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ABSTRACT 
 
 
Many previous studies have been carried on the interactions between river flow and the seepage flow 
in the environmental and biological point of view. Even though the interactions between river flow 
and seepage flow is recognized as an important process in rivers, previous literature hardly touches on 
the stability or the limitations for the interactions. Since these interactions are occurred frequently at 
least in mountainous regions, the river flow cannot be well treated as a lined cannel flow. 
Understanding the stability of these interactions among river flow and the seepage flow would be 
advantages for several research areas; including river environmental engineering, ecological and 
biological studies.  
The subsurface layer below the river is known as the “hyporheic zone” and it can be defined as a 
saturated band of sediment that surrounds river flow and forms a linkage between the river and the 
aquifer. The zone facilitates to have bidirectional interactions as up-welling interactions and down-
welling interactions. The origin of these interactions is due to the pressure and velocity differences 
between the two layers. The large velocity difference between the river flow layer and the seepage 
flow layer causes the instability of the flows. Due to this flow instability, a reciprocating flow motion 
is generated between the hyporheic layer and the above. In addition flow obstructions create an 
upstream high-pressure zone and a downstream low-pressure zone, resulting in hyporheic circulation 
under the object. 
The stability of these hyporheic interactions is analyzed using the linear stability analysis technique. 
Linear stability analysis technique is used to understand the stability of the natural phenomenon by 
many researchers. Navier-Stokes equations and Brinkman-Forchheimer equations are used in order to 
formulate the river flow and seepage flow interactions respectively. The open channel flow in river is 
analyzed using the mixing length turbulent model and spectral collocation method incorporated with 
the Chebyshev polynomials are used to perform the numerical solution of the perturbed equations. 
Stability diagrams are discussed with several slopes of the layers against the dimensionless particle 
diameter and wave number. It has been understood that the range for the occurrence of instability 
region increases with the slope of the combined river and seepage layers. However it is important to 
recognize another instability region which occurs even in the range of small dimensionless particle 
diameter with relatively high wave numbers.  
Several experiments are carried out, in order to understand the hyporheic interactions. Seepage layer is 
modeled using a Hele-Shaw which is a longitudinal parallel plate model. Methylene blue is used as the 
tracer to understand the hyporheic interactions and the experiment is conducted for two slopes as 0.1% 
and 0.2%. It can be concluded that the dimensionless dominant wave numbers have an effect on the 
combined channel slope and the Froude number of the river flow. In addition, it can be concluded that 
the residence time of hyporheic interactions are increased with the height of the river layer. 
Rough comparison between the theoretical analysis and the experimental observations is carried out. It 
can be concluded that the same tendency in the theoretical analysis and the experimental observations 
from the comparison figures.   
 
 
Key-Words: river flow, seepage flow, linear stability analysis, perturbations, growth rate contours, 
Hele-Shaw model, Froude number  
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CHAPTER 

1 
INTRODUCTION 

 
1.1 BACKGROUND 

 

1.1.1 General Introduction 

Interactions between river flow and seepage flow are understood or recognized as an important 

process in rivers. The exchange is a fundamental process that affects the transport and fate of 

contaminants and other ecologically relevant substances in streams or rivers [28]. Several theoretical 

studies and field studies have emphasized the importance of hydrological interactions between the 

river flow and the seepage flow [1], [3], [12], [16], [20], [21]-[24], [26], [28], [30], [35], [38], [41], 

[43], [45] and [46]. Most of the authors have used the “hyporheic interactions” as the terminology for 

these river flow and seepage flow interactions. Also the zone just downwards from the river bed is 

called the hyporheic zone and according to the importance, this zone is defined using various 

definitions by worldwide researchers.  

This hyporheic zone may be simply defined as an active eco-tone between the surface stream and 

groundwater, which facilitates to exchange water, nutrients, and organic matter occur in response to 

variations in discharge and bed topography [2], [4], [6], [9], [26] and [31]. Definition of the 

hyporheic zone is given with the biological interactions specifically by some researchers [36] and [44], 

where as some others in chemical reactions [29] and [42]. It can be seen that the hyporheic zone and 

its interactions are very important to several types of research fields and more commonly the gathered 

research fields give one of the ecological balances of the nature.  

The hyporheic interactions can be sub-divided in to two parts as vertical hyporheic interactions and 

lateral hyporheic interactions. The hyporheic zone bounds the stream channel and the hydrology is 

bidirectional due to the continuous mixing between the stream water and groundwater [8]. The 

hyporheic zone and the interactions can be seen from the Figure 1.1 and Figure 1.2 gives a 3-

dimensional view of the hyporheic zone and its interactions. 
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Figure 1.1 Hyporheic zone and its interactions 
(Sustainability of Groundwater resources – circular 1186, by USGS, 

http://pubs.usgs.gov/circ/circ1186/html/gw_effect.html)  
 
 
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
  

 
 
 
 

Figure 1.2 3-dimensional view of the hyporheic zone and its interactions 
(Ecological Riverfront Design – Appendix A, 2001 

www.americanrivers.org/assets/pdfs/appendix_a03bc.pdf)    
 
Some typical parameters regarding the hyporheic zone and its interactions can be found from the 

literature. Some literature has cited that the hyporheic flow paths can be centimeters to tens of meters 

in length [14] and also it is typically considered by river ecologists to be only few centimeters to 

meters thick [33].  
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1.1.2 Interactions in Hyporheic Zone 

Some analysis shows that the hyporheic zone is facilitating to exchange at-least 10% of the river water 

flow [40]. Two interactions as “up-welling” and “down-welling” can be identified in the hyporheic 

interactions [7]. Up-welling subsurface water supplies river organisms with nutrients while down-

welling river water provides dissolved oxygen, inorganic ions and organic matter to microbes and 

invertebrates in the hyporheic zone [2], [4], [6], [21], [23], [28], [29], [35], [37], [41] and [43]. 

These up-welling and down-welling interactions influence the biogeochemistry of stream ecosystems 

by increasing solute residence times and more specifically solute contact with substrates in 

environments with spatial gradients in dissolved oxygen and pH [18]. 

 

 

1.1.3 Occurrence of Hyporheic Interactions 

Difference between river flow and seepage flow environments is one of the main reasons for the 

hyporheic interactions. Rivers typically have currents generating turbulences, short water residence 

times, variable discharges and physicochemical conditions, unidirectional transport of nutrients, 

sediments and biota, and a dynamic channel morphology. In contrast, alluvial groundwater 

environments are more stable, have longer water residence times, exhibit laminar flow, are 

permanently dark, and change little in sediment bed structure [2].  

In addition flow obstructions create an upstream high-pressure zone and a downstream low-pressure 

zone, resulting in hyporheic circulation under the object. In the same manner, bed forms, boulders, 

logs, or streambed irregularities created by biotic processes like salmon reeds generate down-welling 

fluxes in which river water is forced into the streambed and banks in regions of high pressure, and 

complimentary up-welling fluxes in which subsurface water is expelled into the river in regions of low 

pressure [5] and [39]. This process of advective pore water flow is known as pumping exchange [10] 

and [11].  

 

 

1.1.4 Factors Affecting Hyporheic Interactions 

There are several factors that affect the hyporheic interactions according to the previous literature. 

Most of the factors deal with the hydraulic conductivity (the bed sediment diameter) and river 

morphology (the longitudinal slope of the river). Fine-scale granulometric features (size, shape, and 

composition of sediments) derive from catchment scale geological processes; determine most physical 

and chemical processes in the hyporheic zone [3]. Figure 1.3 shows a typical river in Hokkaido Island 

and it can be clearly observed that the features of bed materials which would lead the hyporheic 

interactions. In addition to some other researchers hyporheic exchange flow has been shown to be 

affected by stream morphology [17] and [19] , bathymetry [10], [11] and [13], head gradient [22] 

and [46] and mean hydraulic conductivity [2], [12] and [27].  
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Figure 1.3 Tottabetsu river, Hokkaido, Japan 
 

 

1.2 AIMS OF THE RESEARCH 

Literature shows that there is a great deal of research on the hyporheic interactions in the 

environmental and biological points of view, but few on the mechanism of interactions and the 

limitations for the interactions. Most research on riparian and hyporheic zones has focused on nutrient 

dynamics [15] as they are of major important for the protection of stream ecosystems and freshwater 

resources [34]. Also traditionally, most ecological research on groundwater and rivers has treated 

groundwater and rivers as distinct entities and has focused on within-system issues [3]. It is very 

important not to distinct the river flow and seepage flow which is beneath the river [32]. The structural 

heterogeneity that occurs on many different scales in river systems is obviously important for all 

surface–subsurface interactions, but little is known about the way in which sediment structure 

influences hyporheic exchange [25]. 

• The first aim of this research is to understand the limitations or how the factors would affect 

the river flow and seepage flow interactions. 

• The second aim of this research is to understand the river flow and seepage flow interactions 

by means of experiments using a Hele-Shaw model as the seepage layer. 
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1.3 SCOPE 

With the available time and resources, following points have used in order to achieve the above 

mentioned aims of the research. 

• Linear stability analysis has considered in the theoretical analysis and because of this linearity 

the theory would say the initiation of the interactions.  

• Even though there are few other parameters which affect the river flow and seepage flow 

interactions, the author has considered its main parameters; particle diameter of the sediments 

and the longitudinal slope of the combined river flow and seepage flow.  

• Flat bed condition has assumed for the river bed in order to ease the formulations and the 

analysis, even though the reality is not. 

• Hele-Shaw model has used instead of the sediments in the seepage layer for the experiments, 

because of the difficulty of finding suitable sediments for seepage layer. 

    

 

1.4 LAYOUT OF THE THESIS 

Chapter 2 gives the detail literature review for the research work and it is sub-divided into few topics. 

Chapter 3 gives the theoretical work for the interactions between river flow and seepage flow. Linear 

stability analysis is shown in detail at the chapter. Chapter 4 gives the experimental work of the river 

flow and seepage flow interactions using a Hele-Shaw model. Rough comparison of theoretical and 

experimental work is found at the chapter 5 and the recommendations for further research are found at 

the last chapter, which is the chapter 6. The above mentioned chapters 3, 4 and 5 are with their results, 

conclusions and the cited references. 
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Chapter 

2 
LITERATURE REVIEW 

 
2.1 INTRODUCTION 

A detail literature review is carried out to have an expanded view of the interactions between river 

flow and seepage flow. Aims of the literature review are to understand the necessary formulation and 

available past research which is related to the relevant topic. Sub titles 2.2 to 2.7 give the sub sections 

of the literature review. 

 

  

2.2 NAVIER-STOKES EQUATIONS FOR RIVER FLOW 

The motion of fluid substances, which can flow, was described by Claude Louis Navier and George 

Gabriel Stokes in 1822. Euler had already derived the equations for an ideal fluid in 1755 which did 

not include the effects of viscosity. However, to understand the physical phenomena of the real fluids 

the viscous terms should be included in the governing equations and Navier-Stokes equations solved 

the draw back. The Navier-Stokes equation can be written in dimensional manner as follows [1], [2], 

[8] and [11].     

 

2
i i i

j i

j i j j

U U UPU g
t x x x x

ρ ρ µ
 
∂ ∂ ∂∂ + = − + +
 ∂ ∂ ∂ ∂ ∂ 

∼ ∼ ∼∼
∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼                                                                              (2.1) 

 
where;  

1 1 1 1 2
1 2 3 2 2

1 2 3 2 2

i
j

j

U U U U U UU U U U U U
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂

∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼  

3 31 2
2 3 3 3

2
3 3 3

U UU UU U U U
x x x x

∂ ∂∂ ∂
+ + +

∂ ∂ ∂ ∂

∼∼ ∼
∼ ∼ ∼

∼ ∼ ∼            (2.2) 

 

, , , ,i iU P gρ µ
∼ ∼ ∼ ∼ ∼

and t
∼

 are the velocity of fluid particles, pressure, density of fluid, dynamic viscosity of 

fluid, gravitational acceleration and time respectively. The first term of the left hand side; iU

t

∂

∂

∼

∼  of 

equation (2.1) is the time derivative inertial term. However, this term can be eliminated in some cases, 
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when the time is not so important. The second term of the left hand side; i
j

j

UU
x

∂

∂

∼
∼

∼  of equation (2.1) 

shows the effect of time independent acceleration of a fluid with respect to space and it is the 

convection term.  The first term of the right hand side; 
i

P

x

∂

∂

∼

∼  is the pressure variation in the river flow 

layer, igρ
∼ ∼

is the gravitational force term where the driving force for the flow and the last important 

term of the right hand side; 
2

i

j j

U

x x
µ ∂

∂ ∂

∼
∼

∼ ∼  is the viscous term.  

 

 

2.3 BRINKMAN FORCHHEIMER EQUATIONS FOR SEEPAGE FLOW 

The observations of Henry Darcy on the public water supply at Dijon and experiments on steady state 

unidirectional flow suggested Darcy’s law, which in its refined modern form can be expressed as 

follows, 

 

ivp

x K

µ∂
= −

∂

∼ ∼∼

∼ ∼                                                                                                                                        (2.3) 

 

where p x∂ ∂
∼ ∼

 is the pressure gradient, iv
∼

 is the filtration velocity, µ
∼

 is the fluid viscosity and K
∼

 is 

the permeability. The filtration velocity, iv
∼

 (velocity averaged over the medium) is related to the 

intrinsic velocity, iV
∼

 (velocity averaged over the pore space) by, iiv Vλ=
∼ ∼

 where λ  is the porosity. 

The permeability K
∼

 depends on the pore size or the particle diameter, pd
∼

 and also on the detailed 

geometry. A useful estimate is given by the Carman-Kozeny relationship, derived for a packed bed of 

uniform spherical particles, namely 

 
2

3

2180(1 )
pd

K
λ
λ

=
−

∼
∼

                                                                                                                                (2.4) 

 
Darcy’s law means that the drag is linearly proportional to the velocity. This holds for small velocities 

(namely when the Reynolds number based on the pore scale, is less than unity). However this law 

breaks down for larger velocities. Dupuit-1863 and Forchheimer-1901 found empirically, for larger 
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velocities, that the drag is a quadratic function of the velocity, and a detailed historical account has 

been given by Lage-1998, and what is commonly called the Forchheimer equation [10]. 

A modern refinement of the Brinkman Forchheimer equation is given by the equation (2.5). 

 

2
2

1 1 1 .i F
ii i e i i i

v cv v p v v v v
t K K

ρµµ
ρ λ λ

 ∂   + ∇ = −∇ + ∇ − −   ∂ 

∼ ∼∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼
                                                   (2.5) 

 

where , , ,i i ev vρ µ
∼ ∼ ∼ ∼

and Fc  are the density of the incompressible fluid, Darcy’s velocity, magnitude of 

the Darcy’s velocity, effective viscosity and dimensionless Forchheimer coefficient respectively.    

The first term of the left hand side;
1 iv

tλ
∂

∂

∼

∼ of equation (2.5) is the local time derivative inertial term 

and this has derived on the assumption that a spatial averaging process commutes with a derivative 

with respect to time and this breaks down when the porous medium has a macroscopic structure [7]. 

However it is essential to retain the time derivative term when modeling certain convective instability 

problems [15] and [16].    

The second term of the left hand side; 2

1 .i iv v
λ

 ∇ 
 

∼ ∼
 of equation (2.5) is the advective inertia term 

which is encountered the inertial effects. The second term of the right hand side; 2
ie vµ ∇

∼ ∼
 of equation 

(2.5) is the Brinkman viscous term and has a significant effect only in thin layers.  However it is 

important to note that the Brinkman equation cannot be rigorously justified, except when the porosity 

is close to unity. The effective viscosity is found from the equation (2.6) [10]. 

 

e
µµ λ=
∼

∼
                                                                                                                                           (2.6) 

p∇
∼

is the pressure variation in the seepage layer, iv
K

µ
∼
∼

∼  is the Darcy’s term for the flow through a 

porous media which is a dissipative force and the last term of the right hand side; F
i i

c v v
K

ρ
∼
∼ ∼

∼
 of the 

equation (2.5) is the Dupuit Forchheimer (form drag) term and recommended by Joseph et al [7].  
Initially Fc  is assumed to be a universal constant but Ergun-1952 has imperially obtained the 
following formula for the spherical sediment. 
 

3/2

1.75
150Fc

λ
=                                                                                                                                   (2.7) 
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2.4 LINEAR STABILITY ANALYSIS 

Linear stability analysis technique is widely used technique to understand the stability of a process at 

the initiation of the process. Since the analysis deals with the linear terms, this can only be used at the 

initiation of the processes. Stability analysis can simply be understood using the following example 

which is described in Figure 2.1. 

 
Figure 2.1 Stability of a sphere 

 
The black colored ball is in equilibrium at both (a) and (b) stages but both are different each other. 

When a small horizontal perturbation applies for the sphere in both cases it can be observed out the 

following. At case (a) the sphere would move for a small distance inside the curve and come back to 

its initial position whereas at case (b) the sphere would move and not come to its initial position. Case 

(a) is at the “stable state” whereas case (b) is at the “unstable state” [1].  

Landau has worked on this stability problems in detail and the stability technique has explained using 

the Landau equation by the use of spectral collocation method as follows [8]. 

 
2

0 1
dA A A A
dt

λ λ= +                                                                                                                          (2.8) 

 
where 0,A λ  and 1λ  are the amplitude of small perturbation, linear growth rate and Landau constant 

respectively. At the equilibrium stage the value of A can be found as follows. 

 

0dA
dt

→  

0

1

A λ
λ

= −                                                                                                                                          (2.9) 

 
However in the linear stability analysis the amplitude of the perturbation can be assumed to be 

infinitesimally small { 1A } and the Landau equation can be modified as equation (2.10) 

 

0
dA A
dt

λ=                                                                                                                                          (2.11) 

 



 13

When 0 0λ < , amplitude of the perturbation is reached to zero or else the amplitude is vanished, 

0A→ . This can be concluded as the stable condition of the process.  When 0 0λ >  the amplitude of 

the perturbation reached to infinity, A→∞ . This can be concluded as the unstable condition of the 

process. These two stages are shown in the Figure 2.2 in detail. 

 

 
 

Figure 2.2 Stable and unstable conditions 
 
 
 
2.5 CHEBYSHEV POLYNOMIALS 

Chebyshev polynomials are a sequence of orthogonal polynomials [4] which are related to de Moivre's 

formula which is shown in equation (2.12) and which are easily defined recursively. Any complex 

number x  and any integer n  hold the following. 

 

( )cos( ) sin( ) cos( ) sin( )nx i x nx i nx+ = +                                                                                       (2.12) 
 
There are two kinds of Chebyshev polynomials and usually the first kind is denoted by nT  and the 

second kind is denoted by nU . Chebyshev polynomials are important in approximation theory because 

the roots of the Chebyshev polynomials of the first kind, which are also called Chebyshev nodes, are 

used as nodes in polynomial interpolation. The resulting interpolation polynomial minimizes the 

problem of Runge's phenomenon and provides an approximation that is close to the polynomial of best 

approximation to a continuous function under the maximum norm.  

The first kind of Chebyshev polynomials are defined by the recurrence relation as follows. 

 
0

1

1 1

( ) 1
( )

( ) 2 ( ) ( )n n n

T x
T x x
T x xT x T x+ −

=
=
= −

 

One example for generating function can be shown in the equation (2.13) 
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2
0

1( )
1 2

n
n

n

txT x t
tx t

∞

=

−
=

− +∑                                                                                                                  (2.13) 

 
The second kind of Chebyshev polynomials are defined by the recurrence relation as follows. 
 

0

1

1 1

( ) 1
( ) 2

( ) 2 ( ) ( )n n n

U x
U x x
U x xU x U x+ −

=
=
= −

 

 
One example for generating function can be shown in the equation (2.14) 
 

2
0

1( )
1 2

n
n

n
U x t

tx t

∞

=

=
− +∑                                                                                                                 (2.14) 

 
Also these two kinds can be expanded using the trigonometric functions.  

 

 

2.6 SPECTRAL COLLOCATION METHOD 

Spectral collocation methods are a class of techniques used to numerically solve certain partial 

differential equations, often involving the use of the Fast Fourier Transform. The method can be used 

to write the solution as a Fourier series and by substituting this series into the partial differential 

equations, a system of ordinary differential equations. It means that a linear combination is 

approximated in the spectral collocation method [6].  

 
 
 
2.7 HELE-SHAW MODEL 

Hele-Shaw in 1897, has proposed a parallel plate model forming a narrow channel and this viscous 

flow model was first used by Hele-Shaw to study the nature of flow around obstructions of various 

shapes [14]. In 1936 it was used for the first time in groundwater investigations by Dachler [3].  

However later it is widely used to analyze the groundwater flow in a 2-dimensional cross section of an 

aquifer [3], [5], [9], [12] and [13]. A parabolic velocity distribution for a laminar flow is usually 

assumed in between the plates and the flow is defined by the Navier-Stokes equations. Permeability of 

a Hele-Shaw can be usually found from the equation (2.15) which is a function of the gap width, but 

this is little bit deviated to the equation (2.16), when the porous medium plays an important role to the 

analysis [5].  
2

12
bK =

∼
                                                                                                                                             (2.15) 

3

12
bK

d
=

∼
                                                                                                                                          (2.16) 
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where b and d are the gap or space between two plates and the thickness of the plate of the Hele-

Shaw model. 
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Chapter 

3 
LINEAR STABILITY ANALYSIS OF THE INTERACTIONS 

BETWEEN RIVER FLOW AND SEEPAGE FLOW 
 
3.1 INTRODUCTION 

A detailed linear stability analysis has been carried out and this chapter presents the essentials of the 

linear stability analysis. Figure 3.1 shows the conceptual model which is used to formulate the both 

river and the seepage flow. Constant and same slope; S  is assumed for both layers with the constant 

discharge in the stream-wise direction. The depth of the seepage layer is assumed to be comparable 

with the flow depth in the river flow layer and both river flow height and the seepage flow height have 

been noted as H
∼

and h
∼

 respectively. x
∼

 is considered as the stream-wise direction and the y
∼

 is 

considered the normal direction to the stream wise direction in dimensional manner. The flow is 

assumed to be in the normal flow condition and if this normal flow condition is stable, there is no 

water exchange between flows inside and outside of the permeable layer. Limitations for these 

interactions are found from the theoretical analysis and the flow of this chapter to show the results and 

conclusions of the theoretical analysis.   

 

 
 

Figure 3.1 The conceptual diagram of the model 
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3.2 DIMENSIONAL MANNER OF THE RIVER FLOW GOVERNING EQUATIONS  

Turbulent flow in river is formulated using the Navier-Stokes equations as follows.  

Stream-wise direction - ( x
∼

) 

1 1 1 xyxx
x

TTU U U PU V g
t x y x x yρ ρ ρ

∂∂∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂

∼∼∼ ∼ ∼ ∼
∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼                                                               (3.1) 

 

Normal to stream-wise direction - ( y
∼

) 

1 1 1xy yy
y

T TV V V PU V g
t x y y x yρ ρ ρ

∂ ∂∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂

∼ ∼∼ ∼ ∼ ∼
∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼                                                               (3.2) 

 
where;   

sinxg g θ=
∼ ∼

                                                                                                                                       (3.3) 

tanxg g θ
∼ ∼

                                                                                                                                      (3.4) 

xg g S
∼ ∼

                                                                                                                                            (3.5) 

cosyg g θ= −
∼ ∼

                                                                                                                                   (3.6) 
0θ  (θ is the slope angle and assumed to be very small)                                                               (3.7) 

cos 0yg g−
∼ ∼

                                                                                                                                   (3.8) 

yg g−
∼ ∼

                                                                                                                                            (3.9) 
 

Then the governing equations are re-written to the following (3.10) and (3.11) equations. 
 

1 1 1 xyxx TTU U U PU V g S
t x y x x yρ ρ ρ

∂∂∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂

∼∼∼ ∼ ∼ ∼
∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼                                                          (3.10) 

1 1 1yx yyT TV V V PU V g
t x y y x yρ ρ ρ

∂ ∂∂ ∂ ∂ ∂
+ + = − + + −

∂ ∂ ∂ ∂ ∂ ∂

∼ ∼∼ ∼ ∼ ∼
∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼                                                               (3.11) 

 
Continuity equation 
 

0U V

x y

∂ ∂
+ =

∂ ∂

∼ ∼

∼ ∼                                                                                                                                   (3.12) 

 

where x
∼

 and y
∼

are the stream-wise and normal to the stream-wise direction respectively. U
∼

 and 

V
∼

are the components of the velocity in the river flow in x
∼

 and y
∼

 directions respectively, S, P
∼

, 
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ρ
∼

and  ( , , )ijT i j x y=
∼ ∼ ∼

 are the average bed slope, the pressure, density of water and the Reynolds 

stress tensor respectively. The Reynolds stress tensor is expressed as the equations (3.13) and (3.14). 

 

( , ) 2 ,xx yy T
U VT T
x y

ρν
 ∂ ∂ =
 ∂ ∂ 

∼ ∼
∼ ∼ ∼ ∼

∼ ∼                                                                                                         (3.13) 

( )xy yx T
U VT T
y x

ρν
 ∂ ∂ = = +
 ∂ ∂ 

∼ ∼
∼ ∼ ∼ ∼

∼ ∼                                                                                                       (3.14) 

 
 
3.2.1 Non-Dimensionalization  

The following (3.15) – (3.21) non-dimensionalization terms are used to make the governing equations 

in non-dimensional manner.  

( , ) ( , )nx y H x y=
∼ ∼ ∼

                                                                                                                             (3.15) 

( , ) ( , )fnU V U U V=
∼ ∼ ∼

                                                                                                                         (3.16) 
2

( , ) ( , )ij fn ijP T U P Tρ=
∼ ∼ ∼ ∼

                                                                                                                   (3.17) 

fn nU g H S=
∼ ∼ ∼

(shear velocity at normal flow)                                                                              (3.18) 

n

fn

Ht t
U

=

∼
∼

∼                                                                                                                                           (3.19) 

( , , ) ( , , )nH l R H H l R=
∼ ∼ ∼ ∼

                                                                                                                  (3.20) 

( )T fn n TU Hν ν=
∼ ∼ ∼

                                                                                                                             (3.21) 
 
 
3.2.2 Non-Dimensional Manner of the River Flow Governing Equations 

By substituting above (3.15) – (3.21) non-dimensionalization forms the governing equations (3.10) – 

(3.12) are re-written as follows. 

 

1xyxx TTU U U PU V
t x y x x y

∂∂∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂
                                                                              (3.22) 

1yx yyT TV V V PU V
t x y y x y S

∂ ∂∂ ∂ ∂ ∂
+ + = − + + −

∂ ∂ ∂ ∂ ∂ ∂
                                                                            (3.23) 

0U V
x y

∂ ∂
+ =

∂ ∂
                                                                                                                                  (3.24) 
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The time scale for the river flow is extremely small with the comparison of it in the seepage layer flow 

and it has been abolished from the governing equations. Then the non-dimensional governing 

equations (3.22) – (3.23) are reduced to the following (3.25) – (3.26) equations.  

 

1xyxx TTU U PU V
x y x x y

∂∂∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂ ∂
                                                                                         (3.25) 

1yx yyT TV V PU V
x y y x y S

∂ ∂∂ ∂ ∂
+ = − + + −

∂ ∂ ∂ ∂ ∂
                                                                                      (3.26) 

 
 
By the use of mixing length turbulent model for open channel flow, the Reynolds stress tensor is 

written as follows [2].  

 

( , ) 2 ( , )xx yy T
U VT T
x y

ν ∂ ∂
=

∂ ∂
                                                                                                               (3.27) 

( ) ( )xy yx T
U VT T
y x

ν ∂ ∂
= = +

∂ ∂
                                                                                                            (3.28) 

2
T

Ul
y

ν ∂
=

∂
                                                                                                                                       (3.29) 

( ) H yl y R
H

κ −
= +                                                                                                                       (3.30) 

 
where , ,T l Hν and R  are the eddy viscosity, mixing length, the flow depth and the reference level at 

which the velocity vanishes in the logarithmic velocity distribution respectively, and κ  is the Karman 

constant which is considered to be 0.4 in this analysis. 

 

 

3.3 DIMENSIONAL MANNER OF THE SEEPAGE FLOW GOVERNING EQUATIONS 

Seepage flow is expressed using the Brinkman-Forchheimer equations [4] and the continuity equation.  
 

Stream-wise direction - ( x
∼

) 
2 2

2 2

1 1 1 1 1 1 xyxx Fcu u u pu v g S u u u v
t x y x x y K K

ττ µ
λ λ λ ρ ρ ρ ρ

∂∂∂ ∂ ∂ ∂
+ + = − + + + − − +

∂ ∂ ∂ ∂ ∂ ∂

∼∼∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
                (3.31) 

 

Normal to stream-wise direction – ( y
∼

) 

2 2

2 2

1 1 1 1 1 1yx yy Fcv v v pu v g v v u v
t x y y x y K K

τ τ µ
λ λ λ ρ ρ ρ ρ

∂ ∂∂ ∂ ∂ ∂
+ + = − + + − − − +

∂ ∂ ∂ ∂ ∂ ∂

∼ ∼∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
                (3.32) 
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Continuity equation 
 

0u v

x y

∂ ∂
+ =

∂ ∂

∼ ∼

∼ ∼                                                                                                                                    (3.33) 

 

u
∼

 and v
∼

are the components of the virtual velocity in the seepage layer in x
∼

 and y
∼

 directions 

respectively,  p
∼

and  ( , , )ij i j x yτ =
∼ ∼ ∼

 are the pressure in the seepage layer and the stress tensor 

respectively. µ
∼

 and λ are the viscosity of water and the porosity of the seepage layer respectively. 

Here the non-dimensional equations are not shown, since the base state solution for the seepage layer 

is only important to the analysis. Under the subtitle base state solutions the non-dimensional equations 

are shown. 

 
 
 
3.4 BOUNDARY CONDITIONS 

 

3.4.1 Dynamic Boundary Conditions at the Water Surface of the River Flow Layer ( )y H=  

Tangential and normal stresses are vanished and they can be expressed as follows. 
 

. . 0ts nse T e =                                                                                                                                       (3.34) 
 . . 0ns nse T e =                                                                                                                                      (3.35) 
 
where tse and nse are the unit vectors in the directions tangential and normal to the water surface 
respectively, which can be written in the following forms 
 

( )2

1,

1
ts

H xe
H x

∂ ∂
=

+ ∂ ∂
                                                                                                                       (3.36) 

( )2

,1

1
ns

H xe
H x

−∂ ∂
=

+ ∂ ∂
                                                                                                                      (3.37) 

 
and T is the stress tensor expressed as 
 

xx xy

xy yy

P T T
T

T P T
− + 

=  − + 
                                                                                                              (3.38) 
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3.4.2 Kinematics Boundary Conditions at the Water Surface of the River Flow Layer ( )y H=  

Kinematics boundary condition is obtained as follows. 

  
( ) ( )D H H H HV H U V
Dt t x y

∂ ∂ ∂
= = + +

∂ ∂ ∂
                                                                                         (3.39) 

0H
t

∂
→

∂
 Time derivative terms are neglected 

0HV
y

∂
→

∂
 No flow in y direction at the surface 

 

Therefore the boundary condition equation (3.39) is reduced to the (3.40). 

( ) HV H U
x

∂
=

∂
                                                                                                                                 (3.40) 

 

 

3.4.3 Matching Conditions at the Boundary of the River Layer and the Seepage Layer ( 0)y =  

It is assumed that the slip velocity for the free fluid is proportional to the shear rate at the permeable 

boundary [5]. 

 

( )B
U U u
y K

α∂
= −

∂
                                                                                                                        (3.41) 

 

Value of α  for water is around 0.8 to 1.2 according to Gordon et al [5] and it is assumed to be 

1.0α =  for this analysis. Then the above (3.41) equation is re-written as (3.42). 

 

( )1
B

U U u
y K

∂
= −

∂
                                                                                                                        (3.42) 

 

where BU is horizontal velocity at the bed of the river layer ( 0)y =  and  u  is the assumed uniform 

constant velocity in the stream-wise direction of the seepage layer and K  is the non-dimensional 

permeability of the seepage layer. 

 

It is also assumed that the normal component of the velocity and the pressure are continuous at the 

porous boundary [5]. The depth average continuity equation for the seepage flow is shown as follows. 

 
0 0

0
h h

u vdy dy
x y− −

∂ ∂
+ =

∂ ∂∫ ∫                                                                                                                       (3.43) 
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The first portion of the equation (3.43) is expanded as follows 
0 0

h h

u ddy udy
x dx− −

∂
=

∂∫ ∫  

 
0 0

h h

u d duh udy udy h
x dx dx x− −

∂ ∂
= = =

∂ ∂∫ ∫                                                                                                  (3.44) 

 

The second portion of the equation (3.43) is expanded as follows.  
0

(0) ( )
h

vdy v v h
y−

∂
= − −

∂∫   

where h  is the non-dimensional depth of the seepage layer. Normal velocity at the bottom of the 

seepage layer is assumed to be vanished and the following information can be written.  

( ) 0v h− →  

Then the second part is reduced to the following (3.45) equation. 

 
0

(0)
h

vdy v
y−

∂
=

∂∫                                                                                                                                  (3.45) 

 

Combing (3.44) and (3.45) equations, the depth average continuity equation (3.43) can be re-written as 

the following. 

  

(0) 0uh v
x
∂

+ =
∂

                                                                                                                                (3.46) 

 

 

3.5 BASE STATE SOLUTIONS 

 

3.5.1 Base State Solution for the River Flow 

The base state solution for river flow without disturbances is obtained here. River flow is assumed to 

be steady. The derivative terms with respect to x  can be ignored. Flow is only in x  direction and the 

terms with V  can also be ignored from the governing equations.  

Stream-wise directional governing equation (3.25) is considered in order to obtain the base state 

solutions for the river flow. 
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1xyxx TTU U PU V
x y x x y

∂∂∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂ ∂
 

 

This equation is reduced to the equation (3.47) with the above mentioned conditions. 

 

0 1xyT
y

∂
= +

∂
 

1xyT
y

∂
= −

∂
                                                                                                                                         (3.47) 

 

Reynolds stress tensor from equation (3.28) can be reduced to the following equation (3.48) at the base 

state solutions. 

 

( )xy T
U VT
y x

ν ∂ ∂
= +

∂ ∂
, 0V

x
∂

→
∂

 

xy T
UT
y

ν ∂
=

∂
                                                                                                                                     (3.48) 

 

Mixing length equation (3.30) is also reduced to equation (3.49). 

( ) 1l y R yκ= + − ; 1H →                                                                                                            (3.49) 

 

By integrating the equation (3.47) with respect to y , it can be found the following. 

1xyT y C= − +  

 

At bed it is assumed that 1xyT =  and therefore 1 1C =  

Then; 

1xyT y= −                                                                                                                                                                                                                        (3.50) 

 

From equations (3.48), (3.50) and (3.29) the following combination can be found. 

1
( )

U
y y Rκ

∂
=

∂ +
                                                                                                                               (3.51) 

 

The logarithmic velocity distribution (3.52) can be found by integrating the above (3.51) equation with 

respect to y . 
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2
1 ln( )U y R C
κ

= + +                                                                                                                       (3.52)  

 

Using the boundary and matching conditions value of 2C is found as the followings. 

At 0y =  (3.51) equation can be reduced to the following.  

 

1BU
y Rκ

∂
=

∂
                                                                                                                                      (3.53) 

 

From the matching conditions at the bottom of the river flow layer; (3.42) and (3.53) BU can be found 

as the following. 

 

B
KU u
Rκ

= +                                                                                                                                   (3.54) 

 

With the above solution, value of 2C  can be found as follows using the equation (3.52). 

At 0y =  

2
1 lnBC U R
κ

= −                                                                                                                              (3.55) 

 

Then, the logarithmic velocity distribution of the river layer can be found by combing above (3.52) 

and (3.55) equations as follows. 

 

1 ln( )y R KU u
R Rκ κ
+

= + +                                                                                                             (3.56) 

 

 

3.5.2 Base State Solution for Seepage Flow Layer 

Stream-wise direction governing equation (3.31) is considered at this state and the following 

assumptions are assumed to obtain the base state solution for the seepage flow. 

• Shallow water approximation – no shear   

• Horizontal velocity in the seepage layer is uniform in the depth direction 

• Vertical velocity in the seepage layer is neglected 
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Equation (3.31) can be reduced at the base state as follows with the above assumptions. 

2 2

2 2

1 1 1 1 1 1 xyxx Fcu u u pu v g S u u u v
t x y x x y K K

ττ µ
λ λ λ ρ ρ ρ ρ

∂∂∂ ∂ ∂ ∂
+ + = − + + + − − +

∂ ∂ ∂ ∂ ∂ ∂

∼∼∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
   

2 2

0 Fcg S u u u v
K K

µ

ρ
= − − +

∼
∼ ∼ ∼ ∼ ∼

∼ ∼ ∼
                                                                                                      (3.57) 

 

The following non-dimensionalization terms are introduced in order to get the non-dimensional 

stream-wise directional equation of the base state in the seepage layer.  

 

( , ) ( , )ru v U u v=
∼ ∼ ∼

                                                                                                                               (3.58) 

2

fnp U pρ=
∼ ∼ ∼

                                                                                                                                   (3.59) 

r
g S KU ρ

µ
=

∼ ∼ ∼
∼

∼                                                                                                                                   (3.60) 

fn nU Hµ ρ µ=
∼ ∼ ∼ ∼

                                                                                                                               (3.61) 

2

nK H K=
∼ ∼

                                                                                                                                      (3.62) 

t T t=
∼ ∼

                                                                                                                                              (3.63) 

rUT
g Sλ

=

∼
∼

∼                                                                                                                                          (3.64) 

where rU
∼

is well smaller than fnU
∼

and the time scale for the seepage flow, T
∼

is well higher than the 

time scale of river flow. By substituting the above mentioned non-dimensionalization terms to the 

equation (3.57) the following non-dimensional stream-wise directional equation is obtained as follows.   

 
2 3/2

20 1 Fc u Ku
µ

= − −                                                                                                                        (3.65) 

 

Base sate solution of the seepage flow is given by the solution of the equation (3.65) and shown as 

follows. 

 

 2 4 3/2

3/2

4
2

F

F

c K
u

c K
µ µ− ± +

=
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However the negative solution is ignored since the velocity in the seepage layer should be physically 

positive or in the stream-wise direction in order to implement this analysis. 

 

2 4 3/2

3/2

4
2

F

F

c K
u

c K
µ µ− + +

=                                                                                                              (3.66) 

   

 

3.6 LINEAR STABILITY ANALYSIS 

Stream function is introduced to the river flow governing equations to reduce the two unknown 

velocity components to one unknown parameter as follows. 

  

( ), ,U V
y x

 ∂Ψ ∂Ψ
= − ∂ ∂ 

                                                                                                                    (3.77) 

 

By substituting equation (3.77) into (3.25) and (3.26), the following forms of the governing equations 

are obtained. 

Stream-wise direction - ( x
∼

) 

2 2 2 2 2

2 2 22 1 0T T
P

y x y x y x x x y y x y
ν ν

    ∂Ψ ∂ Ψ ∂Ψ ∂ Ψ ∂ ∂ ∂ Ψ ∂ ∂ Ψ ∂ Ψ
− + − + − − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

                          (3.78) 

 

Normal to stream-wise direction – ( y
∼

) 

2 2 2 2 2

2 2 2

12 0T T
P

y x x x y y x x y y x y S
ν ν
    ∂Ψ ∂ Ψ ∂Ψ ∂ Ψ ∂ ∂ ∂ Ψ ∂ Ψ ∂ ∂ Ψ

− + + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
                     (3.79) 

 

Subtracting the y derivative of the equation (3.78) from the x derivative of the equation (3.79), the 

pressure term can be eliminated from the governing equation and it is shown as follows. 

  

3 3 3 3 2 2

2 3 3 2 4 Ty x y x x y x y x y x y
ν

     ∂Ψ ∂ Ψ ∂ Ψ ∂Ψ ∂ Ψ ∂ Ψ ∂ ∂ Ψ
− − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

2 2 2 2

2 2 2 2 0Ty x x y
ν
     ∂ ∂ ∂ Ψ ∂ Ψ

+ − − =     ∂ ∂ ∂ ∂     
        (3.80) 
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The following mathematical symbol is used by the author to reduce the above equation (3.80).  
2 2

2 2x y
∂ ∂

∇ = +
∂ ∂

                                                                                                                                 (3.81) 

 

Substituting this mathematical symbol to equation (3.80), the following reduced equation is obtained. 

 

2 2 2 2 2 2 2 2

2 2 2 24 0T Ty x x y x y x y y x x y
ν ν

      ∂Ψ ∂∇ Ψ ∂Ψ ∂∇ Ψ ∂ ∂ Ψ ∂ ∂ ∂ Ψ ∂ Ψ
− − + − − =      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

              (3.82)  

 

Important variables are expanded using equation (3.83) to get the perturbation solution 

( ) ( ) 10 0 0 1 1 1, , , , ,1, , , ,P H u P u A P H u
∧∧ ∧ ∧ 

Ψ = Ψ + Ψ 
 

                                                                         (3.83) 

( ) ( )
1 1 1 1 1 1 1 1, , , ( ), ( ), , . .i kx tP H u y P y H u e C Cω

∧∧ ∧ ∧
− 

Ψ = Ψ + 
 

                                                               (3.84) 

where A  is the amplitude of the perturbation, which is an infinitesimally small, k  and ω are the wave 

number and the complex angular frequency of the perturbation, respectively. The perturbations are 

expressed by the Fourier series and C.C. is the complex conjugate of the preceding term.  

Then the governing equation (3.80), matching conditions and boundary conditions are expanded with 

respect to A  using equations (3.83) and (3.84). But the boundary condition (3.34) eliminated as it is 

always satisfied because the eddy viscosity Tν  always vanishes at the water surface. However the 

other boundary and matching conditions which are denoted by (3.35), (3.40), (3.42) and (3.46) are 

expanded with respect to A .     

 

 

3.7 NUMERICAL SOLUTION 

Expanded governing equation (3.80) is solved using the expanded boundary and matching conditions 

with use of spectral collocation method incorporated with Chebyshev polynomials. In order to do that, 

the stream function is expanded by Chebyshev polynomials in the following form. 

 

1
0

( )
n

j j
j

a T ξ
=

Ψ =∑                                                                                                                               (3.85) 
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where jT  is the thj term of the Chebyshev polynomials and ξ  is a variable of the Chebyshev 

polynomials defined in the range of [ ]1 1ξ− ≤ ≤ . Then the river flow layer [ ]0 1y≤ ≤ is transformed 

in the range of [ ]1 1ξ− ≤ ≤ by the following transformation. 

( )
( )

ln
[ _] 2 1

ln 1
y R R

y
R R

ξ
+

= −
+

                                                                                                             (3.86) 

 

After introducing the above equations, Gauss-Labatt points are evaluated in the following form. 

 

cos ; (0,1,..., )j
j j n
n

ξ Π
= =                                                                                                            (3.87) 

 

Then, the expanded governing equation and expanded boundary and matching conditions are obtained 

at the above mentioned Gauss-Labatt points. These equations can be simply shown in the matrix form 

as follows. 

 

Aa Baω=                                                                                                                                         (3.88) 

 

where a can be denoted as follows 

0 1 , 1, ,... na a a a H =                                                                                                                           (3.89) 

 

A  and B are two square matrices in ( 1) ( 1)n n+ × + size. In this analysis numerical value of n  is 

taken to be 30. The above (3.88) matrix equation forms a generalized eigenvalue problem with the 

eigen-value ω ; which is a function of several parameters as follows. 

 

( ), , , , ,Pk S D R Kω ω λ=                                                                                                                 (3.90) 

 

where k and PD are the non-dimensional wave number and the non-dimensional particle diameter of 

the bed material. The dimensional particle diameter Pd
∼

 is non-dimensionalized using the following 

combination. 

P
P

n

dD
H

=

∼

∼                                                                                                                                           (3.91) 
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The imaginary part of ω corresponds to the growth rate of the perturbation and the real part represents 

the phase velocity of the wave. In order to obtain the numerical solution, values for the porosity of the 

porous matrix (λ ) and the reference level where the logarithmic velocity distribution vanishes ( R ) 

are assumed as follows.  

 

0.6λ =                                                                                                                                              (3.92) 

2.5
30

PDR =                                                                                                                                        (3.93) 

 

 

3.8 RESULTS OF THE LINEAR STABILITY ANALYSIS 

It has been understood that the particle diameter of the sediments and the longitudinal slope of the 

river and seepage layer are two most important factors to the hyporheic interactions [1] and [3]. 

Therefore, the analysis is carried out for three slopes of the combined river flow and seepage flow 

layers as 0.01%, 0.1% and 1%. Also the growth rate contours are plotted in the dimensionless particle 

diameter ( PD ) and wave number ( k ) axes system. Figure 3.2 - Figure 3.4 show the imaginary part of 

the growth rate of perturbation as a function of dimensionless particle diameter and the wave number 

when the slopes are 0.01%, 0.1% and 1% respectively. These instability diagrams are obtained at the 

small wave numbers. Span of the vertical axis is considered, in order to address the real situation. The 

particle diameter should be small enough with the height of the river flow layer. Therefore the particle 

diameter is considered to be one tenth of the river water depth as the maximum. Considered 

dimensionless particle diameter is in a range of 0.001 to 0.1.  

 

 
Figure 3.2 Imaginary part of the growth rate contours of the perturbations S = 0.01% with small wave 

numbers 
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Figure 3.3 Imaginary part of the growth rate contours of the perturbations S = 0.1% with small wave 

numbers 

 

 
 Figure 3.4 Imaginary part of the growth rate contours of the perturbations S = 1% with small wave 

numbers 

 

From the theoretical analysis another instability region is found in each and every slope, when the 

wave numbers are in the range of 150 to 1000 and the imaginary part of the growth rate contours of 

the perturbations are shown at 0.01%, 0.1% and 1% slopes respectively by Figure 3.5, Figure 3.6 and 

Figure 3.7 as follows.  
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Figure 3.5 Imaginary part of the growth rate contours of the perturbations S = 0.01% with large wave 

numbers 

 

 
Figure 3.6 Imaginary part of the growth rate contours of the perturbations S = 0.1% with large wave 

numbers 
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Figure 3.7 Imaginary part of the growth rate contours of the perturbations S = 1% with large wave 

numbers 

 

 

3.9 DISCUSSION AND CONCLUSIONS  

The thick black lines of Figure 3.2 – Figure 3.7 show the neutral curves, where the growth rate of 

imaginary part is zero. Inside the neutral curve growth rate is positive and this means that the growth 

rate of the perturbation that we have introduced increases. Therefore, it can be learnt that the normal 

flow is unstable in side the neutral curves. This means that the instability occurs among the river flow 

and seepage layers in side the neutral curve at the shown wave numbers and the dimensionless particle 

diameters.  

Out side the neutral curve, the growth rate is negative and this means that the growth rate of the small 

perturbation decreases. Therefore it can be learnt that the normal flow is stable and instability is not 

occurred out side of the neutral curve. 

It is important to recognize one more instability region when the wave numbers are comparably high 

as shown in Figure 3.5 – Figure 3.7. This means that the wave lengths are quite small and interactions 

are occurred at small wave lengths. Even though it is quite strange, the theoretical results should be 

further understood through an experimental study. However some literature has mentioned that the 

hyporheic interactions can be occurred even in small wave lengths such as 5 cm in the real case [6]. 

By comparison, the Figure 3.2 – Figure 3.4, it can be clearly noted that the range for the occurrence of 

instability region increases with the slope. However, this interesting process cannot be understood 

from the Figure 3.5 – Figure 3.7. Therefore, it can be concluded that the hyporheic interactions are 

improved with the slope when the wave numbers are small enough or else the wave lengths are large.  
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Chapter 

4 
EXPERIMENTS FOR THE RIVER FLOW AND SEEPAGE 

FLOW INTERACTIONS  
 
4.1 INTRODUCTION 

In order to understand the hyporheic interactions (river water and seepage water interactions) a set of 

experiments are carried out. However the seepage layer is experimentally modeled using a Hele-Shaw 

model. The details of the experimental set up can be found from the Figure 4.1, which is not drawn to 

a scale. Hele-Shaw model is placed inside the channel and the longitudinal section, the sectional view 

and plan view of the Hele-Shaw model is shown in the Figure 4.2. 

    

 
Figure 4.1 Experimental set up 

 
 

 
 

Figure 4.2 Hele-Shaw model 
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4.2 DIMENSIONS OF THE EXPERIMENTAL SET UP 

The re-circulating channel is used in this work, has a section of 5 m in length and a channel width of 

20 cm. The channel is 40 cm in depth and flexible to change its slope using the screw jack at right 

edge. It is made up of transparent materials, which allows direct observations of interactions and 

managed to have digital pictures and digital movies. Let us consider x
∼

 co-ordinates of the left edge of 

the channel is to be 0 m and the right edge of the channel is to be 5.0 m respectively. The Hele-Shaw 

model, where 2.0 m in length, 20 cm in width and 10 cm in height is placed at 2.1x =
∼

. The porosity; 

λ   of the Hele-Shaw model is 0.3 in the used set up.  

 

 

4.3 EXPERIMENTAL WORK 

 

4.3.1 River Flow and Seepage Flow Interactions Visualization  

Due to the initiation of a barrier (at 2.1x =
∼

) because of the Hele-Shaw model in the channel and the 

back water effect at the end of the weir, all the experimental data are obtained, keeping a clearance at 

the 2.1x =
∼

 and 4.1x =
∼

. Uniform flow is obtained in the channel and it is ensured using three water 

height measurements at 2.7x =
∼

, 3.1x =
∼

 and 3.5x =
∼

 . Experiments are carried out for two slopes as 

0.1%, and 0.2%. Combined channel flow height is controlled using a down-stream weir from about 12 

cm to about 25 cm. Three trials of experiments with same conditions are carried out for the each river 

height.   

Methylene blue (blue color dye) is injected just downwards and along the upper boundary of the Hele-

Shaw model, in order to visualize the seepage flow and river flow interactions. Continuous pictures 

are taken at 5 s intervals in each and every experiment. In some cases few videos are taken. Best 

picture which has the clear interactions is digitized using the commercial package “Bytescout Graph 

Digitizer Scout 1.2.4”. The corresponding wave lengths for S=0.1%, and 0.2% slopes are obtained 

using these digitized pictures. Few digital pictures are shown in Figure 4.3 – Figure 4.8 in order to 

verify the flow interactions. 
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Figure 4.3 Interactions at 0.1% slope when the river height is 3 cm 
 
 
 

 
 

Figure 4.4 Interactions at 0.1% slope when the river height is 6.5 cm 
 
 

 

 
 

Figure 4.5 Interactions at 0.1% slope when the river height is 7.2 cm 
 
 
 

Upper Boundary of 
Hele-Shaw model 

Upper Boundary of 
Hele-Shaw model 

Upper Boundary of 
Hele-Shaw model 
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Figure 4.6 Interactions at 0.2% slope when the river height is 6.5 cm 
 
 

 

 
 

Figure 4.7 Interactions at 0.2% slope when the river height is 8.0 cm 
 
 
 

 
 

Figure 4.8 Interactions at 0.2% slope when the river height is 11.3 cm 
 

 
 
 
 
 

Upper Boundary of 
Hele-Shaw model 

Upper Boundary of 
Hele-Shaw model 

Upper Boundary of 
Hele-Shaw model 
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4.4 FROUDE NUMBER FOR THE RIVER FLOW / OPEN CHANNEL FLOW 

 

4.4.1 Average Velocity in the River / Open Channel Flow 

Average velocity is calculated using the discharge measurements. Flow in the Hele-Shaw model is 

neglected in this calculation, since the discharge in the Hele-Shaw model is very small.  

avg
QU
Area

=

∼
∼

∼                                                                                                                                       (4.1) 

 

avg

n

QU
H B

=

∼
∼

∼ ∼                                                                                                                                       (4.2) 

where Q
∼

 and B
∼

are the dimensional discharge of the open channel and the width of the channel. 

 

 

4.4.2 Froude Number for the River / Open Channel Flow 

Froude number for the river / open channel flow is calculated using the following equation (4.3). 

avg

n

U
Fr

g H
=

∼

∼
                                                                                                                                     (4.3) 

 

 

4.5 RESULTS OF THE EXPERIMENTAL WORK  

Obtained wave lengths according to the 0.1% and 0.2% slopes are tabulated as in Table 4.1 and 4.2 

respectively. Non-dimensionalization is done using the height of the river layer and the non-

dimensional wave number is obtained as follows. 

 

2k
L H

Π
= ∼ ∼                                                                                                                                            (4.4) 
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Table 4.1 Dimensionless wave numbers and Froude number at 0.1%S =  

Experiment 
number 

River layer 

height (H
∼

) 
/ cm 

Average wave 

length ( L
∼

)/ cm Wave Length / 
River layer height

Non-Dimensional 
wave number / k  

River Froude 
Number / Fr 

1 3 14.58 4.86 1.29 0.307 
2 3 14.34 4.78 1.32 0.307 
3 3 11.28 3.76 1.67 0.307 
4 4.6 12.00 2.61 2.41 0.324 
5 4.6 13.60 2.96 2.13 0.324 
6 4.6 12.28 2.67 2.35 0.324 
7 6.5 17.03 2.62 2.40 0.213 
8 6.5 19.13 2.94 2.14 0.213 
9 6.5 20.11 3.09 2.03 0.213 

10 7.2 15.05 2.09 3.01 0.215 
11 7.2 15.67 2.18 2.89 0.215 
12 7.2 14.60 2.03 3.10 0.215 
13 8.4 8.88 1.06 5.95 0.180 
14 8.4 16.67 1.98 3.17 0.180 
15 8.4 15.67 1.87 3.37 0.180 
16 11.5 16.84 1.46 4.29 0.126 
17 11.5 14.71 1.28 4.91 0.126 
18 11.5 15.17 1.32 4.77 0.126 
19 12.6 25.82 2.05 3.07 0.115 
20 12.6 24.25 1.92 3.27 0.115 
21 12.6 20.08 1.59 3.94 0.115 

 
 

Table 4.2 Dimensionless wave numbers and Froude number at 0.2%S =  

Experiment 
Number 

River layer 
height 

(H
∼

)/ cm 

Average Wave 

length ( L
∼

) / cm Wave Length / 
River layer height

Non-Dimensional 
Wave number / k  

River Froude 
Number / Fr 

1 2.7 27.12 10.05 0.63 0.360 
2 2.7 28.67 10.62 0.59 0.360 
3 2.7 25.71 9.52 0.66 0.360 
4 4.3 21.27 4.95 1.27 0.359 
5 4.3 22.19 5.16 1.22 0.359 
6 4.3 20.86 4.85 1.30 0.359 
7 6.5 24.27 3.73 1.68 0.213 
8 6.5 24.93 3.83 1.64 0.213 
9 6.5 18.53 2.85 2.20 0.213 

10 7.4 19.09 2.58 2.44 0.206 
11 7.4 19.61 2.65 2.37 0.206 
12 7.4 20.79 2.81 2.24 0.206 
13 8 25.04 3.13 2.01 0.194 
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14 8 29.39 3.67 1.71 0.194 
15 8 31.11 3.89 1.62 0.194 
16 11.3 16.87 1.49 4.21 0.130 
17 11.3 20.78 1.84 3.42 0.130 
18 11.3 19.55 1.73 3.63 0.130 

 
 

Average wave lengths are plotted against the river layer height and shown in Figure 4.9 and Figure 

4.10. Also the same data are plotted in the one diagram in Figure 4.11. These three figures are for the 

dimensional values. 
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Figure 4.9 Dimensional river heights vs. Dimensional wave lengths for S=0.1% 
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 Figure 4.10 Dimensional river heights vs. Dimensional wave lengths for S=0.2% 
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 Figure 4.11 Dimensional river heights vs. Dimensional wave lengths for both slopes 
 

 
The calculated Froude numbers are plotted against the dimensionless dominant wave number and 

shown in the Figure 4.12 and Figure 4.13. Also the same data are plotted in the one diagram in order 

to compare the data against the slope of the combined system in Figure 4.14. 

Figure 4.12 Froude numbers vs. Dimensionless Dominant Wave Numbers for S=0.1% 
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Figure 4.13 Froude Numbers vs. Dimensionless Dominant Wave Numbers for S=0.2% 
 
 

Figure 4.14 Froude Number vs. Dimensionless Dominant Wave Number for both slopes 
 
 
 
4.6 CONCLUSIONS 

From the observations it can be clearly visualized the river flow and seepage flow interactions. It 

cannot be clearly seen a definite combination or a relation between the river flow height and the wave 

lengths from the Figures 4.9 – 4.11. The dominant wave lengths are scattered in between 10 to 30 cm. 

However by examining Figures 4.12 and 4.13, it can be clearly understood a relationship between the 

Froude number of the river flow and the non-dimensional dominant wave numbers. This can be 
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concluded that the non-dimensional dominant wave numbers for the interactions are increased with the 

decrease of the Froude number of the river flow.  

In addition, it can be seen that the dimensionless dominant wave numbers have an effect on the 

combined channel slope from the Figure 4.14. With the slope it can be concluded that the 

dimensionless dominant wave numbers are reached to the Froude number axis, or else the value of the 

dimensionless dominant wave numbers are decreased.  

From the experiments there are some observational conclusions and author would like to present them 

at this stage. Quick river flow and seepage flow interactions are occurred, when the height of the river 

layer is comparably small with the Hele-Shaw model, whereas slow river flow and seepage flow 

interactions are occurred, when the height of the river layer is comparably large with the Hele-Shaw 

model. With this observation, it can be concluded that the residence time of hyporheic interactions are 

increased with the height of the river layer. 

When the river layer height is less than or equal to the Hele-Shaw model height, wavy form of the 

hyporheic interactions are clearly visualized, whereas the wavy form of hyporheic interactions are not 

clearly visualized, when the river layer height is higher than the Hele-Shaw model height. At the 

second stage the author was able to see the sudden pop up of dye as shown in Figures 4.15 and 4.16. 

 
 

  
 

Figure 4.15 Interactions at 0.1% slope when the river height is 15.9 cm 
 
 
 
 

Upper Boundary of 
Hele-Shaw model 
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Figure 4.16 Interactions at 0.2% slope when the river height is 17.6 cm 

Upper Boundary of 
Hele-Shaw model 
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Chapter 

5 
COMPARISON BETWEEN THEORETICAL ANALYSIS 

RESULTS AND THE EXPERIMENTAL OBSERVATIONS 
 

5.1 INTRODUCTION 

A rough comparison between the theoretical results and the experimental observations is carried out. 

In order to interpret the dimensionless particle diameter of the sediment in the seepage layer a rough 

assumption is used.  

 

 

5.2 DIMENSIONLESS PARTICLE DIAMETER FOR THE EXPERIMENTS 

Dimensionless particle diameter for the theoretical analysis is shown in the equation (5.1) as same as 

the equation (3.91). 

P
P

n

dD
H

=

∼

∼                                                                                                                                             (5.1) 

where Pd
∼

 and nH
∼

are the dimensional particle diameter of the sediment and the uniform river flow 

height respectively. For the experiments as assumption is made as shown follows, in order to find the 

corresponding dimensional particle diameter.  

4P
dd =

∼
                                                                                                                                               (5.2) 

where  d  is the thickness of the Hele-Shaw model plates.  

Based on this assumption, dimensionless particle diameter for each and every case is calculated with 

the use of uniform river flow height. 

 

 

5.3 THEORETICAL ANALYSIS WITH THE EXPERIMENTAL OBSERVATIONS 

Dimensionless particle diameter is plotted against the dimensionless dominant wave numbers for the 

experiments as shown in Figures 5.1 and 5.2. 
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Figure 5.1 Dimensionless particle diameter vs. Dimensionless dominant wave numbers for S=0.1% 
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Figure 5.2 Dimensionless particle diameter vs. Dimensionless dominant wave numbers for S=0.2% 

 

These calculated values for the experiments, in both slopes are plotted with the theoretical results in 

the same figures as shown in Figures 5.3 and 5.4.  

 

 

 



 47

 
Figure 5.3 Theoretical analysis with the experimental observations for S=0.1% 

 
  

Figure 5.4 Theoretical analysis with the experimental observations for S=0.2% 

 
 

5.4 CONCLUSIONS 

Even though rough assumption is not perfect for the comparison, it can be clearly seen that the 

dimensionless dominant wave numbers which are obtained from the experiments are laid with the 

neutral curve of the theoretical contour maps in both 0.1% and 0.2% slopes. However these 

experimental dimensionless dominant wave numbers at interactions are smaller than the theoretical 

dimensionless wave numbers. This may be due to the non-linearity of the problem and the various 

disturbances in the experiments.    
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Chapter 

6 
RECOMMENDATIONS 

 
For further research on this topic the author would like to suggest the following recommendations.  
 

• Even though the theoretical model for the interactions between river flow and seepage flow is 
set from the Chapter 3, it is highly recommended to carry out an experimental investigation to 
verify the results with the sediments. 

 
• Since the linear stability analysis is valid for the initiation of the interactions higher order 

analysis, like non-linear analysis is recommended.  
 

• As discussed in Chapter 3, the stability analysis is carried out to the flat bed conditions of the 
river bed. However from the literature the author was found that the bed morphology has an 
advantageous effect on the river and seepage flow interactions. Therefore it is recommended 
to pursue the stability analysis for movable bed by including the governing equations of the 
sediment transport. 

 
• Further experimental work with the Hele-Shaw model, using a lengthy channel is 

recommended.  
 

• Theoretical analysis for the interactions between the channel flow and the Hele-Shaw flow 
should be carried out to understand the experimental observations.  



APPENDIX  
 
 
List of Abbreviations 
 
A   Amplitude of small perturbation 
b    Dimensional gap or space between two plates of the Hele-Shaw model 

B
∼

  Width of the open channel 
Fc    Non-Dimensional Forchheimer coefficient 

d    Dimensional thickness of the plate of the Hele-Shaw model 

pd
∼

   Dimensional particle diameter of the bed material 

PD    Non-dimensional particle diameter of the bed material 

nse    Unit vector in the direction normal to the water surface 

tse    Unit vector in the direction tangential to the water surface 

ig
∼

   Gravitational acceleration component in “i” direction  
h   Non-dimensional height of seepage flow 

h
∼

   Dimensional height of seepage flow 
H    Non-dimensional height of the river flow  

H
∼

   Dimensional height of the river flow 

nH
∼

  Dimensional height of the river flow in normal flow condition 
k    Non-dimensional wave number 
K   Non-dimensional permeability of the seepage layer 

K
∼

   Dimensional permeability of the seepage layer 
l    Non-dimensional mixing length 

 p
∼

   Dimensional pressure in the seepage layer  
P    Non-dimensional form of the pressure in river flow 

P
∼

   Dimensional form of the pressure in river flow 

Q
∼

   Dimensional form of the discharge in the open channel 
R   Reference level at which the velocity vanishes in the logarithmic velocity distribution 
Re   Reynolds number for the Hele-Shaw flow 
S   Combined slope of the river and seepage flows 
t    Non-dimensional time scale for river flow 

t
∼

   Dimensional time scale for river flow 

T
∼

  Non-dimensional time scale for seepage flow 
ijT    Non-dimensional Reynolds stress tensor for river flow 

 ijT
∼

   Dimensional Reynolds stress tensor for river flow 

u    Non-dimensional uniform constant velocity in the stream-wise direction of the seepage layer 

u
∼

   Dimensional virtual velocity in the seepage layer in stream-wise direction 



avgu
∼

 Dimensional average seepage velocity in stream-wise direction 
U   Non-dimensional velocity of fluid particles in river flow in stream-wise direction 

U
∼

  Dimensional velocity of fluid particles in river flow in stream-wise direction 

avgU  Non-dimensional depth averaged velocity for the open channel flow 

avgU
∼

 Dimensional depth averaged velocity for the open channel flow 

BU   Non-dimensional velocity at the bed of the river layer ( 0)y =  in stream-wise direction 

iU
∼

  Dimensional velocity of fluid particles in river flow 

fnU
∼

  Dimensional shear velocity at normal flow 

rU
∼

 Typical dimensional velocity to non-dimensionalization of seepage velocity  

v
∼

 Dimensional virtual velocity in the seepage layer in normal direction to stream-wise direction 

iv
∼

  Dimensional filtration velocity in the seepage layer 

V
∼

  Dimensional velocity of fluid particles in river in normal direction to stream-wise direction 

w
∼

 Dimensional velocity in Hele-Shaw model in z
∼

 direction 
x   Non-dimensional stream-wise direction 

x
∼

  Dimensional stream-wise direction 

y
∼

  Non-dimensional normal direction to the stream-wise direction 

y
∼

  Dimensional normal direction to the stream-wise direction 

z
∼

  Dimensional normal direction to both stream-wise direction and y
∼

 direction 
θ   Slope angle for both river and seepage flows  
κ   Karman constant 
λ   Porosity of the seepage layer 

0λ   Linear growth rate 

1λ   Landau constant 
µ   Non-dimensional dynamic viscosity of water 

µ
∼

  Dimensional dynamic viscosity of water 

eµ
∼

  Dimensional form of the effective viscosity 

ν
∼

  Dimensional kinematics viscosity 

Tν   Non-dimensional eddy viscosity 

Tν
∼

  Dimensional eddy viscosity 

ρ
∼

  Dimensional density of water in river 

 ijτ
∼

  Dimensional stress tensor for seepage flow 
ω   Complex angular frequency of the perturbation 
 

View publication statsView publication stats

https://www.researchgate.net/publication/331561629

