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Abstract— Dissolved gas analysis is the most widely used 

diagnostic test in power transformers. There are established 

methods used in industry for interpreting DGA results. Among 

these are the IEEE Key Gas Method, Rogers’ Ratios and the 

Duval Triangle. However, collectively these methods can lead to 

conflicting results or unclassifiable measurements. This paper 

presents a visualization technique for interpreting DGA results to 

mitigate these effects, based on Kernel Principal Component 

Analysis.  DGA measurements from more than 200 power 

transformers are used to validate the approach. 
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I.  INTRODUCTION 

Gases are generated in transformers in service due to 
various mechanisms happening within. These gases then get 
dissolved in transformer oil, which acts as an insulator and a 
coolant.  Dissolved Gas Analysis (DGA) is a method for 
extracting these gases from transformer oil with the aim of 
diagnosing the condition of the transformer. DGA is the most 
widely used diagnostic test for power transformers in service, 
worldwide.  Typically, dissolved gases found in transformer oil 
include hydrogen (H2), oxygen (O2), nitrogen (N2), carbon 
monoxide (CO), carbon dioxide (CO2), methane (CH4), ethane 
(C2H6), ethylene (C2H4), acetylene (C2H2), propane (C3H8) and 
propylene (C3H6). However, not all these gases are used in the 
diagnosis. Most available diagnostic methods use no more than 
seven gases in total: H2, CO, CO2, CH4, C2H6, C2H4, and C2H2.  

Among the established methods available for DGA, the 
popular ones are the Key Gas Method [1], Rogers’ Ratios [2] 
and the Duval Triangle [3], [4]. All these methods are valid 
provided that the gas concentration levels exceed some 
threshold value.  It is widely recognized that DGA is a method 
with significant diagnostic limitations, not least the 
discontinuity that results when transformer oil is degassed [5].  
Moreover the established methods described above define fault 
categories differently and can disagree about the categorization 
of a specific sample. 

These experiments are based on a set of data collected by 
Transpower New Zealand Ltd. consisting of about 7600 
maintenance records of power transformers and other 
switchgear dating back to 1970.  The results reported here 
focus on a subset of 592 power transformer tests conducted 
during 2011-2012.  In each case the oil was tested using DGA. 
The subset contains many examples that characterise the 
variation between well-behaved transformers, but also provides 
a few examples of faulty devices.  This imbalance is common 
since utility companies wish to detect errant behaviour at the 
earliest possible stage and schedule pre-emptive maintenance 
to rectify problems before a transformer develops a severe and 
disruptive fault.  The paucity of faulty examples has 
encouraged us to avoid using automated pattern recognition as 
many previous researchers have attempted [6], [7], since we do 
not have access to a balanced training set.  Rather we have 
focused on developing a decision support system that tracks the 
behaviour of a transformer over time using visualisation 
techniques to assist investigating engineers to collate evidence 
when a transformer strays outside the bounds of normal 
variability.  The approach, based on Kernel Principal 
Component Analysis, is aimed at plotting a locus for each 
transformer over time and highlighting the change of direction 
that signals a sudden deterioration in health. 

Despite the inherent limitations in interpreting DGA results, 
it is widely used in industry and others have examined the 
resulting data using Principal Component Analysis.  PCA is 
frequently used as a feature extraction technique in pattern 
recognition systems [7], [8], [9].  No evidence has come to 
light of the application of kernel principal component analysis 
in this context previously or of principal component analysis 
used as part of a visualization system for DGA. 

II. ESTABLISHED METHODS AND THEIR DRAWBACKS 

A. Key Gas Method  

The Key Gas Method (KGM) is given in one of the IEEE 
Standards [1], as a method of interpreting faults in power 
transformers using the dissolved gases. It makes use of the 
dependence on temperature of the types of oil and cellulose 
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decomposition gases. There are certain typical gases generated 
at certain temperatures, and if these gases are predominant, 
they can be traced back to the temperatures within a 
transformer and to the typical fault [1]. These predominant 
gases are called the ‘key gases’ and the KGM shows the typical 
percentages of key gases for four types of faults. These are 
shown in Fig. 1 [1]. 

The main drawback with the KGM is that it is highly 
unlikely for gas concentrations to exactly match the given 
signatures in Fig. 1. Therefore, based on the experience, the 
investigator has to make a judgment to correlate the data with 
the type of fault. 

 

 

 

 

 

 

 

 

 

(a) Overheated oil (C2H4) (b) Overheated cellulose (CO) 

 

 

 

 

 

 

 

 

(c) Partial discharge in oil (H2) (d) Arcing in oil (C2H2) 

Fig. 1. Typical fault gas percentages (with their key gases) [1] 

B. Rogers’ Ratios 

Rogers [2] has found that under faulty conditions, the ratios 
between certain gas concentrations are bounded by specific 
values.  These gas ratios are called Rogers’ Ratios [1], [2] and 
the values they take for certain types of faults are categorized 
in Table I.  Unlike with other diagnostic techniques this 
method also gives typical gas ratios when the unit is in normal 
operation (Case 0 in Table I). The major drawback with this 
method is certain values of ratios can fall outside the ranges 
given in Table I, and therefore, the fault could be 
indeterminate. 

C. Duval Triangle 

The Duval triangle provides a graphical method of 
identifying a fault. It uses a three-axis coordinate system with 
concentrations of CH4, C2H4 and C2H2 on each axis. The area 
within the equilateral triangle is divided into different regions 
corresponding to the type of fault, as shown in Fig. 2 [3], [4].  
The various regions indicated within the Duval Triangle are 
given in Table II. These regions and their boundaries have been 
decided empirically by visual inspection of a large number of 
faulty transformer measurements. 

TABLE I.  ROGERS’ RATIOS [1] 

Case 
2 2

2 4

C H

C H
 

4

2

CH

H
 

2 4

2 6

C H

C H
 

Suggested fault 

diagnosis 

0 <0.1 
>0.1 to 

<1.0 
<1.0 Unit normal 

1 <0.1 <0.1 <1.0 
Low-energy density 

arcing - PD 

2 0.1 to 3.0 0.1 to 1.0 >3.0 
Arcing-high-energy 

discharge 

3 <0.1 
>0.1 to 

<1.0 
1.0 to 3.0 Low temperature thermal 

4 <0.1 >1.0 1.0 to 3.0 Thermal<700OC 

5 <0.1 >1.0 >3.0 Thermal>700OC 

 

One advantage of using the Duval Triangle is that it always 
provides a diagnosis. There will always be a point within the 
triangle for known concentrations of CH4, C2H4 and C2H2. The 
drawback with the Duval Triangle method is, sometimes wrong 
diagnosis may occur when data is in proximity to a boundary.  

  

 

Fig. 2. Duval Triangle with fault regions [3], [4] 
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TABLE II.  REGIONS WITHIN DUVAL TRIANGLE [4] 

Region Fault 

PD Partial discharge 

D1 Discharges of low energy 

D2 Discharges of high energy 

T1 Thermal fault, t < 300OC 

T2 Thermal fault, 300OC< t < 700OC 

T3 Thermal fault, t > 700OC 

DT Mixtures of thermal and electrical faults 

III. DATASETS 

The dataset consists of 592 DGA measurements taken over 
the period January 2011 until December 2012 on 224 separate 
power transformers.  It is assumed that these measurements are 
representative of well-behaved transformers, defined as 
transformers which are not known to be faulty and operate 
within Transpower’s agreed performance criteria [10].  Each 
measurement consists of concentrations for the six gases used 
by the Key Gas Method, taken from one transformer on a 
known date.  Each measurement is treated as a 6 dimensional 
vector.  In addition measurements were available from two 
faulty transformers that chart their deteriorating health.  These 
are compared to the well-behaved dataset.  Moreover during 
the research a cluster of 14 measurements were discovered 
corresponding to a further faulty transformer that is used as a 
third case study.  These 14 points were quarantined from the 
dataset leaving 578 measurements.  Finally signatures were 
generated and overlaid on the visualisation for each of the four 
KGM signatures in Fig. 1. 

IV. EXPERIMENTAL METHODOLOGY 

The DGA measurements were processed using Kernel 
Principal Component Analysis [11] (KPCA) as a way of 
seeking a new visualisation of the data that differentiates 
between the normal variation associated with well-behaved 
transformers and those that are developing or displaying faulty 
characteristics.  KPCA is an extension to the established 
statistical method of principal component analysis (PCA) [12] 
that also takes advantage of the kernel trick [13], by using a 
multivariate Gaussian kernel function to map the six 
dimensional measurements into a reproducing kernel Hilbert 
space H of infinite dimension.  The 578 well-behaved 
transformer measurements span a 124 dimensional subspace in 
H in which PCA is performed, seeking the principal basis 
vectors with greatest variance.  This is determined by finding 
the eigenvectors and eigenvalues of the covariance matrix of 
the centred measurements [11].  The dataset gave rise to 124 
non-zero eigenvalues.  A five dimensional eigenspace was 
established, corresponding to the largest eigenvalues.  The fifth 
eigenvalue is less than 10% the magnitude of the first which 
was deemed an adequate cut-off threshold.  The eigenspace can 
be visualised by projecting onto selected pairs of eigenvectors.  
These KPCA projections are non-linear since they treat the 
kernel function as a non-linear distance metric between points. 

Several parameter values were chosen when implementing 
the method using MATLAB: the eigenspace dimension was set 
as previously discussed; the DGA measurements were 
normalised prior to processing by finding the maximum 
concentration of each gas and scaling each concentration in the 
range [0, 1]; and a kernel variance σ was set for the Gaussian 
kernel function in the range [0.6, 0.9] as shown in later figures.  
The variance loosely sets the degree of non-linearity used in 
determining distances.  Small values of σ make the 
representation highly non-linear and larger values approach the 
behaviour of conventional PCA.  The final decision when 
visualising the data is which eigenvectors to project onto.  The 
eigenvectors applying to each figure are stated in the captions.  
This is a matter of choosing the best vantage point to see the 
internal structure of the projection, to avoid coincidentally 
superimposed points.   For example, we usually look from the 
front to back of a fish tank, but can sometimes see more by 
looking along the tank from one end or down into the tank 
from above.  So it is with the projections resulting from KPCA. 

V. RESULTS 

Three fault conditions are considered in this section.  Two 
of them arose in a previous publication of the authors [10] and 
are re-examined in the context of this new visualization 
approach.  An additional fault was spotted and excised from 
the well-behaved transformer data as this paper was prepared.  
This fault will be discussed by way of an introduction. 

A. A cluster of faulty data 

When the data was visualized using the new KPCA-based 
projection it became apparent there was a previously unseen 
cluster of points.  It is impossible to be confident from a single 
projection that points form a cluster, just as two stars that 
appear nearby in the night sky may be coincidentally 
superimposed along the same line of sight.  In the case of 
KPCA it is possible to change the vantage point by selecting 
different eigenvectors, allowing the cluster to be verified from 
several different directions. 

The 14 points forming the cluster were examined and it 
became apparent that they were all observations made of the 
same transformer.  Moreover when these measurements were 
tested using the Duval triangle they were all classified as 
category DT. 

The faults are shown as x crosses (in red) in Fig. 3.  
(Diagrams in this paper are in colour to assist in discerning the 
detail). This is generated using a kernel variance σ = 0.6.  This 
is in contrast to the well-behaved transformer measurements 
portrayed as small (black) diamonds.  In addition the four faults 
of the KGM are overlaid as follows: (a) overheated oil is 
shown as a + cross; (b) overheated cellulose as a hollow circle; 
(c) partial discharge in oil as a hollow square; and (d) arcing in 
oil as a hollow diamond. 

The origin of the original linear space is shown near 
coordinate (0.4, -0.2), translated due to the centring of data in 
the Hilbert space.  The six axes of the original linear 
representation are shown emerging from the origin.  These 
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show the directions within the space corresponding to increases 
in concentration of each of the key gases and are colour coded 
for easy comprehension.  The order of the axes is (from top to 
bottom) carbon monoxide (blue), ethylene (cyan), methane 
(green), hydrogen (red), acetylene (black) and ethane 
(magenta).  Note that the carbon monoxide axis terminates in 
proximity to the hollow circle since this is the appropriate fault 
signature for high CO (cf. Fig. 1 (b)).  Likewise the ethylene 
axis ends near the + cross and hydrogen axis near the hollow 
square.  The final fault signature (hollow diamond) is less 
clearly located as it consists of a mixture of hydrogen and 
acetylene. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. KPCA projection of a discovered fault cluster 

B. Transformer B Case Study 

In an earlier publication [10] the authors highlighted a 
transformer that had failed in service and labelled it 
transformer B.  It was also of interest for this project in that it 
had a long history of DGA data collection, with 12 
measurements made between March 2003 and the time of 
failure in November 2010.  The final measurement can be 
classified as a T3 fault using the Duval triangle method [10].  It 
was expected that the locus that resulted from this sequence of 
measurements could provide information about the time at 
which the transformer deteriorated. 

Fig. 4 shows the locus superimposed on the elements from 
the previous figure.  This plot required kernel variance σ = 0.9.  
Each of the measurements is shown by an x cross and these are 
joined by green line segments in chronological order, starting 
at the origin which is located near (0.3, 0.0) on this projection 
(March 2003) and ending at the top middle of the graph 
(November 2010).  The transformer starts near the origin since 
it was already displaying errant behaviour prior to March 2003 
and so its oil was degassed at this point so that it could be more 
clearly diagnosed. 

It can be seen from the figure above that this locus moves 
along in the subspace occupied densely by well-behaved 
transformers (small black diamonds) for the first three 

measurements.  In the 4
th

 measurement (taken in November 
2005) the locus has changed direction by about 90º and risen 
vertically above the densely populated region.  Thereafter it 
rises up through an area of the space which clearly has no well-
behaved transformers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. KPCA projection of the locus of transformer B 

C. Transformer C Case Study 

As a further case study transformer C, also arising from 
[10], was examined.  This unit was of interest because of its 
high acetylene levels which exceeded Transpower’s criteria, 
warranting closer examination.  The unit was partially 
degassed in 2009 providing just four measurements over the 
period June 2009 until July 2011.  These resulted in a short 
locus that can be plotted on a KPCA projection, particularly 
since the final two values were very similar giving just three 
dispersed points. 

The final projection, Fig. 5, shows the fourth and fifth most 
significant eigenvectors with kernel variance σ = 0.8.  Viewed 
from this direction, most of the well-behaved transformers 
form a cluster in the middle of the projection.  This case is 
interesting since transformer C’s fault does not resemble any of 
the KGM signatures.  Their locations can be seen bottom 
centre and on the right of the figure with the final circular 
signature near (-0.1, 0.2). 

The magenta locus starts near (-0.1, 0.0) (June 2009) and 
moves to the left, ending with the final pair of points in 
proximity to (-0.4, 0.1) (July 2011).  Again the projection 
makes it clear that the locus is moving away from the bulk of 
well-behaved transformers, but there are outliers in proximity 
to the termination point of the locus (and this has been 
confirmed by seeking other projections of the data).  This may 
be accounted for by the range of variability of 
“normal” transformers, but could equally well indicate as yet 
undiscovered fault behaviour among the well-behaved 
examples.  It reflects the fact that it is only possible to be 
confident in a fault diagnosis once a transformer has undergone 
an internal physical examination which is expensive to 

 

 



Australasian Universities Power Engineering Conference, AUPEC 2013, Hobart, TAS, Australia, 29 September – 3 October 2013          5 

 

 
conduct.  Due to the significant cost, maintenance tends to 
occur when the evidence is conclusive about the fault status. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. KPCA projection of the locus of transformer C 

Transformer C, not only does not resemble any KGM 
signature, but also cannot be diagnosed using Rogers’ ratios.  
However the Duval triangle method diagnoses the final 
location of the locus as categories D1/D2. 

VI. DISCUSSION OF APPROACH 

There is other recent work [14], [15] providing graphical 
ways to diagnose fault behaviour of transformers based on 
DGA measurements, but much is derived from gas ratio 
combinations and relative content of fault gases.  These 
methods seek out rules resulting in decision boundaries that 
partition a graph into regions associated with various fault 
categories. 

In contrast the approach reported here has focused on a 
visualization technique that allows investigating engineers to 
decide when transformer behaviour has deviated away from the 
bulk of past measurements.  The approach does not aspire to 
definitive classifications, but does include projections of the 
axes and key gas fault signatures to identify regions associated 
with various faults.  The strength of this method is that it 
allows an investigator to visualize a large set of past 
measurements as a basis for comparison with a new one.  
Indeed the structure of the projection is derived from the span 
of past measurements.  It also has the potential for 
chronological analysis, allowing a sequence of measurements 
to form a locus and this has been illustrated with a couple of 
case studies. 

It is possible to convert additional signatures (such as those 
from the KGM) and superimpose them on the projection.  
However portraying boundaries, such as those from Rogers’ 
ratios and the Duval triangle, within the projection is difficult.  
For example a boundary such as that resulting from the Rogers’ 
rule C2H4 / C2H6 ≥ 3 defines a 5 dimensional hyperplane and its 
surface and structure would be complex to visualize in KPCA 

projections.  Moreover, it is only easy to see whether points are 
above or below the surface when viewing it edge on.  It is 
hoped to unify the method proposed here with the three 
alternatives presented in Section II, but this may require a new 
visualization approach such as including semi-opaque surfaces 
in the projections and fading objects depending on their 
distance behind the surface.  This will form the basis for future 
research. 

VII. CONCLUSIONS 

This project was a case study to determine whether a non-
linear visualization approach, based on kernel principal 
component analysis, would offer benefits for managing a large 
collection of DGA measurements.  Through several examples 
it has been demonstrated that the method allows clusters of 
unusual (possibly faulty) measurements to be located and 
differentiated from well-behaved transformer measurements.  It 
has also been possible to plot the temporal evolution of suspect 
transformers, as loci in the space, to find the time at which their 
behaviour deteriorates. 

The results of this study are encouraging and will lead to 
future work automating the visualization to a greater extent, 
attempting to unify the approach further with established 
methods such as Duval’s triangle and possibly developing a 
“polished” implementation to be trialled in industry. 
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