair has two members, we ran two rounds; on the first
round, the agent i was replaced by the robot, then on the
second round, the agent j was replaced by the robot. By
doing this, the role of the robot was treated as equal to its
partner.

Fig. 11. Anticipation grid in the simulator.

(4) We set the simulation step with ∆t = 1 s. At time t , by
applying Eq. (17) for the newmodel and Eq. (27) for standard
model, the simulator needed to estimate the positions of
the follower in the scene at time t + 1. We defined SC s

t+1
as a point on the line stretching between two points p̂st−1
and p̂st with s = (i, j,m) toward the destinations. The
distance between SC s

t+1 and p̂st was a length determined by
the velocityMv in Eq. (24)multiplied by∆t . To find the value
ofU in Eqs. (17) and (27) at time t+1, the simulator scanned
a region of 5 × 5 cells around SC s

t+1, as illustrated in Fig. 11.
We skipped the first step because the overall utility Eqs.
(17) and (27) need information from previous steps for
calculating. Also, at the second step, because we did not
have enough data on the two previous steps for the input of
Eq. (24), hence we set cMvt+1

= cMv .
(5) Initially, all the coefficient values found by previous stud-

ies [3,21] were kept.
(6) With fP , at the beginning we set θ = δ + 1. The coefficients

a, b and the weight constant k needed to be determined in
order for fP to start changing rapidly when ξ = 5, i.e. the
robot should actively start Stage 3 if the distance from the
pair to the pedestrian m is less than 5 m in a condition
that the pedestrian m keeps walking directly to µ. Thus, we
started with a = 20, b = 0.4, and k = 1.

(7) At time t , after the values of Ψ in Eq. (17) and Ψstandard
in Eq. (27) are found, the new position at time t + 1 for
the simulated follower is determined. Then, the follower
moves to the newly determined position. The leader and the
pedestrian do not move to the new positions determined by
the model, but move to their real positions recorded in the
data corresponding to the time t+1. By simulating thatway,
the robotic wheelchair always had to use the real positions
of the leader and the pedestrian to calculate its next step. All
calculations for the step t + 1 is finished here.

(8) The model continues calculating the position of the simu-
lated follower at time t + 2 and so on.

We adjusted the coefficients so that trajectories of the follower
built by themodels were as close as possible to the real trajectories
in the recorded data. At each step t , we measured the distance Λ

between the simulated agent position and the real agent position
in the recorded data. We employed our new model with the sub-
goal detection and the preferred velocity estimation (Eq. (24)),
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Fig. 12. Testing on thedata set A: The values ofΛ in the y-axis represent thedistance
errors in meters between the positions proposed by the simulated follower and the
real follower’s positions.

whereas the Standard navigationmodel is employed with the sub-
goal detection only.

The new coefficient values are listed in Table 2. Most values of
coefficients from previous studies were kept, though some values
of kwere changed. In addition, we set δ = 0.3.

5.2. Performance verification

The one-way repeated-measure analysis of variance (ANOVA)
was employed to evaluate performance of the new model by
comparing the distance errors Λ between our new model and the
Standard navigation model.

In the first step, the performance was tested by using the data
collected in Section 3.1, we called this testing data set A. The
result F = 13.13, P = 0.00042 was found, showing a significant
difference between the two models. With our new model, the
Mean was 0.158 m, Standard Deviation was 0.085, whereas with
the Standardmodel, theMeanwas 0.248mand StandardDeviation
was 0.179. These values are illustrated in Fig. 12.

However, because the testing data set A is also used to calibrate
the coefficients of themodel function, an over-fitting problemmay
occur. Therefore, in the second step,we carried out a new study fol-
lowing the same procedure of the first study, described in Section
3.1, to collect new, independent data to verify the performance of
the new model.

This time, eight volunteers participated in the study, two
women and six men, their ages ranging from around 20 to over
40. We did not ask their ages, but estimated their average age
to be around 30. All the participants were lecturers or students,
however they had no research relationship to our study. All the
steps described previously to collect data were repeated, although
we took notes to eliminate some atypical walking sessions instead
of using a video camera. Participants were asked to pretend that
they were strolling around a mall and therefore should not walk
as they were late for work. We also applied some filter steps as
described in Section 3.1. For example, one participant suddenly
told the other participants that they wanted to walk in a particular
way, and that attitude have affected the natural walking behaviors
of all the people in the scene, therefore that walking session was
eliminated. In addition, only the walking modes (a) and (b) were
kept. The Trajectory standardization step in Section 3.2 was also
applied. Finally, 50 crossing sessions remained; we call this testing

Fig. 13. Testing on the data set B: The values ofΛ in the y-axis represent the distance
errors in meters between the positions proposed by the simulated follower and the
real follower’s positions.

Table 2
Determined coefficients for the navigation model.

Parameters a b c kl, kf km

fRd : Social relative distance (m) 0.25 2.00 0.75 0.1 –
fRa : Relative angle (rad) 0.08 3.00 π/2 0.3 –
fRv : Relative velocity (m/s) 0.20 1.20 0.00 0.01 –
fO: Distance to Obstacles (m) 20.0 0.40 – 0.02 0.04
fS : Angle to sub-goal (rad) 0.45 1.00 0.00 0.3 2.5
fMv : Velocity (m/s) 0.30 1.60 0.79 0.05 0.5
fMw : Angular velocity (rad/s) 0.70 4.40 0.00 0.01 0.5
fMa : Acceleration (m/s2) 0.20 1.00 0.00 0.01 0.01
fRβ

: Vision (%) 0.3 2.00 1.00 0.6 –
fP : Friendly Link 10 0.4 – 0.05 0.1

data set B. The average velocity of this data set cMv = 0.74 is
determined.

Data set B was then sent to the simulator to test the distance
errors. The result F = 20.78, P = 5.93E − 06 was found,
proving that the two models were significantly different. With
our new model, the Mean was 0.296 m, Standard Deviation was
0.170, whereas with the Standard model, the Mean was 0.356 m
and Standard Deviation was 0.206. The results are illustrated in
Fig. 13.

As canbe seen from the results achieved fromboth testing steps,
the performance of our new model was significantly better than
the previous model.

6. Conclusion

This paper presents a novel navigation model for side-by-side
robotic wheelchairs for optimizing the social relationship and the
comfort of the involved parties in a crossing situation; i.e. the
wheelchair user, caregiver and a third-party pedestrian. Based
on our observations, we propose a navigation solution consider-
ing human factors in a friendly side-by-side walking session. By
applying our model with calibrated parameters, the robot has a
better mechanism to generate a reliable and reasonable decision
to optimize benefits for both wheelchair users and the caregiver in
a crossing situation with a human; i.e the robot is able to mimic
the decision-making process of humans, tackling the limitations
of navigation functions in previous studies. Although this study is
conducted in a straightforward environment which has only one
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pedestrian, we believe that this model can be applied to more
complex environments where the pair has to encounter more than
one pedestrian.

On the other hand, this model still has some limitations that
need to be developed further. The model was developed based
on an assumption that the destinations of all the people in the
scenes were known. However, in real scenarios, the robot might
encounter dynamic environments where the destinations of the
pair and the pedestrians are uncertain. In those circumstances,
more factorsmight need to be combined into this navigationmodel
to let the robot understand the future actions and reactions of the
caregiver, the pedestrian and surrounding people.
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