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Abstract— Assuming perfect channel state information (CSI),
linear precoding/decoding for multiple-input multiple-output
(MIMO) systems has been considered in the literature under
various performance criteria, such as minimum total mean-
square error (MSE), maximum mutual information, and min-
imum average bit error rate (BER). It has been shown that
these criteria belong to a set of reasonable Schur-concave or
Schur-convex objective functions of the diagonal entries of the
system mean-square error (MSE) matrix. In this paper, assuming
only the knowledge of channel mean and transmit correlation
at both ends, a general theoretical framework is presented to
derive the optimum precoder and decoder for MIMO systems
using these objective functions. It is shown that for all these
objective functions the optimum transceivers share a similar
structure. Compared to the case with perfect CSI, a linear filter
is added to both ends to balance the suppression of channel noise
and the additional noise induced from channel estimation error.
Simulation results are provided.1

I. INTRODUCTION

The performance of multiple-input multiple-output (MIMO)

systems depends on the availability of channel state informa-

tion (CSI) at the transmitter (CSIT) and/or at the receiver

(CSIR) [1]. Previously, optimum precoding or joint precod-

ing/decoding for MIMO spatial multiplexing systems has

been obtained using mean-square error (MSE)-related design

criteria under different CSI assumptions [2]-[13]. Assuming

perfect CSI at both ends, optimum transceivers are derived for

minimizing total MSE or for maximizing capacity [2][3][4].

In [5], assuming perfect CSI, the optimum transceivers are

obtained for a set of MSE, signal-to-interference-plus-noise

(SINR), or bit error rate (BER)-related design criteria, which

are Schur-convex or Schur-concave functions of the diagonal

entries of the MIMO system MSE matrix and include the

minimum total MSE and maximum capacity design criteria

as special cases.

CSI is imperfect in practice, and there have been robust de-

signs which take this fact into account. Transceiver optimiza-

tion has been considered assuming perfect CSIR and imperfect

CSIT (channel mean and/or channel covariance information)

(see [6, Sec. VII], and references therein). In [7][8], the same

imperfect CSI is assumed at both ends of a MIMO link

without explicit consideration of channel correlation. In [9][6,

Sec. VI], transceiver designs have been studied assuming,

1The work in this paper was supported by the Hong Kong Research Grants
Councils under project number 617087.

at both ends, the imperfect CSI composed of channel mean

and receive correlation information. In [10][11][13], optimum

signaling for a capacity lower-bound (i.e., minimizing the

determinant of the system MSE matrix [13]) has been studied

assuming imperfect CSI at both ends with channel mean

and transmit correlation information, where the closed-form

transmit covariance matrix has been found in [13]. Under the

same CSI assumption, optimum transceivers to minimize the

total MSE (trace of the system MSE matrix) have been found

in [12, Sec. III][13]. It is worth pointing out that, with channel

mean and transmit correlation information at both ends, the

transceiver optimization problem is nontrivial compared to the

perfect CSI case.

In this paper, we consider the MIMO transceiver design

with channel mean and transmit correlation information at both

ends as in [12][13]. This scenario is particularly interesting in

practical downlink transmissions, where the channels arising

from base station antennas are correlated. With this assumption

of CSI, the optimum precoder-decoder pairs for the minimum

total MSE design and the maximum capacity lower-bound

design have been derived based on the associated optimality

conditions [12][13]. However, this approach involves matrix

differentiation and has to be applied individually for dif-

ferent objective functions. On the other hand, the optimum

transceivers derived share the same structure, which implies

that a unified approach might be possible.

In light of the results from [5], here we present a general

theoretical framework to derive the optimum transceivers for

various practical designs (as summarized in [5], including

those in [12][13] as special cases) under the same imperfect

CSI. The approach taken here is to equivalently reformulate

the original design problem using the notion of “reasonable

functions”, and then apply majorization theory [5][17]. We

obtain the optimum transceiver for the whole set of design

criteria which are Schur-convex or Schur-concave functions

of the diagonal entries of the MIMO system MSE matrix.

Assuming imperfect CSI, the analysis can also be extended

for transceiver optimization for MIMO-OFDM systems using

cyclic prefix (CP) and without subcarrier cooperation.

Notation: E{·} stands for statistical expectation, tr(·) for

trace, and det(·) for determinant. (·)H means complex con-

jugate transpose (Hermitian). A ≻ B means that (A − B)
is positive definite. (b)+ = max(b, 0). Nc(·, ·) denotes the

complex Gaussian distribution. I is the identity matrix and 1
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is reserved for the all-one vector. diag(A) and eig(A) denote

vectors whose entries are the diagonal entries and eigenvalues

of a positive semidefinite matrix A, respectively. For square

B, [B]ii denotes the i-th diagonal entry of B.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

It is assumed that nT (nR) antennas are used at the

transmitter (receiver). The information streams to be sent are

denoted by a B×1 vector s, where the number of data streams,

B (≤ nT ), is chosen and fixed. A nT × B precoder, denoted

by F, is employed at the transmitter, taking the available CSI

into account. After precoding, the data vector is transmitted

across a slowly-varying flat-fading MIMO channel, described

by the nR ×nT matrix H. The nR × 1 received signal vector

at the receive antennas is

y = HFs + n, (1)

where n is the AWGN with distribution Nc(0, σ2
n·I). The input

signal s is assumed to be zero-mean and white (Rss = I), and

independent of channel realizations. In the receiver, a linear

decoder, described by the B × nR matrix G, is employed to

recover the original information. After decoding, the signal

vector r is given by r = Gy = G(HFs + n).

The MIMO channel is modeled as in [14]: H = HwR
1/2
T ,

where Hw is a matrix whose entries are independent and iden-

tically distributed (i.i.d.) Nc(0, 1). The matrix RT represents

normalized transmit correlation with diagonal entries all equal

to one. We assume that RT is invertible.

B. Description of the CSI

As in [10][12], MMSE estimation of Hw is performed at

the receiver, which yields Hw = Ĥw+Ew, with Ĥw being the

estimate of Hw and Ew being the error matrix. Ĥw and Ew are

mutually uncorrelated, and are both spatially white with entries

Nc(0, 1 − σ2
E) and Nc(0, σ2

E), respectively. Variance σ2
E =

E{|Hwji|2}−E{|Ĥwji|2}. The CSI model is thus described by

H = (Ĥw + Ew)R
1/2
T = Ĥ + E, where Ĥ = ĤwR

1/2
T is the

estimated channel matrix (channel mean) and E = EwR
1/2
T .

Below we assume that Ĥ, RT , σ2
E and σ2

n are known to both

ends of the link, which is also referred to as channel mean

and transmit correlation information. It is assumed that CSIT

is obtained by perfect feedback of CSIR via a dedicated link.

With the above CSI model, the received signal vector y is

given by y = ĤFs+EFs+n = ĤFs+EwR
1/2
T Fs+n, and

r = Gy. The system MSE matrix is calculated as

MSE(F,G)
def
= E

[

(r − s)(r − s)H
]

= GĤFFHĤHGH − GĤF − FHĤHGH

+ IB + [σ2
n + σ2

E · tr(RT FFH)]GGH . (2)

Note that E
{

EwAEH
w

}

= σ2
E · tr(A) · I, if the entries of

matrix Ew are i.i.d. Nc(0, σ2
E). The optimum linear MMSE

data estimator [15] is used at the receiver, i.e.,

Gopt = FHĤH{ĤFFHĤH + [σ2
n + σ2

E tr(RT FFH)]I}−1.
(3)

Substituting (3) into (2), we obtain the MSE matrix in terms

of F alone:

MSE(F) =

[

IB +
FHĤHĤF

σ2
n + σ2

E · tr(RT FFH)

]−1

. (4)

C. Problem formulation

Our goal here is to find the optimum F which minimizes a

set of reasonable2 Schur-convex or Schur-concave objective

functions [denoted as g(·)] [5] of the diagonal entries of

MSE(F) subject to a total power constraint:

minF g (diag[MSE(F)]) , subject to tr(FFH) ≤ PT . (5)

It can be shown that a global minimum exists for continuous g
functions, since the feasible set is a finite-dimension Frobenius

norm ball [16]. Based on the optimized F, we can evaluate

the performance of different designs with imperfect CSI. When

σ2
E = 0, the problem formulation in (5) reduces to that in [5],

or those in [2][3][4] when the objective function is the trace or

determinant of MSE(F). Furthermore, when σ2
E �= 0 and the

objective function is the trace or determinant of MSE(F), the

optimum F has also been determined in [12][13]. However, the

methodology used in [12][13] depends on the differentiation of

the objective function with respect to the precoder and decoder

matrices, and has to be applied to each objective function

individually. Here we will provide a general framework to

find the optimum F for a set of objective functions (different

g’s) without matrix differentiation.

III. GENERAL RESULTS

For convenience, define

T = [σ2
n · InT

+ σ2
E · PT · RT ]. (6)

Below we assume that the number of data stream, B, is equal

to r, the rank of the estimated channel Ĥ.

A. General results

Proposition 1: Assume that g : RB
+ → R is reasonable

(i.e., it is an increasing function in each of its arguments).

• If g is Schur-concave, then the optimum F for (5) is given

by:

F = [σ2
n · InT

+ σ2
E · PT · RT ]−

1

2 VΦF1, (7)

where ΦF1 is a diagonal matrix satisfying the power

constraint with equality, and V is obtained from the

following eigen-value decomposition:

T− 1

2 ĤHĤT− 1

2 = [V Ṽ]

(

Λ 0

0 Λ̃

)

[V Ṽ]H . (8)

In (8), Λ is a diagonal matrix whose diagonal entries are

the non-zero eigenvalues arranged in decreasing order. Λ̃

is a zero matrix, and Ṽ consists of basis vectors of the

2A function g : RB
+

→ R is reasonable if it is increasing in each of its
arguments [5]. This definition fits in the context of linear precoding/decoding
design for MIMO systems.
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null space. V is composed of eigenvectors corresponding

to the nonzero eigenvalues.

• If g is Schur-convex, then the optimum F for (5) is of

the form:

F = [σ2
n · InT

+ σ2
E · PT · RT ]−

1

2 VΦF2U, (9)

where ΦF2 is diagonal, and U is a unitary matrix chosen

to make the diagonal entries of the resulting MSE(F)
equal.

Proof : First, we show in Appendix A that if g is reasonable,

then the minimum of (5) is achieved when the constraint is

satisfied with equality, i.e., tr(FFH) = PT . Then (5) can be

equivalently formulated as

min
F

g

⎛

⎝diag

[

I +
PT · FHĤHĤF

tr{FH [σ2
nInT

+ σ2
EPT RT ]F}

]−1
⎞

⎠

subject to tr(FFH) = PT . (10)

Without loss of generality, F can be expressed as

F = T− 1

2 [V Ṽ][ΦH
F Φ̃H

F ]H

= T− 1

2 [VΦF + ṼΦ̃F ], (11)

where V and Ṽ are both from (8), and ΦF and Φ̃F are

arbitrary r×r and (nT −r)×r matrices, respectively. Define

F‖ = VΦF and F⊥ = ṼΦ̃F . It is shown in Appendix B

that, to achieve the minimum, F⊥ = 0, i.e., F = T−1/2VΦF .

Substituting this into (10), after some algebra, we can show

that (10) is equivalent to

min
ΦF

g

(

diag

[

I +
PT ΦH

F ΛΦF

tr{ΦH
F ΦF }

]−1
)

subject to tr(ΦH
F VHT−1VΦF ) = PT , (12)

where V and Λ are from (8).

From (12), it is the structure of ΦF that determines the

value of the objective function. The norm of ΦF does not

affect it.

To proceed, we need the following results from [5][17]. Let

M be a n × n positive semidefinite matrix. Let the entries

of diag(M) and eig(M) be arranged in decreasing order,

respectively. Then diag(M) is majorized by eig(M), and so

is
tr(M)

n 1 by diag(M). If f : Rn → R is Schur-concave,

then f [eig(M)] ≤ f [diag(M)]. If f is Schur-convex, then

f [ tr(M)
n 1] ≤ f [diag(M)].

Thus, for a Schur-concave g, the minimum of (12) is

achieved when ΦF is diagonal with its diagonal entries

properly arranged, denoted as ΦF1. This gives us (7)3.

On the other hand, for a Schur-convex g, the minimum is

achieved when all the diagonal entries are made equal and

3It can be shown that if a non-diagonal matrix ΦF (satisfying the power
constraint) achieves a certain value of the Schur-concave objective function
in (12), then there exists a diagonal matrix (satisfying the power constraint)
that achieves a value of the objective function no greater than that achieved
by the non-diagonal matrix. Therefore, the optimum ΦF for (12) must be
diagonal. Due to space limitations, we do not elaborate on this here.

their sum [trace of the matrix appeared in the objective of

(12) as the argument of the diag function] is minimized. Since

the trace function is itself a Schur-concave objective function

of the diagonal entries of the MSE matrix, the optimum ΦF

for (12) has the form ΦF2U, where ΦF2 is diagonal and U

is a unitary matrix which renders the diagonal entries of the

resulting MSE matrix equal. Therefore, (9) is proved. �

Remark 1: Proposition 1 reduces to the results

in [2][3][4][5] when σ2
E = 0. Compared to the perfect CSI

case, a linear filter T− 1

2 [see (6)] is added in the transceiver,

which balances the suppression of channel noise and the

additional noise caused by channel estimation error. The

effect of σ2
E is coupled with transmit correlation RT . When

Proposition 1 is applied to (5), it remains to determine the

entries of ΦF1 or those of ΦF2, and the original matrix

optimization problem (5) is now scalarized.

B. Applications

We consider examples of g which satisfy the requirements

of Proposition 1. For brevity, define [VHT−1V]ii = βi, i =
1, . . . , r = B. Also recall that the entries of Λ [see (8)] are

arranged in decreasing order.

i. Examples of Schur-concave functions

Let [ΦF1]ii = φi, i = 1, . . . , r. [ΦF1 is defined in (7).]

Define xi = φ2
i .

(a) Minimization of weighted arithmetic mean of the MSEs

Let g1({[MSE(F)]ii}r
i=1) =

∑r
i=1(wi · [MSE(F)]ii), where

{wi}r
i=1 are positive weights. This objective function has been

considered in [4] assuming perfect CSI, which incudes the

unweighted MMSE design and the maximum capacity design

as special cases. By choosing different weights, one can also

design the transceiver to achieve different SNRs on different

subchannels [4]. Clearly, g1 is reasonable. Per [5], g1 is Schur-

concave. The problem in (5) is scalarized as

min
{xi}r

i=1

r
∑

i=1

wi ·
1

1 + PT λixi
∑

r

m=1
xm

subject to

r
∑

i=1

xiβi = PT , xi ≥ 0,∀i. (13)

Solving this problem using the method of Lagrange multipli-

ers, we obtain

xi =

[

w
1

2

i λ
− 1

2

i PT (PT + a1) − a2PT λ−1
i

(PT + a1)a3 − a2a4

]

+

. (14)

Let the integer k (k ≤ r) denote the number of non-zero

x′
is. Note that k can be readily determined using a procedure

as in [12]. Then a1 =
∑k

i=1 λ−1
i , a2 =

∑k
i=1 λ

− 1

2

i , a3 =
∑k

i=1 λ
− 1

2

i βi and a4 =
∑k

i=1 λ−1
i βi. Note that this result

coincides with that obtained in [13, Sec. 3.6] using a different

approach.

After obtaining xi [as in (13)], we can obtain φi =
√

xi,∀i,
and thus ΦF1.

(b) Minimization of the geometric mean of the MSEs
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Let g2({[MSE(F)]ii}r
i=1) = Πr

i=1[MSE(F)]wi

ii . This design

problem is shown to be related to the minimization of the

determinant of the MSE matrix (or maximization of the mutual

information) with perfect CSI [5]. Again, g2 is reasonable. It

is shown in [5] that g2 is Schur-concave. The problem in (5)

is reduced to

min
{xi}r

i=1

Πr
i=1

[

1

1 + PT λixi
∑

r

m=1
xm

]wi

subject to

r
∑

i=1

xiβi = PT , xi ≥ 0,∀i. (15)

Solving this problem, we obtain

xi =

[

PT {wi(PT + b3) − b0λ
−1
i }

(PT + b3)b1 − b2b0

]

+

. (16)

Let the integer m (m ≤ r) denote the number of non-zero x′
is.

Similar to k for (14), m can be readily determined (see [13]).

Then b1 =
∑m

i=1 βi, b2 =
∑m

i=1 λ−1
i βi, b3 =

∑m
i=1 λ−1

i , and

b0 =
∑m

i=1 wi. In this case, [ΦF1]ii =
√

xi.

The optimum precoder obtained here is the same

as that used to maximize a mutual information lower-

bound [13][10][11] when wi = 1,∀i:

max
F

tr{FF
H}≤PT

log2 det

[

I +
FHĤHĤF

σ2
n + σ2

E · tr(RT FFH)

]

. (17)

The relationship between the minimization of the geometric

mean and (17) is similar to that in the perfect CSI case, where

minimizing the geometric mean is equivalent to maximizing

the exact mutual information [5].

Remark 2: [Relationship between minimization of the

unweighted geometric mean of MSEs (maximization of the ca-

pacity lower-bound in (17)) and minimization of the weighted

arithmetic mean of MSEs] Let wi = λi,∀i in (13) and let

wi = 1,∀i in (15), then (14) is equal to (16).

ii. Schur-convex functions

Schur-convex functions are involved in many system de-

signs of interest, e.g., minimization of the maximum MSE

from all data streams [5]. For all reasonable Schur-convex

functions, the solutions to (5) are the same4. Further, the

optimum ΦF2 in (9) is the same as the optimum ΦF1 in (7) to

minimize the trace of MSE(F), which has been obtained when

minimizing the arithmetic mean of the MSEs with wi = 1,∀i
[see (13) (14) with wi = 1,∀i].

Remark 3: For single-carrier MIMO, despite different

design criteria for particular applications, the minimizations

of the weighted arithmetic mean and geometric mean of the

4It is important to note that our design (5) takes an averaging approach [see
(2)]. In addition, we should be cautious when applying some design criteria
with imperfect CSI. For example, in the design to minimize the arithmetic
mean of BERs from all data streams, by simulations, we have found that,
with imperfect CSI, Q-function cannot be used to describe the BER of each
data stream at high SNR. This is different from the perfect CSI case [5].
Therefore, some Schur-convex (or Schur-concave) functions established in
the perfect CSI case have to be re-examined.

MSEs [Sec. III-B–(i)] are the core of all designs. This is true

for both perfect and imperfect CSI cases.

iii. Extension to CP-based MIMO-OFDM systems with

imperfect channel estimation and transmit correlation

Assuming imperfect channel estimation, it is straightforward

to extend our results in Sec. III-A to a CP-based MIMO-

OFDM system [19] with individual processing5 and power

constraints on each subcarrier.

On the other hand, assuming individual processing, when

a sum power constraint is imposed on all subcarriers, we

employ a two-stage processing (primal decomposition). First,

we initialize the power for each subcarrier, and apply our

results on transceiver optimization to each subcarrier. Then

an outer power allocation is performed among all subcarriers.

Iteration is performed until the globally optimum transceivers

are obtained for all subcarriers.

Note that the outer power optimization problem is nontrivial

in the case of imperfect CSI, and remains to be solved.

However, the structures of the optimum precoders can be

readily shown.

IV. NUMERICAL RESULTS

Per Remark 3, for single-carrier MIMO, all the designs

discussed here are related to minimization of the arithmetic

or geometric mean of the MSEs. Thus we refer the readers

to [12][13], where numerical examples for the results in

Sec. III-B–(i) of this paper can be found. For single-carrier

MIMO, the corresponding BER results for all Schur-convex

functions are the same. An example is given below (see Fig. 1).

Let nT = nR = 4, the number of data streams B = 3. The

transmit correlation model is given by: (RT )ij = ρ|i−j| for

i, j ∈ {1, . . . , nT }. Here ρ = 0.5. The SNR in Fig. 1 is defined

as PT /σ2
n. QPSK (4-QAM) is used for each data stream. The

system performance is shown in terms of the arithmetic mean

of BERs (ABER = 1
B

∑B
j=1 BERj), and is obtained from

Monte Carlo simulations. For the imperfect CSI case, the error

variance is modeled in the same way as in [12, Sec. II-B, Sec.

III], and is set to be σ2
E = 0.01478 for ρ = 0.5. The two

designs shown in Fig. 1 differ only in a unitary rotation, and

the comparison results are as they are designed to be.

V. CONCLUSIONS

Assuming channel mean and transmit correlation informa-

tion at both ends, optimum transceiver structures for MIMO

systems have been determined for a set of reasonable Schur-

convex or Schur-concave objective functions of the diagonal

entries of the system MSE matrix. Compared to the case with

perfect CSI, a linear filter is added to both ends to balance the

suppression of channel noise and the additional noise induced

from channel estimation error. Results can also be applied to

the transceiver design assuming imperfect CSI for CP-based

MIMO-OFDM systems with noncooperative subcarriers.

5This means that the subcarriers are not cooperating. Each subcarrier has
its own transceiver (precoder-decoder pair).
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Fig. 1. ABER performance; σ2
E

= 0 (perfect CSI) or σ2
E

= 0.01478

(imperfect CSI). nT = nR = 4, B = 3, ρ = 0.5. Here min arith-MSE
(or max-MSE) denotes the design to minimize the arithmetic mean (or the
maximum) of the MSEs from all data streams. Note that max-MSE is Schur-
convex.

APPENDIX A

The entries of g are the diagonal entries of MSE(F) and

can be represented as eH
i [MSE(F)]ei, where ei is the i-th

column of the identity matrix, i = 1, . . . , B. Suppose that FA

is the optimum of (5) when the power constraint is PA and

denote corresponding minimum of (5) as vA. Let PB > PA

and F̆B =
√

PB

PA
FA. Then,

eH
i

[

I +
F̆H

B ĤHĤF̆B

σ2
n + σ2

E · tr(RT F̆BF̆H
B )

]−1

ei

= eH
i

[

I +
FH

A ĤHĤFA

PA

PB
σ2

n + σ2
E · tr(RT FAFH

A )

]−1

ei

< eH
i

[

I +
FH

A ĤHĤFA

σ2
n + σ2

E · tr(RT FAFH
A )

]−1

ei, ∀i. (18)

The last inequality follows from the fact that if A ≻ B, then

B−1 ≻ A−1 [18, p. 586, A.8, (vii)], and eH
i (B−1−A−1)ei >

0. Consequently, if A ≻ B, eH
i A−1ei < eH

i B−1ei. Denote

the value of the objective in (5) corresponding to F̆B as

v̆B . Since g is increasing in each of its arguments, based on

(18), we have v̆B < vA. Define the global minimum of (5)

corresponding to PB as vB . Clearly, vB ≤ v̆B , since vB is the

global minimum whereas ṽB is simply the cost of using one

feasible point. Therefore, vB < vA for PB > PA. This shows

that the minimum of (5) must be achieved when the constraint

is satisfied with equality. �

APPENDIX B

Due to space limitations, we can only present an outline

here. Substituting (11) into (10), using the fact that FH
⊥F‖ = 0,

FH
‖ F⊥ = 0, FH

⊥V = 0, FH
‖ F‖ = ΦH

F ΦF and FH
⊥F⊥ =

Φ̃H
F Φ̃F , after some calculations, we obtain the following

equivalent problem

min
ΦF ,Φ̃F

g

⎛

⎝diag

[

I +
PT · ΦH

F ΛΦF /tr{ΦH
F ΦF }

1 + tr{Φ̃H
F Φ̃F }/tr{ΦH

F ΦF }

]−1
⎞

⎠

subject to tr
[

T−1(F‖ + F⊥)(F‖ + F⊥)H
]

= PT . (19)

Using the same technique as in Appendix A, one can show that

the objective in (19) is decreased if tr{Φ̃H
F Φ̃F } is decreased

(assuming that g is reasonable, i.e., increasing in each of

its arguments). Therefore, the objective is minimized when

tr{Φ̃H
F Φ̃F } = 0, i.e., F⊥ = 0. �
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