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+e projection of future hydropower generation is extremely important for the sustainable development of any country, which
utilizes hydropower as one of the major sources of energy to plan the country’s power management system. Hydropower
generation, on the other hand, is mostly dependent on the weather and climate dynamics of the local area. In this paper, we aim to
study the impact of climate change on the future performance of the Samanalawewa hydropower plant located in Sri Lanka using
artificial neural networks (ANNs). ANNs are one of the most effective machine learning tools for examining nonlinear rela-
tionships between the variables to understand complex hydrological processes. Validated ANNmodel is used to project the future
power generation from 2020 to 2050 using future projected rainfall data extracted from regional climate models. Results
showcased that the forecasted hydropower would increase in significant percentages (7.29% and 10.22%) for the two tested
climatic scenarios (RCP4.5 and RCP8.5). +erefore, this analysis showcases the capability of ANN in projecting nonstationary
patterns of power generation from hydropower plants. +e projected results are of utmost importance to stakeholders to manage
reservoir operations while maximizing the productivity of the impounded water and thus, maximizing economic growth as well as
social benefits.

1. Introduction

Hydropower spines almost 16% of the total electricity
generation, which is far more than the contribution from
any other renewable resources all over the world [1]. Hy-
dropower plants supply as much as 40% of the energy re-
quired to satisfy Sri Lanka’s power demand [2]. Harnessing
electricity from hydropower is still considered one of the
most sustainable methods of power generation around the
world. +erefore, a 75–100% upsurge in production capacity
is expected in the near future [1]. Developing countries have
just explored 23% of its economically feasible hydropower
projects relative to developed countries, which have
exploited 70% of their potential [3]. Many developing
countries are now rapidly investing significant capital in
developing hydropower plants as it is regarded to be a secure
and affordable form of sustainable energy, limiting carbon

emissions [4]. However, the output from the hydropower
plant is highly variable as the production largely depends on
climatic factors and weather conditions. Apart from this,
global warming is likely to alter water cycle phenomena,
frequency of rainfall events, and temperature rise causing
disruptions to smooth operation of hydropower plants. For
example, the temperature in Sri Lanka is increasing at the
rate of 0.0164°C/year, influencing intensifications in evap-
oration [5]. Even though the seasonal rainfall is expected to
increase in the coastal areas, rainfall patterns in moun-
tainous areas of Sri Lanka, where most of the hydropower
plants are located, are very dynamic and rapidly fluctuating
[6].

+e hydropower industry stands a high chance to get
splintered into the most vulnerable industry if confronted by
detrimental impacts of climate change either due to the
unavailability of water in the basin area for a long period of

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 8862067, 11 pages
https://doi.org/10.1155/2020/8862067

mailto:upakasanjeewa@gmail.com
https://orcid.org/0000-0003-1675-8273
https://orcid.org/0000-0001-7934-0099
https://orcid.org/0000-0001-7052-1942
https://orcid.org/0000-0002-7341-9078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8862067


time or due to excess water resulting in landslide or soil
erosion in the catchment area. On the other hand, devel-
oping hydropower systems is very costly and causes sig-
nificant threats to aquatic ecosystem preservation and social
concerns [7]. +erefore, forecasting energy production from
hydropower plants is crucial, not only to optimize the de-
mand of renewable energy needed for growing demand but
also to manage the operations within the hydropower plant
(e.g., routing excess water for other beneficial purposes)
aiming for the environmental sustainability. Nevertheless,
the future prediction of hydropower production is very
complex due to the nonlinear nature of the input functions
along with spatial and temporal variations of the meteo-
rological datasets such as rainfall, temperature, and evap-
oration [8]. +e output from prediction models may have
high economic value in regulating sustainable energy de-
velopment projects such as hydropower [9].

Many researchers have studied the impact of climatic
variation on hydropower generation mostly using Global/
Regional Climate Models (GCMs/RCMs), trend analysis,
and statistical downscaling methods (e.g., [10–12]). Few
studies have focused on the economic impact of climate
change on hydropower (e.g., [13]), while some researchers
have used an assessment and comparison approach to
quantify the effects of climate change on hydropower
generation [14]. For example, [15] interestingly used a
distributed hydrological model together with an optimal
operational reservoir model to predict future hydropower
generation of large-scale reservoir groups in the upper
Yangtze River basin, China.

Currently, intelligent machine learning techniques such
as Artificial Neural Network (ANN), Genetic Algorithms,
fuzzy logic, Multilayer Perceptron (MLP), Support Vector
Regression (SVR), and Random Forest (RF) approaches are
dominantly being used in hydrological prediction to un-
derstand the role of climate change on water-energy nexus
[16] including the hydropower generation. To the present
date, the majority of past research in the hydropower en-
gineering sector is focused on the study of overall risk
management of the hydropower industry (almost 35%),
while only 16% of research is focused on studying the impact
of climate change on hydropower generation [17]. +e
authors reckon a substantial number of studies are needed to
monitor the impact of climate change on the hydropower
industry, especially in countries, which are heavily depen-
dent on hydropower for stabilizing power requirements.
ANNs showcase a potential solution paradigm for these
issues.

ANNs are “data-driven” models having mathematical
computation capability analogous to the human nervous
system and brain functions utilizing statistical techniques to
recognize patterns between input variables and output
variables [18]. ANNs have been efficiently used to predict
and classify future operations of hydropower plants through
past data observations. +e study in [19] concluded that
ANN is a versatile tool to predict storage of water in hy-
dropower reservoirs while conducting a case study in
Nigeria at Jebba and Kainji reservoirs using independent
input parameters such as reservoir inflow, reservoir storage,

reservoir elevation, plant use coefficient, tail race level, re-
lease from a turbine, and evaporation losses. A similar study
was conducted by [20], where the authors discovered an
upward trend in hydropower generation at Jebba, Kainji,
and Shiroro hydropower reservoirs. +e study in [21] used
ANN to predict future hydroelectric generation using the
artificial bee colony algorithm in Turkey using input vari-
ables such as electricity demand, energy use, population, and
temperature and found that electricity generation in Turkey
is not in line with the country’s vision to produce 30% of its
electricity from renewable resources by 2023. In addition,
the study in [22] analyzed future streamflow up to 2040 for
the Ranganadi river in India to project hydropower gen-
eration using 3 GCM models along with ANN. Patil has
shown the catchment area would face flooding issues;
however, there would also be an increase in hydroelectricity
production due to abundant water.

+e study in [8] suggested that characteristics of input
parameters play a dominant role in predicting future power
generation when using feed-forward backpropagation al-
gorithms in the ANN platform. +ey used the conclusions
from their work on predicting the future performance of the
Himreen Lake Hydropower Plant located in Iraq. +e power
production, flow rate of water, and turbine head were the
input parameters for their study. In addition, [23] recom-
mended ANN-ARIMA hybrid model instead of ANN for
predicting future data of renewable energy resources (e.g.,
hydroelectricity, solar, and wind) while forecasting elec-
tricity generation from various energy resources in the USA.
+e study in [24] has further supported this argument to
couple ANN with supervised or unsupervised learning al-
gorithm to enhance reservoir outflow prediction after
reviewing 66 papers, which employed ANN for optimizing
reservoir operations. Furthermore, the study in [17] has
suggested conducting future research, which is related to risk
management on hydropower, using a fuzzy model combined
with ANN and genetic algorithm.

Several researchers have highlighted the benefit of ANNs
in hydropower prediction.+e study in [25] revealed hidden
neurons have a greater impact on the performance of the
ANN model while predicting water discharge at a hydro-
power reservoir located in Malaysia. In addition, [26]
revealed that ANN models are the most accurate in pre-
dicting short-term and long-term hydropower generation
after conducting case studies in run-of-the-river (ROR) type
of hydropower located in France, Portugal, and Spain using
historical meteorological data such as precipitation, snow-
fall, and temperature.

However, to the authors’ knowledge, there was only one
study in Sri Lanka to forecast the power generation using
ANN. +e study in [27] has forecasted solar power using
ANN. In addition, the study in [28] has forecasted the daily
electricity demand; however, forecasting power generation
was not carried out. Nevertheless, as it was stated earlier,
there are not any studies conducted in Sri Lankan water-
sheds linked with hydropower plants to forecast the future
power generation using ANNs. +erefore, for the first time
in the context of Sri Lanka, a hydropower forecasting model
is presented herein using the ANN. In this paper, we
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examine the capability of ANNs to forecast the future hy-
dropower generation by using historical rainfall data for
training as well as validating the forecasting model and
future rainfall data extracted from the regional climate
model (Coordinated Regional Downscaling Experiment-
CORDEX) for forecasting the future power generation
through a feed-forward with backpropagation algorithm.

+e main objective of this study is to check the per-
formance of the Samanalawela hydropower plant, which is a
reservoir type of plant in the perspective of climate vari-
ability. Due to the lack of othermeteorological variables such
as air temperature, humidity, which could be used as input
variables to the model, we only used rainfall data for training
and validating the ANN model. +e authors reckon this
research would be beneficial in optimizing the usage of water
collected in the reservoir for various uses such as hydro-
power production and irrigation. +is research may be
important to water resource planners and government au-
thorities to manage water resource projects by monitoring
the trend in hydropower production.

2. Sri Lanka and Its Hydropower Generation

Sri Lanka has an installed capacity of 1,719Megawatts (MW)
of hydroelectric power and current commitments on hy-
dropower development would add around 247MW to the
national grid in the coming years [2]. Most of the hydro-
power stations in Sri Lanka are aged over 25 years of their
total lifespan [29]. +ough hydropower plants have a long
life of around 50 years, if any of the older hydropower plants
stops functioning, either due to consequences of climate
change or mechanical failure, then Sri Lanka would have to
face power shortage issues as it would be difficult for the
country to substitute the botched hydropower plants in a
short period. Hence, the assessment of the power generation
capacity of hydropower plants is essential in the Sri Lankan
context. +is is to manage the power needs for a growing
economy and then to regulate water resource development
projects in the context of climate variability. However, there
are limited studies conducted in Sri Lanka to analyze future
power generation from running or planned hydropower
plants. +e study in [30] studied ways to increase power
generation in hydropower plants by controlling soil erosion,
reservoir siltation in Uma Oya basin, which is regarded to be
one of the most important catchments in Sri Lanka. +e
study in [31] studied inflows in the Kotmale reservoir using
El Nino Southern Oscillation (ENSO) phase index for the
period of 1960 to 2005 and found that the inflows to the
reservoir have decreased, altering hydropower production
and irrigation plan. +e study in [32] using GCMs based
studies (mainly rainfall) projected that the future production
capacity of the hydropower plants in the Mahaweli basin
would increase as a result of an increase in consecutive wet
days, decrease in consecutive dry days, and increase in
annual total precipitation. In addition, [11] used a multiyear
rainfall trend analysis where they found climate change
would not influence the power generation of Denawaka
Ganga minihydropower located in the Rathnapura district.
+e study in [33] has also put efforts to study the impact of

climate change on the Erathna minihydropower plant lo-
cated in the Rathnapura district. +ey have concluded that
there would be a decrease in power generation in future
years. +e study in [34] further performed a similar study
considering the newly functioned Uma Oya basin, where the
authors clarified there would be no major threats to hy-
dropower production in the coming years due to scarcity of
water in the basin area. However, as it was stated in the
introduction section, there is no comprehensive study on
forecasting hydropower in Sri Lanka for future years.
+erefore, this research work has a greater potential in
attracting the authorities’ attention for better planning and
control processes in hydropower stations in Sri Lanka.

3. Future Climate Data Extraction

Global climatic models (GCMs) provide climatic informa-
tion on large scales covering vastly differing landscapes,
whereas regional climatic models (RCMs) are applied over
much smaller scales (typical horizontal resolution
10–50 km), which may provide much detailed information
for adaptation assessment and planning [35]. GCMs forecast
the climate variation of the Earth in the future as a forecasted
tool. However, they should be studied under regional or even
national scales to reveal effective adaptation strategies.

+e four RCMs used in this research for extracting future
climatic data are ACCESS_CCAM, MPI_ESM_CCAM,
CNRM_CCAM, and REMO2009. +ese RCMs were de-
veloped by the Commonwealth Scientific and Industrial
Research Organization (CSIRO) from CORDEX. +e cor-
responding GCMs of the RCMs used are ACCESS 1.0,
MPI_ESM_LR, CNRM_CM5, and ECHAM-4 GCM
[36–40].

+e future climate data can be extracted for different
scenarios. Representative Concentration Pathways (RCP)
are such scenarios from which the climate data can be
extracted. RCPs are trajectories, which are based upon
greenhouse gas concentrations adopted by the Intergov-
ernmental Panel on Climate Change [41]. Four RCPs are
widely used in the literature and they are RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 [41]). RCP4.5 can be described as the
intermediate emission scenario, where the emissions will
start declining by approximately 2045, whereas RCP8.5 is
defined as the higher emission scenario, where emissions
continue to increase throughout the 21st century. For further
details on RCP, states can be found in [42, 43].

It is a well-known fact that RCMs suffer from varying
levels of systematic biases [44, 45]. +e reasons for such
biases may be due to systematic model errors caused by
imperfect conceptualization, discretization, and spatial av-
eraging within grid cells. To deal with these biases, several
bias correctionmethods such as linear scaling, local intensity
scaling, power transformation, variance scaling, distribution
transfer, and delta change approach are used in the literature
[46].

Due to the simplicity and fast application, Linear Scaling
(LS) method [47] has been widely used in many studies. LS is
capable of adjusting all climatic factors to an acceptable level,
where errors in precipitation are adjusted with the use of a
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multiplier [48–51]. Linear scaling bias correction method
can be applied using the two equations given below
(equations (1) & (2)) where cor, his, obs, sim, P and d stand
for bias-corrected data, raw RCM data, observed data, raw
RCM corrected data, precipitation and daily, respectively,
and μm stands for a long-term monthly mean of precipi-
tation data:

P
cor
his,d � Phis,d ∗

µm Pobs,d􏼐 􏼑

µm Phis,d􏼐 􏼑
, (1)

P
cor
sim,d � Psim,d ∗

µm Pobs,d􏼐 􏼑

µm Phis,d􏼐 􏼑
. (2)

4. Study Area

+e Samanalawewa Hydropower Project area is in the
Belihul Oya area, Rathnapura district, Sabaragamuwa
province, in the central region of Sri Lanka. +e project was
completed in 1992, just downstream of the convergence
point of the Walawe River and Belihul Oya. +e catchment
area (359 km2) can be physiographically categorized as
midland, consisting of marbles, quartz with an average al-
titude of about 530m [52].+e area lies in the wet zone of the
country, which receives an average annual rainfall of around
2500mm [53]. +e project area receives most of the rainfall
from the southwest monsoon, while small influences are
experienced from northeast monsoon and intermonsoon
cyclones. Samanalawewa Hydropower Project consists of a
u-shaped reservoir (as it is shown in Figure 1), a waterway
system, a small irrigation canal, a minihydropower plant,
and a 120 (2∗60) Megawatts (MW) power plant for hy-
droelectricity generation. A detailed catchment map is
shown in Figure 1.

+e study area has many agricultural lands with sig-
nificant forest cover. +e irrigated water from the dam is
essential to downstream villages like Kaltota, Madabadda
(left & right), Welipotayaya, and Koongahamankada for
agricultural purposes. Paddy yield reduction by 11.5% has
been reported in the regions located downstream of the
study area because of the scarcity of water in the reservoir
[54].

Samanalawewa hydropower is one of the largest and the
oldest reservoir-type power plants in Sri Lanka, and over the
years, it has been playing a dominant role in stabilizing
power supply at peak hours. It contributes to 8.69% out of all
large hydropower systems in generating power to meet
electricity demand in Sri Lanka. +is project, starting from
its construction, has gained significant attraction due to the
water leakage problem encountered from the right bank of
the dam because of the poor geologic condition [55]. In
addition, there were several environmental concerns during
the project planning phase; however, no greater attention
was given as there were no strict environmental regulation
obligatory in major development works [56]. +ough the
provision for Environmental Impact Assessment (EIA) was
established in Sri Lanka in 1988, EIA during the planning of

Samanalawewa was conducted partially focused on vege-
tation replantation and ecosystem preservation.

Due to the leakage, phase II construction of hydropower
plant (120MW capacity) was suspended; instead, a mini-
hydropower plant was built, which operates using the leaked
water. Even after a tremendous effort from Ceylon Elec-
tricity Board (CEB) to stop the leakage, impounded water is
leaking approximately at the rate of 2.1–2.8m3/s [57].
Analysis of future water availability in the Samanalawewa
reservoir in terms of power generation is essential as a
portion of seized water is directly supplied to irrigation
without passing the power station and another portion
(leaked portion) goes to minihydropower plants producing
comparatively lesser energy. Additionally, with the in-
creasing requirement of water from downstream areas for
irrigation, water management at the Samanalawewa reser-
voir needs to be more engineered. Moreover, climate var-
iability might influence negatively or positively on water
resource management objectives led out by CEB at Sama-
nalawewa hydropower plant. Hence, the presented research
herein would be interested in the many stakeholders of the
Samanalawewa Hydropower Project.

5. ANN Model Development

To identify the impact of climatic variation (in terms of
precipitation) on hydropower generation at Samanalawewa
hydropower station, monthly rainfall data of four gauging
stations at Alupola (annual mean rainfall-4272mm),
Detangalla (annual mean rainfall-2843mm), Balangoda
(annual mean rainfall-2170mm), and Belihul Oya (annual
mean rainfall-2704mm) were used. +e catchment is one of
the data scarcity catchments in the country and only some of
the rainfall data are available even at the gauging stations.
+erefore, the model development has to rely on the
available data. +e annual rainfall distributions over the 30
years are given in Figure 2 for more information.

+e numerical computing software MATLAB (version
9.4.0.813654–R2018a) was used to develop the ANN model.
+eANNmodel is composed of an input layer, an output layer,
and a hidden layer with neurons linking each layer to the other
by interconnecting weights. In a feed-forward neural network,
the hidden layer performs all the computations and the output
layer does the prediction. Training the neural network generally
refers to discovering the weights for links between neurons. In
this study, the monthly rainfall data of the four stations from
1996 to 2016 was used as the input parameter and the power
generation at Samanalawewa power station was used as the
target parameter while training the ANNmodel. +e historical
rainfall data was collected from the Department of Meteo-
rology, Sri Lanka, while power generation data were collected
from the Ceylon Electricity Board, Sri Lanka. +e nonlinear
relationship between rainfall and power generation can be
expressed as in the following equation:

power generation � ϕ rainfalli( 􏼁, (3)

where ϕ represents the nonlinear function between the
power generation and the rainfall, while i represents the rain
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gauges. Out of the overall input data, 70% of data were used
to train the neural network, whereas 15% of data were used
for validation and the other 15% were used to test the
network.

+oughmost of the past literature supports ANNmodels
to be one of the powerful soft computing tools in predicting
future hydropower generation either from minihydropower

type or reservoir type hydropower plant, still deep under-
standing is required on the selection of independent input
parameters and the type of algorithm to be used in ANN
model, which would best resemble real-time climate change
scenarios to give best estimates for future hydropower
generation. However, there are not any specific rules to
organize ANN configuration [58]. +e range of hyper-
parameters was determined based on the authors knowledge
and experience and the availability of the data. Two hidden
layers were used with 10 hidden neurons and LEARNGDM
was used as the adaptation learning function. Optimum
neuron number in the hidden layer was determined using a
trial and error procedure by varying the hidden neuron
number from 5 to 30, with increments of five. +e linear
transfer function (purelin) and hyperbolic tangent sigmoid
transfer function (tansig) were applied to the hidden and
output layers of the network as the simulation function. +e
number of iterations varied between 5 and 10. +e con-
ceptual diagram of the developed ANN model is shown in
Figure 3.

+e developed ANN model was trained using seven
training algorithms, namely, BFGS, Quasi Newton (BFG),
Polak-Ribiére conjugate gradient (CGP), Conjugate gradient
with Powell/Beale Restarts (CGB), Fletcher-Reeves conju-
gate gradient algorithm (CGF), Levenberg-Marquadt (LM),
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Resilient Backpropagation (RP), and scaled conjugate gra-
dient (SCG) algorithms. +ese algorithms have out-
performed many other algorithms and are widely used in
engineering applications [59–63].

+e best performing network was chosen based upon the
coefficient of correlation (R), mean squared error (MSE),
and the computational efficiency in terms of the number of
epochs. Many researchers used either R and MSE [64–66] or
the coefficient of determination (R2) and root mean square
error (RMSE) [67–70] to check the performance of the ANN
models. It was found that the BFGS Quasi Newton (BFG)
vanquished all other algorithms.+erefore, the ANN trained
with the BFG algorithmwas selected to be used for the future
projection process. +e saved ANN model was validated by
usingmonthly rainfall data of the years 2017-2018.+e use of
independent validation sets is very vital in ANN develop-
ment to avoid overfitting of the training data as well as to
verify the quality of the trained model [71].

+e future climate data were extracted from RCMs using
CORDEX for the period between the years 2021–2050.
However, out of the four RCPs, only RCP4.5 and RCP8.5
were used for the forecasting stage. +e linear scaling
technique was then used to correct the bias on the rainfall
data. +e forecasted but bias-corrected rainfall data were
used as the input of the developed ANNmodel to project the
power generation of the Samanalawewa Hydropower plant.

6. Results

Table 1 depicts the correlation coefficients (R value) and
performances for different algorithms for different cases.
With R value greater than 0.6, BFG and CGB algorithms
have produced proficient training results. +ough R values
of 0.5-0.6 obtained during training cannot be considered
promising for prediction purposes in the normal condition,
they are acceptable especially based on input characteristics
used in training. +e spatial variation of rain gauges along
with the spatiotemporal variation of precipitation, which is
the chief input in this ANN model, could have negatively
impacted on R values. On the other hand, R values might
have got lowered due to a nonlinear relationship between
input and output variables along with a scattering of data in a
broad scale. However, the values obtained are adequate for
forecast future hydropower generation. Based on the lower
MSE value out of 2 algorithms, the BFG algorithm was
selected for validation and prediction purposes.

Figure 4 presents the results from the ANNmodel under
the BFG training algorithm for different stages, including
training, validation, test, and everything together. Even
though the model was developed for a significant number of

data set, the overall acceptability is not the highest (R> 0.9).
+is can be understood from the coefficient of correlation
between the observed and predicted power generations.
Nevertheless, the validation process has a good correlation
(R> 0.8); therefore, the selection of using the BFG training
algorithm can be justified.

Figure 5 presents the validation results conducted after
the culminating training ANN model. +e developed pro-
jected model was validated to the years 2017 and 2018.
+erefore, Figure 5 shows the relationship between the
forecasted power generation from the ANN model to the
observed power generation in the Samanalawewa reservoir.
+e determination coefficient (R2 � 0.83) is high and
therefore, the validation process for forecasting can be
accepted.

Figure 6 illustrates the forecast of hydropower genera-
tion from 2020 to 2050 for two different emission scenarios,
RCP4.5 and RCP8.5. +e comparison of power generation
for two scenarios is given in Figure 6. Until 2039, power
generation under the RCP4.5 scenario is higher than for
RCP8.5. However, from 2040 the power generation trend
follows reverse order, where lesser power is generated under
RCP8.5. Under the RCP4.5 condition, a decreasing trend of
power production is discovered in future years, which would
get lowered to as much as 173GWH in 2036, while peak
production is observed in 2031, generating 446GWh energy.
On the other hand, slightly increasing drift on power
generation is observed under the RCP8.5 scenario, where
peak production is in 2045 engineering 406GWh, while the
lowest production is in 2037 generating 211GWh energy.

Figure 7 shows the historical power generation at the
Samanalawewa hydropower plant. +e historical plot of
power generation shows an increasing trend of power
production (visible trend from the trend-line drawn) from
hydropower plants starting from 1992 to 2019 with maxi-
mum power generated in 2015 producing 425GWh of en-
ergy. Comparing historical power generation and projected
future power generation, it is certain Samanalawewa hy-
dropower plant would continue to produce energy equiv-
alent or slightly higher than the amount it has been
generating in the past years. However, the generation has to
be limited to the capacity of the power turbines. Moreover,
close monitoring of historical and future power generation
to illuminate RCP8.5 scenario is much favorable rather than
RCP4.5 in terms of power generation at Samanalawewa
hydropower plant.

7. Discussion

Samanalawewa reservoir is currently functioning as a
multipurpose reservoir, which sustains various objectives,
though it was initially designed as a single-purpose project.
+e main target of this study was to project the future power
generation at Samanalawewa hydropower in the perspective
of climate variability. +e annual power generation after
partially resolving the leakage problem was premeditated at
403GWh/year. However, the actual average annual power
generation during the period of 1993–2005 was 274GWh/
year. A considerable difference of 129GWh has been
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Figure 3: Conceptual diagram of the ANN model.
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Table 1: Correlation coefficients for ANN results.

Correlation coefficients Performance
Algorithm Training Validation Test All MSE
BFG 0.62 0.82 0.64 0.67 86
CGB 0.59 0.67 0.60 0.61 90
RP 0.53 0.58 0.70 0.56 84
LM 0.55 0.55 0.57 0.55 86
SCG 0.57 0.65 0.17 0.52 114
CGF 0.42 0.74 0.53 0.49 99
CGP 0.52 0.41 0.35 0.49 102
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Figure 4: ANN results under the BFG training algorithm. (a) For training, (b) for validation, (c) for test, and (d) for all.
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observed between planned and actual power production in
past years. +erefore, other than the reduction of runoff
received to the reservoir, increasing demand for agricultural
purposes can be a reason for the power generation
reduction.

Initially, it was decided to release 50 million·m3 for the
year for agricultural purposes from the Samanalawewa
reservoir; however, due to the various pressures and stresses
from the local people and authorities, the agricultural release
was increased to 80 million·m3 per year. +erefore, a

reduction of 35GWh of power can be expected from the
hydropower plant [72].

However, it was found out that Samanalawewa hydro-
power generation may not be wedged by climate variability
until 2050. Hydropower generation was found to increase in
future years until 2050 because of the abundant water in the
reservoir under both tested RCP scenarios. +e annual
average forecasted power generations undertested RCP
scenarios (RCP4.5 and RCP8.5) for years 2020 to 2050 are
294 GWh/year and 302GWh/year, respectively. +erefore,
the forecasted increases in power production under RCP4.5
and RCP8.5 scenarios are 7.29% and 10.22%, respectively. If
water release from Samanalawewa is controlled to a limit,
where it harvests electricity as it used to generate in the past,
there will be some excess water in the reservoir, which can
perhaps be diverted to other demanding sectors such as
agriculture.

However, the forecasted increase in power generation is
not uniform (refer to Figure 6). Nonuniformity is also a
likely effect of climate variation, where the wet season would
continue to get more rainfall, whereas the dry season would
get drier due to less precipitation.+is adds major challenges
in developing a concrete strategy for the overall management
of reservoir operations. Low power generation in a particular
year specifies Samanalawewa catchment receiving less
rainfall in that particular year and vice versa. +is indicates
the management of water can get complicated in certain
years due to prolonged drought or excessive rainfall,
resulting in natural disasters.

Hence, this study is of paramount importance to the
representatives from various agencies to plan resources
based on the forecasts. Water release from hydropower
plants for electricity generation and irrigation at Samana-
lawewa is controlled by representatives from the Ceylon
Electricity Board, Water Management Secretariat, Mahaweli
Authority, and National Water Supply and Drainage Board.
+erefore, the meetings which are held weekly [73] would be
much fruitful from the results presented herein.

Nevertheless, the accurate projection of power genera-
tion from any hydropower plant is challenging as well as
uncertain due to its dynamics. In addition, forecasts from
ANNmodels are reliant on the quality and availability of the
input and output parameters. In this study, rainfall and
power generation data of the past 21 years were used with
only 1 type of input climatic variable. +is could be the
probable reason to have obtained high MSE values during
the training of the ANN model. +e authors, therefore,
reckon more accurate projections can be made by incor-
porating comprehensive input parameters, which play an
influencing role in hydropower generation provided that
relevant data are available. Furthermore, the authors suggest
performing seasonal and monthly projections to visualize
the supply of water in deeper scales.

8. Conclusions

An ANN model was efficaciously implemented to forecast
the future power generation at the Samanalawewa hydro-
power plant. As it was already stated, this is novel research
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work in the Sri Lankan context, which also can be used in
forecasting the hydropower generation. BFG algorithm was
found to be the best training algorithm among the tested
other training algorithms for the developed ANN model to
predict the hydropower generation. Results revealed that the
power generation would increase by 7.29% and 10.22%
under RCP4.5 and RCP8.5 scenarios, respectively, until
2050.+is is a significant contribution to the energy demand
in Sri Lanka, and more importantly, the forecasted increase
is from renewable energy. +is highlights that there are not
any significant intimidations of climate variability in the
Samanalawewa catchment area. +is is an advantageous
finding for the energy authorities in Sri Lanka due to the
scarcities of power generations. However, the authors realize
that representatives from various agencies have a vital role to
play, as the forecasted increase in hydropower generation is
not uniform. Hence, this study provides some clues to
stakeholders to preplan natural disasters such as drought
and flooding to minimize associated risks.

However, the developed forecasting model is only for-
mulated using the rainfall to the catchment. +e other cli-
mate variables, such as temperature, evapotranspiration,
wind speed and direction, relative humidity, and soil in-
filtration, would be useful in a comprehensive forecasting
model development. Nevertheless, the developed forecasting
model can be effectively used in a climatic data scarcity
environment. Most of the developed countries do not have
an improved network of meteorological stations; even the
available stations only record the rainfall. +erefore, the
developed model is extremely important, at least to have
some clues for the future.

In addition, the presented ANN model can be used to
forecast the future power generation from hydropower
plants located elsewhere. +erefore, the authors suggest
carrying out similar projection studies using ANN for all the
major hydropower plants located in Sri Lanka and to have a
common management plan of water resources to generate
hydropower for the future. However, it is always important
to plan for the uncertainty in the neural network models due
to the forecasted future climates rather than the observed
climatic parameters.
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[21] E. Uzlu, A. Akpınar, H. T. Özturk, S. Nacar, and M. Kankal,
“Estimates of hydroelectric generation using neural networks
with the artificial bee colony algorithm for Turkey,” Energy,
vol. 69, pp. 638–647, 2014.

[22] M. Patil, “Stream flow modeling for Ranganadi hydropower
project in India considering climate change,” Current World
Environment, vol. 11, no. 3, pp. 834–845, 2016.

[23] M. Khodaverdi, “Forecasting future energy production using
hybrid artificial neural network and arima model,” vol.
4004Graduate +eses, Dissertations, and Problem Reports,
Morgantown, West Virginia, 2018.

[24] A. Ladanu, S. Akanmu, and J. Adeyemo, “Enhancing artificial
neural network with multi-objective evolutionary algorithm
for optimizing real time reservoir operations: a review,”
American Journal of Water Resources, vol. 8, no. 3, pp. 118–
127, 2020.

[25] N. Anuar, M. Khan, J. Pasupuleti, and A. Ramli, “Flood risk
prediction for a hydropower system using artificial neural
network,” International Journal of Recent Technology and
Engineering, vol. 8, no. 4, pp. 6177–6181, 2019.

[26] V. Sessa, E. Assoumou, and M. Bossy, Modeling the climate
dependency of the run-of-river based hydro power generation
using machine learning techniques: an application to French,
Portuguese and Spanish cases. hal-02520128, 2020.

[27] P. Amarasinghe, N. Abeygunawardana, T. Jayasekara,
E. Edirisinghe, and S. Abeygunawardane, “Ensemble models
for solar power forecasting—a weather classification ap-
proach,” AIMS Energy, vol. 8, no. 2, pp. 252–271, 2020.

[28] S. Karunathilake and H. Nagahamulla, “Artificial neural
networks for daily electricity demand prediction of Sri
Lanka,” in Proceedings of the International Conference on
Advances in ICT for Emerging Regions (ICTer), pp. 128–133,
IEEE, Colombo, Sri Lanka, September 2017.

[29] C. Gunasekara, “Modelling and simulation of temperature
variations of bearings in a hydropower generation unit,” M.S.
thesis, Sweden: Department of Energy Technology, Royal
Institute of Technology, Stockholm, Sweden, 2011.

[30] E. Udayakumara and U. Gunawardena, “Reducinng siltation
and Increasing hydropower generation from the rantambe
reservoir, Sri Lanka. Kathmandu,” South Asian Network for
Development and Environmental Economics (SANDEE),
vol. 113, no. 16, pp. 1–20, 2016.

[31] S. Chandrasekara, V. Prasanna, and H.-H. Kwon, “Moni-
toring water resources over the Kotmale reservoir in Sri Lanka
using ENSO phases,” Advances in Meteorology, vol. 2017,
Article ID 4025964, 9 pages, 2017.

[32] N. Imbulana, S. Gunawardana, S. Shrestha, and A. Datta,
“Projections of extreme precipitation events under climate

change scenarios in Mahaweli river basin of Sri Lanka,”
Current Science, vol. 114, no. 7, pp. 1495–1509, 2018.

[33] A. Perera and U. Rathnayake, “Impact of climate variability on
hydropower generation in an un-gauged catchment: Erathna
run-of-the-river hydropower plant, Sri Lanka,” AppliedWater
Science, vol. 9, no. 57, 2019.

[34] B. Khaniya, I. Jayanayaka, P. Jayasanka, and U. Rathnayake,
“Rainfall trend analysis in Uma Oya basin, Sri Lanka, and
future water scarcity problems in perspective of climate
variability,” Advances in Meteorology, vol. 2019, Article ID
3636158, 10 pages, 2019.

[35] M. Jakob +emeßl, A. Gobiet, and A. Leuprecht, “Empirical-
statistical downscaling and error correction of daily precip-
itation from regional climate models,” International Journal of
Climatology, vol. 31, no. 10, pp. 1530–1544, 2010.

[36] W. Cabos, D. V. Sein, A. Durán-Quesada et al., “Dynamical
downscaling of historical climate over CORDEX central
America domain with a regionally coupled atmosphere–ocean
model,” Climate Dynamics, vol. 52, no. 7-8, pp. 4305–4328,
2019.

[37] S. K. Dubey and D. Sharma, “Assessment of climate change
impact on yield of major crops in the Banas River Basin,
India,” Science of 3e Total Environment, vol. 635, pp. 10–19,
2018.

[38] D. Jacob, B. J. J. M. Van Den Hurk, U. Andrae et al., “A
comprehensive model inter-comparison study investigating
the water budget during the BALTEX-PIDCAP period,”
Meteorology and Atmospheric Physics, vol. 77, no. 1–4,
pp. 19–43, 2001.

[39] V. P. Pandey, S. Dhaubanjar, L. Bharati, and B. R. +apa,
“Hydrological response of Chamelia watershed in Mahakali
basin to climate change,” Science of the Total Environment,
vol. 650, pp. 365–383, 2019.

[40] S. A. +asneem, N. Chithra, and S. +ampi, “Analysis of
extreme precipitation and its variability under climate change
in a river basin,” Natural Hazards, vol. 98, no. 2,
pp. 1169–1190, 2019.

[41] IPCC Climate Change, “Synthesis report. 2014. fifth assess-
ment report of the intergovernmental panel on climate
change,” in Intergovernmental Panel on Climate Change,
R. K. Pachauri and L. A. Meyer, Eds., pp. 1–151, Geneva,
Switzerland, 2014.

[42] H. Kawase, T. Nagashima, K. Sudo, and T. Nozawa, “Future
changes in tropospheric ozone under representative con-
centration pathways (RCPs),” Geophysical Research Letters,
vol. 38, no. 5, 2011.

[43] D. P. V. Vuuren, J. Edmonds, M. Kainuma et al., “+e rep-
resentative concentration pathways: an overview,” Climatic
Change, vol. 109, no. 1-2, p. 5, 2011.

[44] J. H. Christensen, F. Boberg, O. B. Christensen, and P. Lucas-
Picher, “On the need for bias correction of regional climate
change projections of temperature and precipitation,” Geo-
physical Research Letters, vol. 35, no. 20, 2008.

[45] C. Piani, J. O. Haerter, and E. Coppola, “Statistical bias
correction for daily precipitation in regional climate models
over Europe,” 3eoretical and Applied Climatology, vol. 99,
no. 1-2, pp. 187–192, 2010.

[46] C. Teutschbein and J. Seibert, “Bias correction of regional
climate model simulations for hydrological climate-change
impact studies: review and evaluation of different methods,”
Journal of Hydrology, vol. 456-457, pp. 12–29, 2012.

[47] G. Lenderink, A. Buishand, and W. Van Deursen, “Estimates
of future discharges of the river Rhine using two scenario

10 Mathematical Problems in Engineering



methodologies: direct versus delta approach,” Hydrology and
Earth System Sciences, vol. 11, no. 3, pp. 1145–1159, 2007.

[48] U. Ghimire, G. Srinivasan, and A. Agarwal, “Assessment of
rainfall bias correction techniques for improved hydrological
simulation,” International Journal of Climatology, vol. 39,
no. 4, pp. 2386–2399, 2018.

[49] T. Lafon, S. Dadson, G. Buys, and C. Prudhomme, “Bias
correction of daily precipitation simulated by a regional cli-
mate model: a comparison of methods,” International Journal
of Climatology, vol. 33, no. 6, pp. 1367–1381, 2013.

[50] M. Luo, T. Liu, F. Meng et al., “Comparing bias correction
methods used in downscaling precipitation and temperature
from regional climate models: a case study from the Kaidu
river basin in Western China,” Water, vol. 10, no. 8, p. 1046,
2018.

[51] R. Mahmood, S. Jia, N. K. Tripathi, and S. Shrestha, “Pre-
cipitation extended linear scaling method for correcting GCM
precipitation and its evaluation and implication in the
transboundary Jhelum river basin,” Atmosphere, vol. 9, no. 5,
p. 160, 2018.

[52] E. P. N. Udayakumara, R. P. Shrestha, L. Samarakoon, and
D. Schmidt-Vogt, “Mitigating soil erosion through farm-level
adoption of soil and water conservation measures in Sama-
nalawewa Watershed, Sri Lanka,” Acta Agriculturae Scandi-
navica, Section B-Soil & Plant Science, vol. 62, no. 3,
pp. 273–285, 2012.

[53] D. T. Udagedara, C. T. Oguchi, and J. K. Gunatilake,
“Evaluation of geomechanical and geochemical properties in
weathered metamorphic rocks in tropical environment: a case
study from Samanalawewa hydropower project, Sri Lanka,”
Geosciences Journal, vol. 21, no. 3, pp. 441–452, 2017.

[54] E. P. N. Udayakumara and U. A. D. P. Gunawardena, “Cost-
benefit analysis of Samanalawewa hydroelectric project in Sri
Lanka: an ex post analysis,” Earth Systems and Environment,
vol. 2, no. 2, pp. 401–412, 2018.

[55] K. Laksiri, J. Gunathilake, and Y. Iwao, “A case study of the
Samanalawewa reservoir on the Walawe river in an area of
Karst in Sri Lanka,” in Proceedings of Tenth Multidisciplinary
Conference Sinkholes and the Engineering and Environmental
Impacts of Karst (GSP 144), San Antonio, TX, USA, September
2005.

[56] D. Wijesinghe, “Optimization of hydro-power potential of
Samanalawewa project,” Engineer: Journal of the Institution of
Engineers, Sri Lanka, vol. 39, no. 1, p. 27, 2006.

[57] M. Pathiraja and W. Wijayapala, “Optimization of the usage
of Samanalawewa water resource for power generation,” in
Proceedings of the 2016 Electrical Engineering Conference
(EECon), Colombo, Sri Lanka, December 2016.

[58] B. D. Kristen andW. L. Lee, “Artificial neural networks for the
management researcher: the state of the art, department of
organizational leadership and strategy, Marriott school of
management Brigham Young University Provo,” UT 84602,
2003.

[59] U. R. Alo, S. I. Ele, and H. F. Nweke, “A conceptual framework
for network traffic control and monitoring using artificial
neural networks,” Journal of 3eoretical and Applied Infor-
mation Technology, vol. 97, no. 22, pp. 3396–3412, 2019.

[60] T. Chaipimonplin, “Comparison learning algorithms for ar-
tificial neural network model for flood forecasting, Chiang
Mai, +ailand,” in Proceedings of the 22nd International
Congress on Modelling and Simulation (MODSIM 2017),
pp. 472–479, Hobart, Australia, December 2017.

[61] P. Chopra, R. K. Sharma, and M. Kumar, “Artificial neural
networks for the prediction of compressive strength of

concrete,” International Journal of Applied Sciences & Engi-
neering, vol. 13, no. 3, pp. 187–204, 2015.

[62] A. Perera, U. S. Rathnayake, and H. M. Azamathulla,
“Comparison of different artificial neural network (ANN)
training algorithms to predict atmospheric temperature in
Tabuk, Saudi Arabia, MAUSAM,” Quarterly Journal of Me-
teorology, Hydrology, and Geophysics, vol. 71, no. 2,
pp. 233–244, 2020.

[63] L. Zhou and X. Yang, “Training algorithm performance for
image classification by neural networks,” Photogrammetric
Engineering & Remote Sensing, vol. 76, no. 8, pp. 945–951,
2010.

[64] D. Baskaran, A. Sinharoy, T. Paul, K. Pakshirajan, and
R. Rajamanickam, “Performance evaluation and neural net-
work modeling of trichloroethylene removal using a con-
tinuously operated two-phase partitioning bioreactor,”
Environmental Technology & Innovation, vol. 17, Article ID
100568, 2020.

[65] R. Celikel, “ANN based angle tracking technique for shaft
resolver,” Measurement, vol. 148, Article ID 106910, 2019.

[66] W. Han, L. Nan, M. Su, Y. Chen, R. Li, and X. Zhang,
“Research on the prediction method of centrifugal pump
performance based on a double hidden layer BP neural
network,” Energies, vol. 12, no. 14, p. 2709, 2019.

[67] M. Cai, M. Koopialipoor, D. Armaghani, and B. +ai Pham,
“Evaluating slope deformation of earth dams due to earth-
quake shaking using MARS and GMDH techniques,” Applied
Sciences, vol. 10, no. 4, p. 1486, 2020.

[68] M. Koopialipoor, E. Ghaleini, H. Tootoonchi, D. Armaghani,
M. Haghighi, and A. Hedayat, “Developing a new intelligent
technique to predict overbreak in tunnels using an artificial
bee colony-based ANN,” Environmental Earth Sciences,
vol. 78, no. 5, 2019.

[69] L. Sun, M. Koopialipoor, D. Armaghani, R. Tarinejad, and
M. Tahir, “Applying a meta-heuristic algorithm to predict and
optimize compressive strength of concrete samples,” Engi-
neering with Computers, 2019.

[70] D. Tang, B. Gordan, M. Koopialipoor et al., “Seepage analysis
in short embankments using developing a metaheuristic
method based on governing equations,” Applied Sciences,
vol. 10, no. 5, p. 1761, 2020.

[71] G. Foody, “Impacts of sample design for validation data on the
accuracy of feedforward neural network classification,” Ap-
plied Sciences, vol. 7, no. 9, p. 888, 2017.

[72] Japan International Cooperation Agency (JICA), Samanala-
wewa Hydroelectric Power Project (I) (II) (III) and Samana-
lawewa Hydroelectric Project (Reservoir Remedial Works),
Japan Water Agency, Colombo, Sri Lanka, 2006.

[73] H. S. Somatilake, K. A. U. S. Imbulana, P. Droogers, and
I. W. Makin, “Water for energy,” in Proceedings of the World
Water Assessment Programme Sri Lanka Case Study, Ruhuna
basins: Proceedings of a Workshop Held at Koggala Beach
Hotel, Sri Lanka, International Water Management Institute,
Colombo, Sri Lanka, pp. 129–141, April 2002.

Mathematical Problems in Engineering 11


