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Abstract. This paper exploits “biological grammar” of transmembrane
proteins to predict their membrane spanning regions using hidden Markov
models and elaborates a set of syntactic rules to model the distinct fea-
tures of transmembrane proteins. This paves the way to identify the
characteristics of membrane proteins analogous to the way that iden-
tifies language contents of speech utterances by using hidden Markov
models. The proposed method correctly predicts 95.24% of the mem-
brane spanning regions of the known transmembrane proteins and cor-
rectly predicts 79.87% of the membrane spanning regions of the unknown
transmembrane proteins on a benchmark dataset.

1 Prediction of Membrane Spanning Regions of the
Transmembrane Proteins

Transmembrane Proteins (TMPs), which traverse the phospholipid bi-layer of
the membrane one to many times, as illustrated in Fig. 1 and Fig. 2, are integral
membrane proteins, i.e., proteins which are attached to the cell membrane to
keep their hydrophobic regions intact with aqueous cytosol. Thus, they make a
channel between cytosome and extracellular environment, which transports var-
ious ions and proteins to and from cytosol. In addition, TMPs take part in vital
cell functions such as cleavage of substances for metabolic functions, functioning
as receptors, recognition and mediation in specific cell signaling, and participa-
tion in intercellular communication. Therefore, they are good therapeutic targets
and the knowledge of the topography of the TMPs is of paramount importance
to the design new drugs.

TMPs with experimentally verified structures are limited to about 1% of the
total entries in most of the protein databanks though they amount to 20-30%
of all open reading frames of the genomic sequences of several organisms [1][2].
Verifying TMP structures using experimental methods, such as X-ray crystallog-
raphy and nuclear magnetic resonance spectroscopy, is not only expensive but
also requires a lot of efforts due to the difficulties in protein expression, purifi-
cation, and crystallization. Especially, TMPs have hydrophobic regions, which
are buried inside the membrane, i.e., membrane spanning regions (MSRs), to
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Fig. 1. Typical structure of a transmembrane protein: Potassium channel protein
(KCSA) from Streptomyces lividans

keep the hydrophobic residues intact with aqueous cytosol and extracellular en-
vironment, and do not dissolve properly in aqueous solvents in the process of
purification. Consequently, the prediction of MSRs of the TMPs became a classi-
cal problem in bioinformatics. Experimentally verified TMPs have two different
motifs: membrane spanning α-helix bundles and β-barrels. Usually the α-helix
bundles (Fig. 1) are predominant [3]. This paper focuses its attention on pre-
dicting the α-helix bundles of the TMPs.

Early MSR prediction methods of the TMPs were based on the hydropho-
bicity analysis of the constituent amino acids [4][5][6]. Because, hydrophobicity
values of the amino acids in MSRs are relatively high compared to the other re-
gions. As illustrated in Fig. 2, high presence of Isoleucine, Valine, and Leucine,
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Fig. 2. Amino acid sequence and topography information of Histidine transport system
permease protein (hisQ) of Salmonella typhimurium: o, M, i indicate outer (extracel-
lular), membrane, and inner (cytoplasmic) residues respectively



Syntactic Approach to Predict Membrane Spanning Regions of TMPs 97

which are relatively high hydrophobic amino acids according to Kyte-Doolittle
hydrophobicity indices [4], can be observed in MSRs (denoted by M’s). Ac-
cordingly, frequent occurrences of highly hydrophobic amino acids is a good
guess for detecting MSRs. This technique is employed in hydropathy plots, an
early technique that is still popular in recognizing the MSRs in TMPs [4][7].
Among more recent methods, which predict the topography of transmembrane
proteins, hidden Markov model (HMM) based methods claims the highest accu-
racy [8]. Among them, TMHMM [2][9], HMMTOP [10], and MEMSAT [11] can
predict the membrane bounded region of the transmembrane proteins upto 65%
to 80% accuracy [8]. The above methods are different due to the structure of
the HMMs, i.e., the domains and segments that the HMM represents, and the
training method used.

Among the non-HMM methods, PHDhtm predicts MSRs of TMPs by us-
ing an artificial neural network (ANN) [12]. A special feature of the PHDhtm
is that the ANN learns the patterns of the evolutionary information (homol-
ogy). In Toppred, the approach combines hydrophobicity analysis and positive
inside rule to predict the putative transmembrane helices [6]. A general dynamic
programming-like algorithm, MaxSubSeq (stands for Maximal Sub-Sequence),
optimizes the MSRs predicted by other methods [13]. An evaluation of meth-
ods for the prediction of MSRs can be found in [8]. Protein sequences of the
TMPs verified by the imperial methods can be found in several databases such
as MPtopo database [14], TMPDB [15], and TMHMM site [2]. In TMHMM, a
state was designed to absorb the properties of one residue except in self-looping
globular state. All other states are designed without self-transition probabilities.
Contrary to that, in HMMTOP, each characteristic region is represented by a
self-looping single state. Approach taken in the proposed method used moderate
number of states to represent various characteristic regions. This approach is
motivated by the fact that each turn of the helix in MSR consist of 3-4 residues.
Accordingly, a state is designed to represent one turn of a α-helix rather than a
one residue, as in TMHMM, or one characteristic segment, as in HMMTOP, of
the TMPs. Length of an MSR is ranging from 15 residues to 30 residues.

The our approach to MSR predication of TMP is also based on HMMs.
Unlike previous approaches, in our HMM model (see Fig. 4), self transitions
and transition between every other states can align different length MSRs in
the training process as well as in the recognition process. The proposed method
correctly predicts 95.24% of the MSRs of the known TMPs and correctly predicts
79.87% of the MSRs of the unknown TMPs on a bench mark dataset.

The organization of this paper is as follows. In Section 2, the syntactic rules
derived by observing the various segments of the TMPs are described as a syn-
tactic network where each HMM model is aimed at recognizing an allowable
segment combinations of the TMPs. In Section 3, we described the HMMs and
training algorithm based on Viterbi segmentation. Section 4 describes the data
used in training and testing the proposed method along with results obtained.
Finally, a brief discussion about the proposed method and the future directions
are given in Section 5.
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2 Syntactic Rules of the “Biological Grammar” of TMPs

The presence of alternate sequences of inner (i.e., inside or cytoplasmic), mem-
brane spanning, and outer (outside or extra-cytoplasmic) regions of the trans-
membrane proteins follows a simple rule of grammar [16]. These regions have
unique features inherent to them and do not occur randomly. The syntactical
rules of these occurrences of different regions are derived and given below in
Fig. 3. The establishment of these rules has great importance to our study,
which follows a similar approach that used to identify the language contents of
the unknown speech utterances. TMPs with unknown regional boundaries are
analogous to unknown speech utterances.

The following symbols lay down the syntactic rules in the biological grammar:

| denotes alternatives
[ ] encloses options
{ } denotes zero or more repetitions
〈 〉 denotes one or more repetitions

$var denotes a variable word.

The two different orientations, outer-membrane-inner (i.e., omi) and inner-
membrane-outer (i.e., imo), with respect to the cell membrane can be observed
in the helix core of the MSRs and are defined them as separate literals. In-
ner and outer residue sequences can be observed in different lengths. They are
categorized into three groups, each according to their length. As an example,
in inner loops, the literal “i” represents a protein sequence with 1-6 residues.
The literal “ii” represents protein sequences with 7-20 residues, while the lit-
eral “iii” represent the very long protein sequences with more than 20 residues.
Same procedure is applied in defining literals “o”, “oo”, and “ooo”. Accordingly
syntactical rules governing on possible TMP configuration can be symbollically
described as follows:

Fig. 3. A graphical illustration of characteristic regions of transmembrane proteins
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$i’s = i | ii | iii ;
$o’s = o | oo | ooo ;
$word1 = $i’s imo $o’s ;
$word2 = $o’s omi $i’s ;
$word3 = $i’s imo $o’s omi ;
$word4 = $o’s omi $i’s imo ;

A pictorial view of these syntactic rules is shown in Fig. 3(a). As illustrated
in the Fig. 3(b), any continuous path from start node to end node, along the
direction of arrows, generate a possible segment sequence of any TMP. According
to our symbolic notations, syntax of any TMP can be given by:

( 〈 $word3 〉 $i’s | 〈$word4 〉 $o’s | {$word3} $word1 | {$word4} $word2 )

These grammatical rules can generate numerous syntactically correct TMPS,
as illustrated below. To derive the following sequences, the word network shown
in Fig. 3(b) can be used. According to our interpretation, these are possible
topological structures of the TMPs, where each literal represents a characteristic
feature of a TMP segment:

- i imo o omi i imo oo omi ii
- ooo omi iii
- ii imo ooo omi i imo oo omi iii imo oo omi i
- oo omi i imo o omi ii imo ooo
- i imo o omi i imo o

A set of HMMs to represent these literals are described in the Section 3.

3 Methodology

Several HMMs are defined, in which each HMM represent a literal, e.g., imo,
described in the previous section. A special kind of HMM called left-to-right
HMM is defined as shown in the Fig. 4 with the intention that all HMMs can be
tied parallelly by using first state and last state, to make a single large HMM.
The motive behind is that the combination of a giant HMM and syntactical
networks described above can be used to recognize unknown segments of a TMP
by training and using testing algorithm as described in [18].

3.1 Definition of HMMs

In our design, each literal is designed by a separate HMM; all HMMs share the
same configuration as illustrated in Fig. 4. In this type of HMMs, no transitions
are allowed to the states whose indices are lower than the current state. In what
follows, we give a definition for the HMM to be used, by using the same notation
used in Rabinar’s seminal paper [19].

1) N : the number of states in the model. We denote the set of individual
states as S = {S1, S2, . . . , SN}, and the state at site t (or tth observation or tth
residue) as qt.
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Fig. 4. A left-to-right hidden Markov model

2) M : the number of distinct observation symbols per state, i.e., the number
of amino acids (#20) in our study. Though we are not interested about the
physical output of the system, to model the system, this must be taken into
consideration. We denote the set of individual residues as R = {r1, r2, . . . , rM}.

3) State transition probability distribution A = {aij}N×N where,

aij = P
[
qt+1 = Sj | qt = Si

]
, 1 ≤ i, j ≤ N. (1)

In left-to-right HMM model, the state transition coefficients have the property

aij = 0, j < i (2)

That is, no transitions are allowed to states whose indices are lower than the
current state. It should be also noted that, for the last state in a left-to-right
model, the state transition coefficients are specified as

aNN = 1 (3)
aNi = 0, i < N. (4)

4) The observation symbol probability distribution in state j, B = {bj(k)},
where

bj(k) = P
[
rk | qt = Sj

]
, 1 < j < N (5)

1 ≤ k ≤ M

5) The initial state distribution π = {πi} where

πi =
{

0, i �= 1
1, i = 1 (6)

Once parameters are estimated using a proper algorithm, this HMM can
generate observation sequence O = (O1O2 . . . OT ), where each observation Ot is
the residue at site t, and T is the number of observations in the sequence.

3.2 HMM Parameter Estimation

Parameter estimation of the HMMs is done by Viterbi alignments [20].To initial-
ize the model parameters Viterbi training is replaced by a uniform segmentation,
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i.e., each training observation is divided into N equal segments. In Viterbi train-
ing, each training sequence is segmented using a state alignment procedure which
results from maximizing

φN (T ) = max
i

{φi(T )aiN} (7)

for 1 < i < N where

φj(t) = max
i

{φi(t − 1)aij}bj(rt) (8)

with initial conditions given by

φ1(1) = 1 (9)
φj(1) = a1jbj(r1). (10)

for 1 < j < N .
If Aij represents the total number of transitions from state i to state j and

bi(k) represents the observation probabilities of emitting symbol k in state i, by
performing the above maximization, the transition probabilities can be estimated
from the relative frequencies:

âij =
Aij∑N

k=2 Aik

(11)

b̂i(k) =

∑N
k=2

s.t.Ot=rk

Aik

∑N
k=2 Aik

(12)

As a by-product of above calculation the maximum likelihood P̂ (O|M) is given
by Eq. (7). The above process can be iteratively carried out until the change
of the maximum likelihood between two consecutive iteration reached to an
acceptable level.

4 Experiments

In this section, we demonstrate the accuracy and efficacy of the proposed ap-
proach, using the dataset that used in training TMHMM [2]. And for the testing,
73 TMPs unknown to the system is extracted from dataset C, which contribute
maximum number of unknown proteins to the comparison of different methods
including TMHMM 2.0, TMHMM 1.0, HMMTOP, and MEMSAT 1.5 [21]. The
labeled data was used to estimate the parameters of each HMM separately. The
number of states in each literal, which denotes an HMM, is given in the Table 1.

After training separately, all HMMs are tied parallelly by using first state
and the last state to make a single large HMM. The combination of this giant
HMM and a syntactical network described in Section 2 above is used to recognize
unknown segments of TMPs by using a token passing algorithm described in [18].
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Table 1. The number of states in each literal in the training dataset

Literal Number of States
imo 7
omi 7

i and o 2
ii and oo 6

iii and ooo 9

Table 2. The performance of the present method in the prediction of topology of both
training and testing dataset

Training Set Testing Set
Number Percentage Number Percentage

Number of Proteins 159 73
MSRs found 132 83% 46 63%
Additionally correct sidedness 110 85% 34 74%

Total number of helices 694 328
Predicted helices 661 95.24% 262 79.87%
Over-predicted helices 20 2.88% 21 6.40%
Under-predicted helices 20 2.88% 53 16.15%
Shifted helix prediction 13 1.87% 14 4.27%
Falsely merged helices 24 3.46% 21 6.40%

Tools provided with HTK toolkit, a toolkit primarily designed for modeling and
manipulating HMMs in speech processing, was used in training process as well
as in testing process [20].

Results of the prediction can be found in the Table 2, which shows the per-
formance of the proposed method for the training dataset as well as for the test
dataset. Performance of the method is evaluated on two different bases, firstly
as a complete topography predictor and secondly as an MSR predictor. The
present method predicts all the MSRs of 46 TMPs out of 73 unknown TMPs.
In addition, it predicts correct positioning of start region in 34 TMPs out of
46 TMPs. As an MSR predictor, it predicts the 95.24% of MSRs (true positive
predictions) from the total number of 694 MSRs in training data set, 79.87% of
MSRs from the total number of 328 MSRs in test data set. It reported about
3% of over-predicted helices (false positives) and under-predicted helices (false
negatives) in training data set, while those values were 6.4% and 16.15% in the
test data set respectively. Shift helix prediction represents the regions, which
share less than 9 residues with the reference annotation’s MSRs. Falsely merged
helices shows the regions, where adjacent helices are predicted as a single helix.
Here, an MSR to be evaluated as predicted, it must share at least nine residues
with the reference annotation’s MSR. The other methods compared in Table 3
was evaluated on this basis in [8]. A test data set consists of 73 TMPs retrieved
from the same data set that is used to evaluate the other methods. Table 3
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Table 3. Comparison of performance of the present method compared to the previous
approaches

Method No. of All MSRs Additionally
proteins found correct sidedness

Prposed Method 73 46 (63%) 34 (74% of 44)
TMHMM 2.0 108 64 (59%) 40 (63% of 64)
TMHMM 1.0 108 57 (53%) 21 (37% of 57)
HMMTOP 106 54 (51%) 42 (78% of 54)
MEMSAT 1.5 159 80 (50%) 58 (73% of 80)

compares the proposed method with previous approaches to TMP topology pre-
diction. The performance figures of the TMHMM 2.0, TMHMM 1.0, HMMTOP,
and MEMSAT 1.5 were obtained from [8]. The present method showed the best
performance on the tested dataset.

5 Discussion and Future Directions

We have trained and have tested a new algorithm to predict the membrane
spanning regions (α-helices) of the transmembrane proteins by looking at the
protein in a syntactic point of view. The proposed model is a dynamic one
which adjusts to the protein structure according to the characteristics of its
segments. The hidden Markov models of the proposed method contain states
which represent properties of small segments rather than a single residue and
automatically adjust to the segment lengths.

On the tested dataset, the present method showed better performance over
the reported accuracy measures of previous methods in both identification of
MSR and description of their sidedness. The methods predicting protein topology
with high accuracy has high pharmaceutical applications as membrane proteins
are good therapeutic targets.

The syntactic rule set is flexible to absorb new characteristics such as se-
quences belong to the signal peptides which hamper the prediction accuracy,
when they are inserted in the transmembrane proteins. The performance of the
present method can be improved either by removing the signal peptides before
the prediction process or by introducing new HMM model trained with signal
peptide data.
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