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Abstract In this article, a fuzzy neural network (FNN)- 
based approach is presented to interpret imprecise natural 
language (NL) commands for controlling a machine. This 
system, (1) interprets fuzzy linguistic information in NL  
commands for machines, (2) introduces a methodology to 
implement the contextual meaning of  NL commands,  and 
(3) recognizes machine-sensitive words from the running 
utterances which consist of both in-vocabulary and out-of- 
vocabulary words. The system achieves these capabilities 
through a FNN, which is used to interpret fuzzy linguistic 
information, a hidden Markov model-based key-word spot- 
ting system, which is used to identify machine-sensitive 
words among unrestricted user utterances, and a possible 
framework to insert the contextual meaning of words into 
the knowledge base employed in the fuzzy reasoning pro- 
cess. The system is a complete system integration which 
converts imprecise NL command inputs into their corre- 
sponding output  signals in order to control a machine. The 
performance of the system specifications is examined by 
navigating a mobile robot  in real time by unconditional 
speech utterances. 
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1 Introduction 

Natural language (NL) is the most effective, efficient, 
and natural communication medium of human beings. This 
means an increasing demand for conversational interfaces 
(CIs) for the consumer electronics that are ubiquitous in 
everyday life. Among  these, there is special interest in 
consumer electronics in the fields of the rehabilitation of 
handicapped persons (i.e., nursing), l working environments 
where both hands are busy (e.g., helpers), and toys for 
toddlers and older children (i.e., entertainment). 2'3 More- 
over, speech signals contain not  only the lexical content, but 
also the speaker 's  gender, emotions, and personality. This 
encourages the use of speech in NL-based systems (NLBSs) 
with different objectives. From the user's point of view, 
everyone is more  or less equally skillful in the use of their 
mother  tongue, although they have different skills in their 
professions, e.g., engineering, medicine, or politics. There-  
fore, machines driven by NL are free from technical com- 
plexities, and user training is very easy or not required. The 
downside is that NL-based interfaces are not persuasive in 
mission-critical control equipment which needs high preci- 
sion, because poor  signal quality, recognition delay, and 
possible missrecognition may badly affect the devices and 
their environment.  

In the early days of voice-controlled machines, machine 
functions were activated by comparing the input user ut- 
terance with a stored template, as in the voice-controlled 
wheelchair developed by Mazo et al. 4 Each command was 
restricted to a few words, and had an associated function. 4s 
To control the machine, the user had to speak in-vocabulary 
words, i.e., a set of words which had been selected to acti- 
vate the machine functions. Since robots have limited func- 
tionality, a fairly small vocabulary was enough to handle the 
command and control dialogues in human- robo t  interac- 
t ions] CI-based research grew rapidly after reliable and 
accurate speech recognizers were developed based on the 
hidden Markov model (HMM). 6 In addition, these methods 
needed to identify key words in running utterances in order 
to enhance speech-based machine control. This HMM- 
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Fig. 1. The system architecture 

based key-word spotting approach was first proposed by 
Rose and Paul 7 to solve the problems in the automated call 
routing systems in the telephone industry. Their discovery 
was followed by several improvements to the system, and 
the HMM-based approach was established as the most effi- 
cient method of key-word spotting. 8'9 Key-word spotting 
gave considerable freedom to the user when controlling 
machines using unrestricted user utterances. 1~ NLBS has 
received much attention recently with the advent of pet 
robots for entertainment, e.g., AIBO and PaPeRo. 2'3 

Almost all the present day controllers (including the sys- 
tems mentioned above) based on NL commands carry out 
the explicit semantic action requested by the user, but in 
natural conversations, the occurrence of words having fuzzy 
implications is inevitable. Words with fuzzy meanings are 
very important in machine control because they tune the 
performance of the robot's function. For example, "move 
slowly" is not only an activation command in robot naviga- 
tion, but also emphasizes how the robot should navigate in 
a particular terrain. Current NLBSs are insensitive to these 
fuzzy implications. In addition, contextual meaning, i.e., the 
meaning of the voice command according to the current 
state of the machine, has a greater importance in voice- 
controlled systems. We present a FNN-based approach 
to controlling machines with imprecise NL commands 
and a concern for the contextual meaning of the commands. 
Moreover, this system is able to identify machine-sensitive 
words from the unrestricted user utterances. 

In the rest of this article, a brief system overview is given 
in Sect. 2. The major components, i.e., the speech recog- 
nizer (SR), the action selection network (ASN), and the 
action modification network (AMN), with their characte- 
ristics, are described in Sects. 3, 4, and 5, respectively. A 
method of representing the contextual meaning of words is 
explained in Sect. 6. Finally, we discuss the experimental 
results in Sect. 7, and our conclusions and future direction 
are given in Sect. 8. 

2 System overview 

As illustrated in Fig. 1, the system captures the user's utter- 
ances by means of a microphone. The captured user utter- 
ance (speech signal) is processed in the SR in order to 
recognize the machine-sensitive words (pseudosentence) 
in the utterance, and to pass this pseudosentence to a 
perceptron-based artificial neural network (ANN) to de- 
code it into an action word (the verbs) and action modifica- 
tion words (the adverbs). The nature of the action word 
(e.g., move) is definite or precise, but the action modifica- 
tion words (e.g., very fast) are not definite or precise. I~ 
Therefore, the system manipulates them in a different man- 
ner. The action word is fed into a perceptron-based ASN to 
initiate the prospective action. Action modification words 
together with the current machine status, are fed into the 
AMN, which modifies the operating behavior of the action 
initiated by the ASN. Each action is implemented as a sepa- 
rate module. These action modules emit activation signals 
for each particular function of the robot. The ASN initiates 
one of these actions at a time. 

3 Speech recognizer 

The SR is developed using a HMM toolkit, which is an 
integrated suite of software designed to build and manipu- 
late continuous-density HMMs in order to building auto- 
matic speech recognition systems. I~ The hidden Markov 
model toolkit used in this design was developed at the 
Speech, Vision and Robotics Group of the Engineering 
Department, Cambridge University. The SR consists of two 
parts, as shown in Fig. 2. The key-word spotting module 
consists two parallel networks, as shown in Fig. 3. The out- 
line of the function carried out by the key-word spotter is 
explained in the sample dialogue below. 

User Robot, Can you go very fast 
Robot You ask me to go very fast 
User Yes/No 
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Act ion  Word/Act ion  Modif icat ion Word 

i ' Wn_ 
Pseudo Sentence 

Keyword  Spotting Module  
( H M M  based A S R )  

User Utterance 
Fig. 2. The speech recognizer 

The learning and performing behavior of the percep- 
trons is described below using the notations depicted in Fig. 
2, where w i is the weight f rom the i-th input, and a threshold 
(or bias) at the output node, 0, is assigned to the input - 1 .  
Each word taken from the pseudosentence is presented to 
the A N N  as its input. In the learning phase, the initial 
weights wi(0), (1 ~ i ~< n) are set to small random values. At  
first, inputs xl, x 2 , . . . ,  x,, are presented to the network to 
calculate the outputs yi(t) as follows: 

yi ( t )  = wi t xi t - o (1)  
.= 

w h e r e  

- otherwise 

Then the training pairs, i.e., the continuously valued inputs 
xl, x2 . . . .  , x,, and the desired outputs d~(t) are presented to 
the A N N  to update the weights according to the learning 
rule derived as in the l i tera ture9 such that 

wi(t + 1 ) =  wi(t) + tl[di(t ) - yi(t)]xi(t ) (2) 

with 

di(t) = { + :  - otherwise if input is the desired word 

where 11 is a small positive learning rate, and d~(t) is the 
desired output for the current input. The weights are un- 
changed if the A N N  makes the correct decision. After  this 
learning phase, the A N N  is employed in the SR to identify 
the presence of a particular word in the pseudosentence. 

Fig. 3. The architecture of the key word spotter 

The key-word spotter filters the machine-sensitive words 
"go very fast" from the complete user utterance "Robot, 
Can you go very fast." This is achieved by implementing a 
filler network to identify the out-of-vocabulary (OOV) 
words as an alternative network to the baseline speech 
recognition (in-vocabulary or IV) network, as in Fig. 3. 
The pseudosentence extracted by the key-word spotter is 
transfered to the perceptron-based A N N  for identification 
and classification. Here, we do not need any multilayered 
networks or radial basis function networks that perform a 
higher-order nonlinear mapping. 13 Each perceptron is 
trained to separate a particular word from the rest. If the 
word exists in the user command,  the output  of the 
perceptron is set to one. Otherwise, it is set to zero. 

4 Action selection network (ASH) 

The function of the ASN employed in the proposed system 
is to initiate the desired action recognized at the SR. Action 
words recognized at the SR are fed into the ASN, as illus- 
trated in Fig. 4, to initiate the desired action. Owing to the 
existence of synonyms in NL, there may be different words 
which ignite the same machine function at this stage. There- 
fore, the number  of action words in the vocabulary may be 
greater than the number  of machine functions. For  this 
reason, the A N N  shown in Fig. 4 represents M number  of 
action words, which ignite N number  of machine actions, 
where M ~> N, and w{ denotes the weight from the i-th input 
word to the j'-th output action. Thus, the ASN generates a 
binary output  and ignites the desired output module to 
trigger the desired action. As an example, if the user wants 
to move the mobile robot  in a forward direction, then they 
can use one of the words from the group "go," "run," and 
"move" to trigger the moving module by suppressing the 
other modules, and vice versa. The ASN is also an A N N  
consisting of N perceptrons, where each perceptron is 



trained by using the same methodology as explained for the 
ANN at the SR. 

5 Action modification network (AMN) 

The inherent properties of FNN controllers, i.e., their abil- 
ity to manipulate imprecise data, naturally persuade us to 

a c t i o n l  �9 �9 �9 a c t i o n  N 

w o r d l  w o r d 2  w o r d 3  �9 �9 �9 w o r d M  

Fig. 4. The action selection network 

Fig. 5. A c t i o n  modi f ica t ion  
n e t w o r k  

C u r r e n t  

V a l u e  o f  

A c t i o n  1 
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select one as the controller when designing a machine con- 
trol system driven by NL. 14'15 The system proposed here uses 
the linguistic rules of fuzzy algorithms to understand the 
user's wishes, which come in the form of adverbs/fuzzy 
predicates (FPs) of the NL. The architecture of the 
proposed AMN is illustrated in Fig. 5. According to 
fuzzy-reasoning terminology, layers A - C  represent the 
antecedent part of the FNN, whereas layers E - F  represent 
the consequence part. As shown in Fig. 5, the domain of 
discourse of action 1 is described by the fuzzy variable A 1 
with q linguistic values, and that of action N is described by 
the fuzzy variable A N with t linguistic values. Similarly, the 
FP associated with action 1, FP 1, is composed of r FPs, and 
that of FP N is composed of s FPs. Thus, each action is 
unique in the sense of its domain of discourse and the FPs 
associated with that particular action. It is assumed that 
each node of the same layer has a similar function, as de- 
scribed below. Here, we denote the output of the i-th node 
in layer X as Ox,i. 

5.1 Layer A 

Layer A consists of two types of nodes: one is for com- 
mand nodes to represent the availability of FPs in the 
pseudosentence, and the other is for the different actions of 
the machine. Each action is labeled as current value of 
action k, where k = 1 , . . . ,  N. It is assumed that the current 

ction_l 

action _ 1 '  

C o m m a n d  

C u r r e n t  

V a l u e  o f  

A c t i o n  N 

(A) 

V lv er 

(B)  (C)  (D) (E) (F) 

A n t e c e d e n t  C o n s e q u e n c e  

_ N  

_ N *  
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value of action k, i.e., the crisp input to the k-th action node, 
is xk. No computation is carried out at this layer. This layer 
takes the current values of all machine actions and the FPs 
of the pseudosentence simply acts as a distribution layer 
for the current operating state of the machine and user 
requests. 

1 
O D , I  - -  T 

~2 hk~ 
t ~ l  

(7) 

Other nodes simply carry forward the outputs of previous 
nodes to the next layer. 

5.2 Layer B 
5.5 Layer E 

Layer B acts as the fuzzification layer of the FNN. In this 
layer, the output of a node connected to the current value of 
action k acquires the fuzzy membership value of the uni- 
verse of discourse. 

Suppose the input to any p-th node, where p = 1 , . . . ,  P, hkj 
of the current value of the k-th action is &, and A 1' is the OE, j -- r 
p-th linguistic value of the linguistic variable ..{ asso- ~h~f  
ciated with action k. Then the output of the p-th node is t 1 
given by 

OB.p = "A~(x*) (3) 

Similarly, the outputs of the FP nodes connected to the 
command node assign their value to 1 (like a f u z zy  single- 
ton), depending on their existence in the pseudosentence. 
Suppose that FP~ denotes the q-th FP, where q = 1 , . . . ,  Q, 
associated with the k-th action fired by the pseudosentence. 
Then the output of the q-th node connected to the FPs of r 
the k-th action can be expressed as ~ ,  hkjwki 

OF, k = action k*=  j=l {10 OB,q = FPq ~ = ifotherwiseFP exists in the command (4) ~>1 hki 

5.3 Layer C 

In this layer, the nodes labeled II compute the T-norm of 
the antecedent part. Although there are several methods to 
compute the T-norm, the algebraic product of the incoming 
signals, denoted by "*" is applied in the proposed system. 
The output of any node t, where t = 1 , . . . ,  T, in this layer is 
described by the equation 

Oc, t = hk, = ~tA~ ' (Xe) *FPq ~ (5) 

where hk, represents the firing strength of the t-th rule of the 
k-th action. Note that there are T rules associated with this 
action, where T = P x Q. 

5.4 Layer D 

The first node of layer D at each FNN, which has symbols X 
and g, generates the output through the function 

g(x) = 1 (6) 
x 

with a linear summed input. Then the output of the first 
node of action K is given by 

Each node labeled II in this layer multiplies the value car- 
ried forward by previous node with the output of the first 
node at layer D. Then the output of any j-th node of this 
layer can be given by the equation 

(8) 

5.6 Layer F 

Layer F is the defuzzification layer of the FNN. The node 
labeled Z in this layer calculates the overall output, i.e., the 
quantified performance value for the k-th desired action, as 
given below 

(9) 

where wkj denotes a constant value in the consequence part 
of the j-th rule for the k-th action. The overall output is the 
weighted mean of wkj with respect to the weight hkj, i.e., the 
firing strength of rule j. 

5.7 Training the AMN 

The connection weights are trained by applying the back- 
propagation algorithm. The adaptation process is illustrated 
in Fig. 6. 

As shown in Fig. 6, the error is calculated by comparing 
the output of the expert knowledge with that of FNN 
for the same input data, x. The adaptation of the j-th weight 
of the k-th action, wkj, at the/ - th  time-step is given by the 
equation 

w ,(l + 1)--  v[yd - y o ] -  
y_h , 
i=1 

(lo) 

where y represents a small positive learning rate, and Yd and 
y~ represent the desired output and actual output, respec- 
tively, for the k-th action selected for the training. 
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Fig. 6. Scheme for the adaptation of AMN 
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Fig. 7. Contextual meaning of fuzzy predicates of the command 
"move" 

6 Contextual meaning of words 

The mathematical implementation of the contextual mean- 
ing (significance) of words is very difficult, because it largely 
depends on the user's state of mind and the situation. How- 
ever, it must be taken into consideration because machine 
control is strongly affected by the user's commands and the 
current situation. As an example, when a machine reaches 
its maximum speed, the user may command it to increase its 
speed. At  that time, the machine's reaction should be com- 
pletely different f rom the situation where the user asks the 
machine to increase its velocity while it is running at a very 
low speed. Figure 7 illustrates the method we introduced to 
absorb the contextual meaning of words. According to Fig. 
7, the FP "very fast" diminishes its significance or meaning- 
fulness when the machine arrives at its maximum speed. 
At  that time, the user's request to "go very fast" has no 
meaning, i.e., its contextual value is very low. This imple- 
mentation is included in the knowledge base of the fuzzy- 
reasoning process. 

7 Experimental results 

The above concepts have been applied to navigate a mobile 
robot, Khepera, in real time. The experiments were imple- 

0 2.5 5.0 7.5 10.0 

Current Velocity v x 103/8 [m/s] 
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VS : Very Small 

S : Small 

M : Medium 

H : High 

VH : Very High 

Fig. 8. Membership functions of the current velocity 
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Fig. 9. Factors for the desired velocity 

mented piecewise to give a clearer picture. The output of 
the key-word-spotting module in the SR for user utterances 
is given below 

User  robot, go very fast 
R e c o g n i z e r  F I L L E R  GO V E R Y  FAST 
User  please turn left 
R e c o g n i z e r  F I L L E R  T U R N  L E F T  
U s e r  can you turn right 
R e c o g n i z e r  F I L L E R  F I L L E R  T U R N  R I G H T  

The above " F I L L E R "  occurrences are then filtered out for 
further processing. The alternative network with one filler 
module has been trained to identify the words "can, I, 
please, robot, you, want" from the key-words "backward, 
fast, forward, go, left, move, right, slow, stop, to, turn, very." 

The proposed system comprises two action modules, 
called a turning module and a moving module. The words 
connected with the turning function, i.e., "turn left," "turn 
right," and "turn backward," are very precise, although the 
words connected with the moving function, i.e., "very fast" 
and "very slow," are imprecise. The A M N  was designed to 
interpret these imprecise words for the moving module. The 
membership functions for the fuzzy variable "velocity" are 
shown in Fig. 8. The input space was limited to a maximum 
speed of 10 pulses/0.01s (0.08m/s) because the area of the 
working environment was 0.9m • 0.9m. The FNN was 
trained to achieve expert knowledge~ i.e., the desired veloc- 
ity in our example, which is ascertained by multiplying the 
current velocity by the velocity factor at a speed derived 
from the graph shown in Fig. 9, e.g., 

D e s i r e d  v e l o c i t y  = V e l o c i t y  f a c t o r  • C u r r e n t  v e l o c i t y  (11) 

The significance of the words was taken into consideration 
in the design process of the velocity factors. 
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Fig. 10. Velocity profile of the two 
wheels of Khepera 
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The training process was terminated when the error 
reached 0.01, and the weights were initialized to small ran- 
dom in the range -0 .5  ~< wkj ~< 0.5. The learning rate, 5' was 
assigned to 0.1, as in the ANNs. The velocity profile shown 
in Fig. 10 illustrates the velocities of the left and right 
wheels of its 54-s navigation for the commands "robot, go 
very fast," "please turn left," "can you turn right," "go very 
fast," "please turn right," "robot  go slow," " g o  slow," and 
"stop." The velocity values evaluated at the FNN are 
rounded off to the nearest integer value because velocity 
commands to Khepera should be in integer format, as 
shown in Fig. 10. 

8 Conclusions and future directions 

Our system has been shown to be capable of handling fuzzy 
linguistic information in the user's commands by ignoring 
redundant  words, which makes an envi ronment  which is 
conducive to natural  and flexible conversation, and is sensi- 
tive to contextual meaning in the natural  language. 

The proposed system is static, which means it does not  
adapt to new words. Since machines are fundamental ly  lim- 
ited to the services they can perform, we can make the in- 
vocabulary words include all the words used to describe 
those services. Therefore, the designer has to collect a large 
corpus of user expressions to create the in-vocabulary 
words used for the semantic actions of the machine func- 
tions and the fuzzy predicates attached to those semantic 
actions. Careful investigations should be carried out to se- 

lect the key-words, because the use of words is affected by 
gender, age, and even social background. 

H u m a n - h u m a n  interaction is not comparable with the 
present system. Humans  update  their vocabulary dynami- 
cally, learn meanings which are both general and contex- 
tual, integrate conversations with gesture, etc. These are the 
future directions of this research work. 
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