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This paper presents the development of models for the prediction of power generation at the Samanalawewa hydropower plant,
which is one of the major power stations in Sri Lanka. Four regression-based machine learning and statistical techniques were
applied to develop the prediction models. Rainfall data at six locations in the catchment area of the Samanalawewa reservoir from
1993 to 2019 were used as the main input variables. The minimum and maximum temperature and evaporation at the reservoir site
were also incorporated. The collinearities between the variables were investigated in terms of Pearson’s and Spearman’s cor-
relation coeflicients. It was found that rainfall at one location is less impactful on power generation, while that at other locations
are highly correlated with each other. Prediction models based on monthly and quarterly data were developed, and their
performance was evaluated in terms of the correlation coeflicient (R), mean absolute percentage error (MAPE), ratio of the root
mean square error (RMSE) to the standard deviation of measured data (RSR), BIAS, and the Nash number. Of the Gaussian
process regression (GPR), support vector regression (SVR), multiple linear regression (MLR), and power regression (PR), the
machine learning techniques (GPR and SVR) produced the comparably accurate prediction models. Being the most accurate
prediction model, the GPR produced the best correlation coefficient closer to 1 with a very less error. This model could be used in
predicting the hydropower generation at the Samanalawewa power station using the rainfall forecast.

1. Introduction

Hydropower is one of the most widely used green energy
sources in the world today. It is not only renewable but also
highly reliable in generating and supplying power to national
grids. Usually, major hydropower plants are used to generate
electricity for the peak requirement of the countries. Most
importantly, hydropower can be generated at a relatively low
cost compared to other sources like thermal power.
Therefore, there is an extensive demand for hydropower
development in today’s world. For example, Norway pro-
duces more than 95% of its energy requirement by hy-
dropower while many other countries such as China, United
States, Brazil, and Canada also produce more and more

hydropower to meet their energy demands. This is mainly to
achieve sustainable energy generation goals defined by the
countries themselves.

Hydropower in Sri Lanka also plays an important role as
the country now depends largely on thermal power gen-
erated by using imported coal and fuel oil. Sri Lanka was
successful in generating green energy in the 1990s, but not
much progress could be made due to the sudden increase in
demand. Recent statistics indicate that Sri Lanka has pro-
duced an average of one-fifth of its energy demand from
hydropower sources. Even though Sri Lanka has planned to
enhance the generation of renewable power, there is little
room for the construction of new major hydropower plants
beyond the existing network of power stations. Out of the
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four types of hydropower development, viz., run-of-river,
storage, pumped storage, and oftfshore hydropower plants,
the first two types are very common in Sri Lanka, but the
other types are still under discussion. Among the hydro-
power plants of storage type, the Samanalawewa hydro-
power development scheme showcases some important
features due to its location (located in Sabaragamuwa
province) and the relative high capacity for power genera-
tion. This hydropower plant is in the water rich Walawe
basin, and the reservoir draws much attention not only from
the perspective of the hydropower development but also due
to its capacity as a primary source for irrigational purposes.
Moreover, the hydropower scheme at Samanalawewa has
drawn much attention due to a seepage leak from the res-
ervoir. In this context, identifying the impact of climate
change on the water resources is highly important for the
Samanalawewa hydropower plant. Though a couple of
studies addressed this problem recently, a comprehensive
research on the prediction of power generation based on all
related weather indices has not yet been conducted [1].

In a nonparametric statistical analysis of the monthly
data over 26 years of the catchment rainfall associated with
the Samanalawewa power plant in Sri Lanka, Dabare et al. [1]
showed a positive correlation between the rainfall and the
hydropower generation. While proposing nonlinear analysis
for more specific conclusions, this study disavowed concerns
on the negative impact of climate change on the rainfall.
However, Suleiman and Ifabiyi [2] have revealed that the
reservoir variables of inflow, storage, and the turbine release
are strongly and positively correlated with the rainfall by
analyzing the rainfall data around the Shiroro hydropower
dam in Nigeria since 1990. Furthermore, they reported that
the optimized turbine releases ensured the year-round
power generation by the reservoir storage. However, a study
on the impact of rainfall and temperature on electricity
generation in Ghana pointed out that instability in climate
dependent hydrology could cause uncertainties in hydro-
power generation [3].

Artificial neural network (ANN) was widely used to
develop hydropower prediction models. Khaniya et al. [4]
applied seven training algorithms in the ANN technique to
predict the future power generation from 2020 to 2050 at the
Samanalawewa hydropower plant in Sri Lanka using rainfall
data for training and validation. Of these seven algorithms,
the Quasi Newton algorithm outperformed the others in
forecasting the hydropower to be generated within the next
three decades for two climatic scenarios. This research
further pointed out that other reservoir variables such as air
temperature and humidity could also be used at the input
layer of the model along with the other variables, such as
reservoir inflow storage, turbine release, etc., which affect
energy generation. A futuristic study was carried out to
assess the impact of climate change on hydropower gen-
eration in Iran for two 3-decade periods (2020-2049 and
2070-2099) based on two climatic scenarios predicted by a
regional climate model, in which the rainfall and hydro-
power generation were simulated by an ANN and a reservoir
model [5]. This study found a positive impact of climate
change on hydropower generation whose greater increase
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occurred during the first 3-decade period than the second.
However, Beheshti et al. [5] expressed reservations on the
uncertainties in predicting reservoir variables and hydro-
power under climate scenarios and suggested further studies,
taking the variability in water allocation for irrigation into
account. In addition, the complex nonlinear relationship
between the rainfall and minihydropower generation in
gauged and ungauged catchments of Sri Lanka has been
studied recently using ANN, which showed a good corre-
lation between them at the gauged catchments compared to
ungauged catchments [6]. Based on the correlation values
between the observed and predicted energies, Abdulkadir
et al. [7] justified the use of neural network approaches in
modelling the hydropower generation as a function of
reservoir variables at two reservoirs along the River Niger in
Nigeria. Developing predictive models of the hydropower
generation in the Amazon, Lopes et al. [8] presented a
comparative analysis between polynomial and ANNs using
rainfall as the only input. Using three algorithms, group
method of data handling (GMDH), ANN with Lev-
enberg-Marquardt (ANN-LM), and ANN with Bayesian
regulation (ANN-BR), it was shown that GMDH is the most
appropriate algorithm to optimize the model result because
of its adroitness in selecting the variables at the model entry
layer and that ANN-LM algorithm failed to live up to ex-
pectations due to largely dispersed data and less accuracy.

Boadi and Owusu [9] used regression analysis to quantify
the fluctuations in hydropower generation at the Akosombo
hydroelectric power station in Ghana and emphasized the
urgency in exploring alternative power sources to overcome
energy security issues for sustainable development. Having
used data over two consecutive 2-decade periods (1970-1990
and 1991-2010), their study reported that 21% of interannual
fluctuation in power generation is accounted for by the
rainfall variability, and that 72.4% of the same is explained by
the El Nino-southern oscillation (ENSO) phenomenon and
the lake water level. In another study, the streamflow and the
potential hydropower generation were modelled using a data-
based methodology in Mid Wales, where the projected impact
of climate change on a hypothetical small power plant was
assessed [10]. Its results showed an increase (decrease) in the
streamflow and power output during winter (summer)
months. Furthermore, Khaniya et al. [11] applied the Man-
n-Kendall test and Sen’s slope estimator tests in a trend
analysis to assess the performance of a minihydropower
station in Sri Lanka based on 30-years of rainfall data and 6
years of electricity generation associated with the power plant.
This study proved a positive rainfall trend at several rain
gauging stations except in November and January while as-
suring the stability of the catchment area in the wake of
climate variability. Nevertheless, research on regression-based
prediction models to predict the hydropower generation in Sri
Lanka is highly limited. Therefore, this research focuses on
developing regression-based prediction models to predict the
hydropower development capacity of the Samanalawewa
hydropower development scheme.

In the next section on study area and data, the Sama-
nalawewa catchment area, meteorological data used, and
their relationship to power generation are elaborated.
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Section 3 describes the regression techniques, methodology,
and the evaluation criteria of the model performance.
Section 4 presents the results and discussion where the
models developed on monthly data, models based on
quarterly rainfall data, and the salient features of the me-
teorological factors used are explained along with a com-
parison on findings from similar research work in some
other countries. The paper is wrapped up with the major
conclusions in Section 5.

2. Study Area and Data

2.1. Samanalawewa Catchment Area. Samanalawewa hy-
dropower plant and its reservoir are in the Balangoda area
in the Ratnapura district of Sri Lanka (coordinates of the
power plant are 06°40'48"N, 80°47'54"E). The con-
struction of the dam commenced in 1986 and commis-
sioned in 1992. The project was carried out with financial
support from Japan and the United Kingdom. It is a
major hydropower scheme in the country and based on
the Walawe River. The dam has a height of 110 m from its
foundation and is 530 m in length. It is a rock-filled dam
and holds 218 million m” of water out of 278 million m® of
total capacity. The balance 60 million m’ is kept for the
dead storage [12].

The catchment area of the Samanalawewa reservoir is
presented in Figure 1. The catchment area is around 372 km?
and lies in the wet zone of the country, which receives a
significant annual rainfall (annual average of 2867 mm) [13].
Therefore, the reservoir has a good overall water capacity
throughout the year and generates 124 MW of electricity
using two turbines.

A seepage leak was identified in the reservoir while it
was under construction. Though it was treated at that time,
the leakage continued even after the construction. As this
is not through the dam, it has not caused any instability to
the dam. The seepage is measured to be 2m’/s and,
thereafter, that lost water is used to run a minihydropower
station. For this reason, the Samanalawewa reservoir and
the dam have captured the interest of power engineers.
Due to all these reasons, it is highly important to analyze
the hydropower scheme in light of changing climate and to
forecast the power generation using key reservoir
variables.

2.2. Meteorological Data and Their Observational
Relationships to Power Generation

2.2.1. Rainfall Data. Twenty-six (26) years of rainfall data
from 1993 to 2019 measured at 6 locations in the catchment
area, Alupola, Detanagalla, Balangoda, Nagarak Estate,
Belihuloya, and Nanperial, were purchased from the De-
partment of Meteorology, the state repository of climate data
in Sri Lanka. The highest mean annual rainfall during this
period (4272 mm) was recorded at Alupola and the lowest
(2170 mm) at Balangoda, while the other locations of
Detanagalla, Nagarak Estate, Belihuloya, and Nanperial had
received 2843 mm, 2247 mm, 2785 mm, and 2330 mm of
annual mean rainfall, respectively. Table 1 shows the

summary of major statistics (minimum, maximum, average,
and standard deviation) of the monthly rainfall data at the
six locations.

Coherent with the above mean annual figures, the
highest and the lowest monthly average rainfalls (358 mm
and 183 mm) are also reported from Alupola and Balangoda,
respectively. The minimum values indicate that three lo-
cations (Nagarak Estate, Belihuloya, and Nanperial) have
received no rainfall (0 mm) during the months mentioned in
Table 1, while Detanagalla has experienced the highest
monthly rainfall (1371 mm) in November 2006.

Figure 2 shows the monthly rainfall averaged over the
period, 1993-2019, at the six locations in the catchment area.
It can be seen that heavy rainfall has prevailed at each lo-
cation during the months of April and November, which fall
within the South-west and North-east monsoon periods of
the country, respectively, and the slightly higher values in
November imply the greater effect of the North-east
monsoon than the South-west monsoon on the rainfall in
the catchment area. It is also obvious that except at one
location (Alupola), the least rainfall (upto 100 mm) has
occurred during the 4-month period from June to Sep-
tember, which is less than one-third of the heavy rainfall
during the monsoon periods.

Except during the 3 months from December to February,
the solitary location of Alupola has continued to receive
much higher rainfall producing the highest mean annual and
the highest monthly average noticed in Table 1.

2.2.2. Evaporation Data. Figure 3 shows the monthly mean
evaporation at the Samanalawewa reservoir site during the
period from 1993 to 2019. According to this figure, the
highest monthly mean evaporation (>4.5 mm) occurs during
the 4-month period from June to September, which coin-
cides with the same period with the least monthly rainfall
averaged over the period of data at five locations described in
Figure 2. The period from November to January indicates the
lowest mean evaporation (<3.45mm), while the monthly
mean evaporation from February to October is greater than
4 mm. It can also be traced that subdued mean evaporation
in April and November correspond to the monthly rainfall
averages peaked in the same months, as shown in Figure 3.

2.2.3. Temperature Data. Figure 4 depicts the monthly mean
maximum and minimum temperatures with their maxima
and minima at the reservoir site for the period of 1993-2019.
The lowest maximum temperature prevails during the cooler
months of November to January, which picks up in February
and maximizes in March and April. After the cooler months,
the maximum temperature hovers between 33.8°C and
34.0°C and remains approximately the same (34-34.2°C)
through the warmer months of July to September. Similarly,
the minimum temperature reaches its lowest figures during
the same cooler months but attains the highest values within
23.8°C to 24.4°C during June to August period. It picks up
steadily from January to June and decreases gradually to-
wards the cooler months.
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Figure 1: Catchment area of Samanalawewa reservoir.
TaBLE 1: Summary of monthly rainfall data.
Location Alupola  Detanagalla  Balangoda  Nagarak Estate  Belihuloya = Nanperial
(RFy) (RF,) (RF3) (RE,) (RFs) (RF¢)
24.5 2.7 4.7 0.0 0.0 0.0
Minimum rainfall (mm) and month occurred 01/2009 08/2001
12/1996 09/2016 05/1996 02/2009 09/2016 07/2002
06/2012
. . 1160 1371 735 661 926 930
Maximum rainfall (mm) and month occurred 25,0 11/5006 04/2015 11/2012 11/2012 11/2006
Average rainfall (mm) 358 239 183 188 233 193
Standard deviation (mm) 202 189 146 153 211 181
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F1GURE 2: Monthly rainfall averaged over the period from 1993 to
2016.

2.2.4. Power Generation Data. The annual power genera-
tion and its variation (from year 1993 - 2019) can be clearly
seen from Figure 5. It can be traced that power generation
has dropped sharply to 152 GWh in 1996, and since then,

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

F1GURE 3: Monthly mean evaporation at the Samanalawewa res-
ervoir site.

similar declines have occurred after every 5-6 years in 2002,
2007, 2012, and 2017 compared to the years around them.
Similarly, the power generation has shown local maxima
after every 5 years since 1993, and these maxima have
occurred immediately after the years with local minima
except in 1998.
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FIGURE 5: Annual power generation at the Samanalawewa power
plant.

The minimum power generation (1.1 GWh) during the
whole study period was found in November 2016. The as-
sociated rainfall during the preceding months of the same
year was compiled with its November values at the six lo-
cations in Table 2 along with the power generated. This table
shows that, except at Alupola, the rainfall has drastically
decreased at other locations during the 4 month period from
June to September, before picking up in October and reaching
much higher values in November. Although power was
generated uninterrupted, the effect of low rainfall has reflected
through the nominal power outputs during September to
November. It can also be understood that the rainfall expe-
rienced in November is comparable with the corresponding
average values at each location presented in Figure 1, and that
it has not created any positive impact on the power generated
during the same month at the Samanalawewa power plant.

Furthermore, the monthly power generation averaged
over the study period (1993-2019) was considered along
with its maximum and minimum, shown in Figure 6. A
detailed examination into data revealed that the maximum
monthly power generation of 80.7 GWh was reported in
January 1998, subsequent to a much higher rainfall since
September 1997, e.g., a monthly rainfall over 340 mm at
Alupola and Detanagalla. Moreover, Figure 6 shows the
highest power generation during the two periods: April-May

and November-January, which fall soon after the two
months with the heaviest rainfall, April and November,
indicated by the peaks in Figure 2. Therefore, it is evident
that the rainfall of a particular month does not affect the
power generation of the same month at Samanalawewa,
which can justify the use of quarterly rainfall data for
modelling instead of monthly data in this research.

3. Regression Techniques and Methodology

The hydropower generation at Samanalawewa from the year
1993 to 2019 was modelled in two time scales of monthly and
quarterly data. Regression-based models were first devel-
oped by applying Gaussian process regression (GPR),
support vector regression (SVR), multiple linear regression
(MLR), and power regression (PR) to express the hydro-
power as a function of the catchment rainfall in monthly and
quarterly scales. Then, another set of models was developed
by applying the same techniques on multiple weather in-
dices, viz., rainfall, mean reservoir evaporation, and mean
minimum and maximum reservoir temperatures. Three
options were considered based on the formation of quarterly
data, such that Option 1 comprises of the grouping of
months: Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec, while
Option 2 comprises of Feb-Apr, May-Jul, Aug-Oct, and
Nov-Jan grouping. Option 3 included the clustering of
months: Mar-May, Jun-Aug, Sep-Nov, and Dec-Feb. The
models developed were then tested using the performance
indicators given in equations (8)-(12) to understand the
performance of the regression models.

The machine learning based models (SVR and GPR) were
developed in the MATLAB environment (version 9.4.0.813654-
R2018a), while the statistical models (MLR and PR) were
developed by programming in the R software (R 4.0.3).

3.1. Support Vector Regression. Support vector regressions
(SVRs) are supervised machine learning models based on a
regression algorithm that can deal with nonlinear data for
prediction. It is highlighted due to its robustness and high
prediction accuracy in the presence of dimensionality of
the input space [14]. The training and testing data used in
SVR are assumed to be independent and identically dis-
tributed having an unknown probability function. SVR
develops a linear hyperplane that transforms multidi-
mensional input vectors (weather indices) into output
values (power generation), which are then used to predict
future output values. For linear function f, a set of n
number of data points P = (x;, y;), where x; is the input
vector of a data point i and y; is its actual value, the hy-
perplane f (x) is given as follows [15]:

f(x)=wx; +b, (1)

where w is the slope and b is the intercept. For nonlinear
relations, a map ¢ that translates x; into a higher-dimen-
sional feature space needs is defined. Then, w becomes a
function of ¢(x;), and the Kernel function is defined as a
product as follows:
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TaBLE 2: Power generation and the rainfall received from June to November of 2016.
Rainfall (mm)
Power . .
Month (GWh) Alupola Detanagalla Balangoda Nagarak Estate Belihuloya Nanperial
(RFy) (RE,) (RF5) (RE4) (RF5) (RF¢)
Jun 2016 334 236 26 61 18 8 18
Jul 2016 13.5 148 37 29 39 49 40
Aug 2016 13.4 241 8 19 14 19 14
Sep 2016 2.9 220 3 17 6 0 6
Oct 2016 2.5 581 93 131 100 77 102
Nov 2016 1.1 591 350 419 349 518 358
90 - is the expectation of the function f (x) at the point x, and the
50 | covariance function is a measure of the confidence level for
§ m(x). In this research, GPR-based models were developed
S 701 by applying Kernel functions of rational quadratic, expo-
£ 60 - nential, squared exponential, and Matern 5/2, and the model
E s with the lowest RMSE was selected for further analysis.
L 4
g
5 40 A
3 + 3.3. Multiple Linear Regression. Multiple linear regression
&, 30 . . P S N . . E . “ . . . .
o D S o o ) (MLR) assumes a linear relationship among the independent
£ 20 : T4 g tal and dependent variables. Therefore, the best fit is described
< 10 Y by a straight line of the relationship wherein the data are
assumed to be normally distributed [18]. The general
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

FiGure 6: Monthly power generation averaged over the period
from 1993 to 2019.

k(x;x) = ¢ (x;)¢ (x). (2)

In this research, 5-fold crossvalidation was applied using 4
folds for training and the other fold for evaluation. It was re-
peated 5 times, using one different fold for evaluation each time.
SVR-based prediction models were developed by applying
Kernel functions of linear, quadratic, cubic, fine Gaussian,
medium Gaussian, and coarse Gaussian, and the model that
gives the lowest RMSE was selected for further analysis.

3.2. Gaussian Process Regression. Gaussian distribution is
defined by its mean and the standard deviation, charac-
terized by a symmetrical curve about the mean that coincides
with the mode and the median. In statistical analysis, a
Gaussian process is a stochastic process with every finite
collection of random variables having a multivariate normal
distribution [16]. Gaussian process regression (GPR) is
nonparametric and useful in dealing with small datasets.
Another advantage is its capacity to address uncertainty
measurements of the predictions. A Gaussian process is
denoted as follows [17]:

£ (x) = GP (m(x), k (x, X)), (3)

where m(x) and k(x,x) are the mean function and the
covariance function, respectively. The mean function m (x)

mathematical formula of the MLR model for n number of
independent variables is written as follows [19]:

y=Po+ Pixit Prxytet Bixi e+ B,x, e (4)

where y is the dependent variable (power generation), 3, is
the intercept on the y axis, f3; is the slope coefficient of the i'™
input variable x;, and ¢ is the model error.

3.4. Power Regression. Power regression (PR) develops a
power relationship among the variables. The nonlinearity of
data was considered in PR, which modelled the power
generation proportional to the product of powers of the
independent variables as follows [20-22]:

y:ax?x;...xg, (5)
where 7 is the number of observations and a, b,¢, ...
constants.

, p are

3.5. Correlation Coefficient. Pearson’s and Spearman’s cor-
relation coefficients were used to assess the collinearity
among each pair of input and output variables. Monthly and
quarterly data were used to determine the correlation
coefficient.

Pearson’s correlation coefficient is the most commonly
used test statistic for measuring the linear dependency of two
normally distributed random variables as it takes both
variance and the covariance into account [23]. It indicates
both the degree and the direction of the association, if any.
Pearson’s correlation coefficient (Rp) of two random vari-
ables X and Y is mathematically presented as follows [24]:
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covariance (X, Y)

Y (x5 -%) (7 - )

P y/variance (X)+/variance (Y)

where =1 < R, < + 1. The values of R;, closer to +1 are the
evidence for strong associations, which should be reflected
on the scatter plot between the two variables with close
congregation of points around the line of the best fit. The
intervals [+0.66, £1], [+0.33, £0.65], and [+0.32, 0] of R, are
considered as strong, medium, and low degree correlations,
respectively.

Spearman’s correlation coefficient may be viewed as the
nonparametric counterpart of Pearson’s correlation coeffi-
cient for nonlinear data, which also measures both the
strength and direction of the two variables [25]. Its value also
varies between —1 and +1 having a similar interpretation as
for Pearson’s correlation coefficient. The mathematical form
of Spearman’s correlation coefficient (r,) is defined as fol-
lows when it is applied to n pairs of rank variables, and the
ranks are distinct integers,

_ . 63d:
=1 n(nz—l)’ @

where d; is the difference between the ranks of the two
observations.

3.6. Evaluation Criteria of Developed Models. The following
statistical measures: the correlation coefficient (R), mean
absolute percentage error (MAPE), ratio of the root mean
square error (RMSE) to the standard deviation of the
measured data (RSR), BIAS, and the Nash number were
used to evaluate the dexterity of each model developed in the
present study based on the mathematical formula indicated
in the following equations:

221 (x-%)(yi-7)
Z?:Il (% = f)z 211;]1 (i - 7)2

correlation coefficient; R =

(8)

MAPE =% ixxl x 100, ©)

RSR = fSE, (10)

BIAS=Z§Z1 (JI:;_xi), (11)

Nash number = 1 - [gglgi'_);;], (12)
i1 (X~

where x; is the actual power generation, y; is the predicted
power generation, X and ¥ are their means, N is the number
of data values, and o, is the standard deviation of actual
power generation. The values of MAPE and RSR closer to

T - 0= )

(6)

zero and R the Nash number closer to 1 imply more accurate
models for the prediction of power generation. A zero BIAS
means accurate models, whereas its negative and positive
values would indicate underestimation and overestimation,
respectively.

4. Results and Discussion

The following subsections present the results obtained from
the regression analysis for hydropower generation at the
Samanalawewa hydropower plant based on the catchment
rainfall, reservoir evaporation, and temperature. The anal-
ysis was carried out using the regression models described in
the previous section.

4.1.  Models Developed Based on Monthly Data.
Correlations between the hydropower generation and the
monthly rainfall of six rain gauges in the catchment area are
presented in Table 3. Results clearly show that there is very
little correlation between the power generation and rainfall
at monthly scale.

This observation is further consolidated by the perfor-
mance (R) of the regression models in the monthly scale,
shown in Table 4. Out of the SVR models developed by
applying six types of kernels, the fine Gaussian SVR dem-
onstrated the best performance. Exponential GPR is the
most accurate among the GPR models developed by ap-
plying four kernels. The results revealed that none of the
regression-based prediction models is accurate when the
monthly rainfall at the catchment area is used as the input
variables.

Based on these results, it can be clearly concluded that
the monthly scale is not appropriate for regression analysis
in compliance with the observations drawn from Table 2.
Therefore, quarterly models were developed by using
quarterly rainfall data as input variables.

4.2. Quarterly Models Developed Based on Rainfall Data.
The following results presented in Table 5 and Figure 7 are
based on the models developed with respect to the quarterly
rainfall data. Figure 7 shows the relationship between the
observed power generation and the predicted power
generation produced by the regression-based prediction
models.

Based on the deviations of the predictions, it can be
clearly seen that the machine learning models (Figures 7(a)
and 7(b)) outperform the statistical models (Figures 7(c)
and 7(d)). Fine Gaussian SVR outperformed the other five
types of SVR-based models, while the rational quadratic
GPR was the most accurate among the GPR-based models.
Power generation values predicted by the SVR and GPR
models are closer to the reality, which correspond to the
coefficient of correlation reaching 1 with least error in



TasLE 3: Coefficient of correlation between hydropower generation
and monthly rainfall.

Rainfall of rain gauges RF, RF, RF; RF, RF; RFq
Coeflicient of correlation 0.07 0.25 024 0.17 0.16 0.11

TaBLE 4: Performance of the prediction models for monthly rainfall
data.

Regression technique SVR GPR MLR PR
R 0.25 0.28 0.29 0.39

TaBLE 5: Performance of the regression models based on quarterly
rainfall.

Statistical measure (performance Regression technique

indicator) SVR GPR MLR PR
R 0.86 0.95 0.49 0.61
MAPE (%) 202 7.0 603 39.3
BIAS -0.7 04 71 -49
Nash 07 09 02 02
RSR 05 03 09 09

terms of MAPE, BIAS, Nash number, and the RSR (Ta-
ble 5). The excellence of GPR compared to SVR is evident
from the highest R and Nash number, least MAPE and RSR,
and a smaller BIAS.

Moreover, the coefficients of correlation are much
higher in Table 5 compared to those in Table 4, which re-
inforces the appropriateness of using quarterly data instead
of the monthly data. Among the four techniques, the models
based on SVR and GPR show much better performance
compared to the other two models. The MLR model has the
lowest performance as indicated by the performance eval-
uators of R and the MAPE in particular. Furthermore, it has
the highest BIAS and RSR as well. Therefore, compared to
other regression models, the GPR model can be recom-
mended as an outstanding technique.

4.3. Quarterly Models Developed Based on Four Meteoro-
logical Factors. Table 6 summarizes the correlation coeffi-
cients generated by all the models for the three seasonal
options tested on quarterly basis with respect to the four
climatic variables. In all three seasonal options, fine
Gaussian SVR was the best among SVR-based models.
Rational quadratic outperforms other GPR kernels in the
first and second seasonal options, while Matern 5/2 was the
best GPR in the third seasonal option. As was seen in Table 5,
the GPR model has outperformed the other regression
models. Furthermore, equally better performance can be
seen between the GPR and SVR models. Similarly close
results are observed between these models irrespective of the
three seasonal clusters used in the quarterly analysis. In
addition, the correlation coefficients suggest that the MLR
and PR are not the best regression techniques to predict the
hydropower generation in the Samanalawewa hydropower
plant in Sri Lanka.
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Table 7 presents Pearson’s and Spearman’s correlation
coeficients between the power generation and each catch-
ment rainfall of the six rain gauges and among the paired
rain gauges. According to the interpretation of the size of
these coeflicients introduced in Section 3.5, it can be noticed
that very strong pairwise correlations exist between the
rainfall received in the catchment areas of Balangoda (RF;),
Nagarak Estate (RF,), Belihuloya (RFs), and Nanperial
(RFs), respectively. Moderate correlations appear between
the power generation and each of the five rain gauges except
at Alupola (RF;). The only exception with the weakest
correlation between rainfall and the power generation is
reported from Alupola.

Figure 8 illustrates the relationship between the
predicted and the observed power generation. The strong
linear relationships between the observed and predicted
values in Figures 8(a) and 8(b) indicate that machine
learning (SVR and GPR) models forecast the hydropower
generation with remarkable accuracy (more than 87%).
However, the predicted power generation for the MLR and
PR regression models is scattered around the line of best fit
as shown in Figures 8(c) and 8(d).

The results shown in Table 6 and Figure 8 are further
verified by the model performance indicators in Table 8,
which arise from the four regression models applied for
Option 1. The GPR regression model presents the best re-
sults with the lowest errors and the highest correlation
coeflicient. Therefore, it can be concluded that the GPR
regression model is a better regression model compared to
others to predict the hydropower generation in the Sama-
nalawewa hydropower plant.

Similar observations and findings could be seen in the
other two options too (which are not shown here). There-
fore, the superiority of the GPR model could be generalized
for the power generation at Samanalawewa irrespective of
the seasonal options.

4.4. Comparison of Similar Research. Table 9 presents a
summary of some related work in the literature on the
prediction of hydropower generation based on climatic data
and using different modelling techniques in several coun-
tries. Most of the research studies are based on ANNs. A
major drawback of ANNs was discussed in the introduction
section of this paper. Even though they showcased better
results, the black box environment in analysis leads to less
information of the relationship. Some other methods like
stepwise regression have also been used to predict the hy-
dropower development. However, in most of these studies,
only one statistical measure, i.e., correlation coeflicient, was
used to evaluate the prediction accuracy. Therefore, it could
be analytically proved with evidence that out of the four
prediction models developed in this study, the GPR has
shown excellent performance and even outperformed all the
models cited here. In particular, in the previous study
conducted on the Samanalawewa hydropower generation,
only the ANN was applied, and the performance was
evaluated only in terms of the correlation coefficient and the
MSE [6]. All the ANN-based prediction models were found
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FIGURE 7: Predicted power generation against the observed power generation. (a) For SVR. (b) For GPR. (c) For ML
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TaBLE 6: Correlation coefficients for the regression models based on quarterly climatic data.

R. (d) For PR.

SVR

Regression technique

GPR MLR PR
Option 1 0.87 0.92 0.60 0.67
Option 2 0.87 0.91 0.44 0.45
Option 3 0.91 0.94 0.44 0.45
TABLE 7: Matrix of Pearson’s (R) and Spearman’s (r,) correlation coefficients.
Power 1
R=0.10
RE; re=0.11 !
R=0.35 R=0.38
RF, r.=0.39 r.=0.39 !
RE R=0.33 R=0.50 R=0.83 1
3 r.=0.35 r.=0.50 r:=0.90
RE R=0.45 R=0.36 R=0.85 R=0.85 1
4 r.=0.46 re=0.34 r,=0.86 r.=0.87
RE R=0.35 R=0.38 R=0.90 R=0.94 R=0.90 1
5 r.=0.39 ro=0.40 r.=0.94 r.=0.94 r.=0.90
RE R=0.34 R=0.28 R=0.88 R=0.80 R=0.90 R=0.88 1
6 r.=0.38 r.=0.30 r.=0.89 r.=0.85 r.=0.91 r.=0.91
Power RFl RF2 RF3 RF4 RFS RF6
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FIGURE 8: Predicted power generation vs. the observed power generation. (a) For SVR, (b) For GPR, (c) For MLR, (d) For PR.

TaBLE 8: Performance of the models based on quarterly climate data for option 1.

- o Regression technique
Statistical measure (performance indicator)

SVR GPR MLR PR
R 0.87 0.92 0.60 0.67
MAPE (%) 9.7 4.5 46.1 35.7
BIAS -2.5 -0.4 -0.01 =71
Nash 0.9 0.9 0.4 0.3
RSR 0.4 0.3 0.8 0.8
TaBLE 9: Comparison of previous related studies.
Ref Country of Input variables Modeling technique Performance of the
study models
[3] Ghana Temperature and rainfall Statistical analysis —
R=0.86
ANN (IM) MSE =1.03x10°
. . R=0.73
[6] Sri Lanka Rainfall ANN (BR) MSE = 8.9 x 10°
ANN (5CG) R=0.76

MSE =7.42x10°
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TaBLE 9: Continued.

Ref Country of Input variables Modeling technique Performance of the
study models
Evaporation losses, reservoir inflow, storage, reservoir
[7] Nigeria elevation, turbine release, net generating head, plant use ANN R=0.89
coeflicient, tail race level
Group method of data R= (190
handling (GMDH) MAE =443
MAPE =12.34%
R=0.88
(8] Brazil Rainfall at seven subbasins ANN (BR) MAE =450
MAPE =12.41%
R=0.83
ANN (LM) MAE =593
MAPE=17%
) . . . . . R*=0.753
9] Ghana Rainfall, ENSO, lake level elevation, and net lake inflow  Stepwise multiple regression

Adjusted R*=0 .742

less accurate than the GPR-based model presented in this
paper. In this sense, the scientific contribution of the present
paper is well justified.

5. Conclusions

The paper presented highly accurate models for the prediction
of hydropower generation by using machine learning tech-
niques. Particularly, the GPR-based prediction models out-
performed the other techniques used in this research, as well
as in similar studies conducted on hydropower plants located
in other countries. Therefore, when the future rainfall of the
catchment area is known by forecast, the power generation at
the Samanalawewa hydropower station can be predicted
accurately. It could also be concluded that the monthly
rainfall is not reflected through the power generated during
the same month at Samanalawewa. The lack of correlation
between the hydropower generation and the monthly rainfall
of rain gauges in the catchment area clearly indicated that
monthly data are not the best for forecasting the power
generation, rather it is the quarterly rainfall that produced the
most accurate predictions with high correlation.

The prediction of power generation at this major power
plant in Sri Lanka will certainly provide useful information,
not only for the energy authorities of the country but also for
the policy makers, investors, and the government in ensuring
uninterrupted power supply through an environmentally
friendly renewable source at affordable cost to the consumers.
The climate models can effectively be used in forecasting the
climate patterns for future years under different representative
concentration pathways (RCP2.6, RCP4.5, RCP6, and RCP8.5).
These predicted climate data can be used in the prediction
models developed in this study to forecast the hydropower
generation at the Samanalawewa hydropower plant in future
years (in 2030 to 2099). Thus, the findings of this research
would be highly useful for the future planning processes.
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