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Abstract. In this paper, we study the influence of the topological structure of social systems on the
evolution of coordination in them. We simulate a coordination game (“Stag-hunt”) on four well-known
classes of complex networks commonly used to model social systems, namely scale-free, small-world, random
and hierarchical-modular, as well as on the well-mixed model. Our particular focus is on understanding the
impact of information diffusion on coordination, and how this impact varies according to the topology of
the social system. We demonstrate that while time-lags and noise in the information about relative payoffs
affect the emergence of coordination in all social systems, some topologies are markedly more resilient than
others to these effects. We also show that, while non-coordination may be a better strategy in a society
where people do not have information about the payoffs of others, coordination will quickly emerge as the
better strategy when people get this information about others, even with noise and time lags. Societies
with the so-called small-world structure are most conducive to the emergence of coordination, despite
limitations in information propagation, while societies with scale-free topologies are most sensitive to noise
and time-lags in information diffusion. Surprisingly, in all topologies, it is not the highest connected people
(hubs), but the slightly less connected people (provincial hubs) who first adopt coordination. Our findings
confirm that the evolution of coordination in social systems depends heavily on the underlying social
network structure.

1 Introduction

Studying the behavioural or evolutionary dynamics of a
population has played a central role in our understanding
of emergent phenomena. Such studies have shed light on
biological systems from cells [1] to species [2], on inter-
national politics [3] and even on the firing of populations
of neurons as we try to understand the internal states of
another person’s mind [4]. Modern approaches in this field
began with the work of Von Neumann and Morgenstern [5]
in 1944 and were taken up by John Nash who developed
one of the most influential ideas in game theory, that of
the Nash equilibrium [6]. The Nash equilibrium states that
in an incentivised situation between two or more strate-
gic players of a “game”, at least one choice of strategy
can be found whereby no other player can achieve a bet-
ter outcome by unilaterally changing their strategy. This
particular notion of equilibrium and its subsequent ex-
tensions have profoundly influenced our understanding of
game theory as well as strategic interactions more broadly.

However, it quickly became apparent that the notion
of a Nash equilibrium had a significant flaw: the coop-
eration that had been observed between players in be-
havioural experiments and we observe in everyday life was
not an “Evolutionary Stable Strategy” (ESS) [7], i.e. the
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theoretical result of Nash did not reflect empirical obser-
vations. While successful methods to address this short-
coming have recently been explored using both finite and
infinite population sizes [8], the disconnect between the-
ory and observation was first addressed when the study of
spatially extended games was introduced [9–12]. In these
games, interactions between agents were based on their
spatial relationship rather than a so-called “well-mixed”
population. In these studies, interacting strategic agents
played games in a two-dimensional space, typically on a
lattice, and only nearest neighbours on the lattice inter-
acted with one another, a more physically realistic model
than that of a well-mixed population where every agent
can potentially interact with every other agent. In this sce-
nario it was shown that cooperation was a stable strategy
and a portion of cooperating agents were able to persist
indefinitely in the system, thereby lining up theory with
observation.

These results were then extended to other topological
spaces by using different network topologies, generalising
the idea of a rigid lattice to that of stochastic connec-
tions between agents. In these models the relationships
between individuals are not described by spatial connect-
edness but by more abstract connections such as the role
of a species in a food web [13] or people connected via a
social network [14]. Such generalisations have significantly
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broadened and deepened the phenomena that game theory
has been able to explore.

Networked game theory has progressed significantly
since the introduction of the so-called small-world and
scale-free topologies into the more general field of net-
work theory more than a decade ago [15–18]. One of the
more significant results to come from this work was a re-
sult by Ohtsuki et al. [19] where a general rule for when
cooperation is favoured over non-cooperation for differ-
ent network topologies was developed. Labelling benefits
of cooperation as b and the costs of cooperation as c, and
given the average k̄ number of connections an agent has to
other agents, cooperators are favoured when b/c > k̄. This
very general result holds for a number of broad classes of
networks and works as a very good rule of thumb. How-
ever, as pointed out in Ohtsuki et al.’s original paper,
this analysis is a poor estimate in the case of scale-free
networks and further study is needed in order to under-
stand what role is played by scale-free networks (and other
well known network topologies) that leads to such special
circumstances.

With this background in mind, this research com-
pares the evolutionary game dynamics over four differ-
ent network topologies commonly used to model social
systems, namely the scale-free, small-world, hierarchical-
modular, and Erdős-Rènyi random topologies [20]. We
also consider regular lattices (where topology is not het-
erogeneous) where relevant, since the “well-mixed” sce-
nario is a special case of lattice structure, where average
degree is network size minus one. We focus on a coor-
dination game (sometimes referred to as a “stag-hunt”
game), with the view of understanding the evolution of
coordination in these topologies. We also focus on a pa-
rameter α, which changes the strength of strategy selec-
tion/introduces noise, a model that has also been used in
other studies of stochastic strategic interaction [21].

Parameter variation has been utilised to emulate non-
linear responses in evolutionary games [22,23]. It has been
suggested that global optimisation plays a vital role com-
pared to local optimisation, especially in crises [24]. Inter-
estingly, changing a parameter in an evolutionary game
has been compared to selecting a personality type, and
this in turn could lead to new equilibrium concepts [25].
We employ these findings in evolutionary game theory and
adaptive systems to study the evolution of coordination in
networked evolutionary games.

We find that in all topologies that we have considered,
it is beneficial to adopt the non-coordination strategy if
there is no information diffusion. However, if there is in-
formation diffusion, above a particular value of α, it is
more beneficial to be a coordinator, and nodes increas-
ingly adopt this strategy during the evolutionary process.
Furthermore, we find that in all topologies, the propor-
tion of coordinators go through a sharp phase transition
in terms of the relative payoff for coordination. We also
find that the provincial hubs are the drivers of the evo-
lution of coordination, adopting the coordination strat-
egy the quickest. Comparing topologies, we find that the
small-world networks show the sharpest phase-transition

in terms of payoffs, and are most robust to outdated in-
formation regarding payoffs, while scale-free networks are
most sensitive to noise as well as time lags in information
propagation.

The rest of this paper is organised as follows. In Sec-
tion 2, we discuss the justification of choosing particular
classes of networks for simulating the coordination game.
In Section 3, we explain our simulation set-up. In Sec-
tion 4, we present our results. In Section 5, we discuss our
results and provide a summary.

2 Studying games on networks

To analyse the evolution of coordination on realistic
network topologies, we utilised the well known “stag-
hunt” game, which is an example of a coordination
game [23,26,27]. Since it is a two-player game, it can be
simulated pair-wise on neighbours sharing a link on a so-
cial network model. In this game, if two players coordinate,
they both get the highest reward S (half a Stag), and if
one-player does not coordinate while the other does, the
non coordinator gets higher reward R (Rabbit), while the
coordinator gets a lower reward T (Nothing). If both play-
ers do not coordinate, they both get reward R (Rabbit).
The game is modelled such that S > R > T . The analogy
is that half a stag would typically have more meat than
a rabbit, and hunting a rabbit is better than going home
empty handed.

In the classical “stag-hunt” game, coordination is
needed only to hunt a stag, whereas rabbit can be hunted
independently by each person/agent. As such, a “coor-
dinator” (someone who uses a “coordinating” strategy)
is somebody who intends to hunt a stag, and a non-
coordinator (sometimes called a “defector”, though this
term is more appropriate to the Prisoners Dilemma game)
is someone who intends to hunt a rabbit, in a particular
round. A typical payoff matrix for the classical stag-hunt
game is shown in Figure 1. This game can be applied in
strategic decision making situations where two players can
gain higher payoff by coordinating rather than by defect-
ing. The pure strategy Nash equilibria of this game occur
when both players coordinate and both players defect. We
did not consider the mixed strategy scenario in this study.

Scale-free networks: it has been recently shown that
many real-world networks are scale-free networks, includ-
ing technical, biological and social networks [16,17,28–34].
Particularly, many social networks are scale-free and
heterogeneous, because there are always people who
are more “famous” and well-connected, while there are
many who are relatively isolated. Scale-free networks dis-
play power-law degree distributions, described by pk =
Ak−γU(k/kmax) where U is a step function specifying
a cut off at k = kmax. There are a number of growth
models which generate scale-free networks, and prominent
among them is the Barabási-Albert model [15] utilising
preferential attachment. Due to the prevalence of scale-
free features in many online and offline social networks,
scale-free networks are good models to study games on
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Fig. 1. The payoff matrix of a typical stag-hunt game. The
highest payoff is obtained when both players coordinate. Typ-
ically S > R > T , since it is assumed that half a stag has more
meat than a rabbit, and hunting a rabbit is better than not
hunting anything. In this paper, without loss of generality, we
fix S = β, R = 1, and T = 0, where β > 1.0.

social systems, and often used for this purpose in recent
literature [35].

Small-world networks: an equally justifiable yet less
used model is the small-world network model. Small-world
networks have low characteristic path lengths (compared
to network diameter) and high clustering [36–38]. The
small-world effect on social systems was first and famously
demonstrated by Milgram with a network of acquain-
tances [39] in United States, where he showed that the
average number of hops required before a letter addressed
to a random addressee within the country reached them
was only six: thus the “six-degrees of separation” [40].
It has since been shown that a range of real-world net-
works, including social networks, biological networks such
as gene regulatory networks, metabolic networks, protein-
protein interaction networks, and signalling networks, as
well as Internet show the small-world property [17,41,42].
Of course, many small-world networks can be scale-free
to a certain degree, and vice-versa, but the scale-free and
small-world characteristics need not (and often, do not)
overlap.

Hierarchical-modular networks: another category
of networks coming into prominence recently is modular
and hierarchical-modular networks. It has been recently
observed that the hierarchical-modular structure of brain
networks enhances the brain’s robustness [43]. Similarly,
many designed and evolved engineered systems are highly
modular [44,45]. More importantly, hierarchical-modular
structure has been observed in human/social networks as
well. For example, Ahn et al. [46] studied hierarchical or-
ganisation in several social networks. It is also evident that
networks of people in the military/defense domain natu-
rally exhibit hierarchical structure [47]. In the end, hier-
archy is inherent in the social structure of human beings,
coupled with modularity; therefore it makes sense to study
how coordination games can be played in hierarchical-
modular networks. Therefore we chose this topology as
the third topology of interest.

Erdős-Rènyi random networks: finally, we also use
the Erdős-Rènyi random topology [17]. Even though such
random networks were once used extensively to model dis-
tributed systems, researchers have since realised that most
real-world networks do not display degree distributions
similar to random networks [15]. Yet, random networks
are often used as null models to compare against other
network models, and we use them for the same purpose in
this work.

Well-mixed networks: traditionally, game theory
experiments were simulated on “well-mixed” populations
[35], where every agent was assumed to be connected to
every other agent, before the importance of topology was
realised, spawning the research area of networked game
theory. We therefore also test some of our results on well-
mixed populations for comparison. A network which sim-
ulates a well-mixed population is a regular lattice, with
average degree of N − 1, where N is the number of nodes.
We found however, that this average degree has no bear-
ing on the results, and any regular lattice yields qualita-
tively similar results in the experiments described in the
paper. For simplicity, therefore, we present the results ob-
tained from a regular lattice of average degrees four, eight
or twelve, so that it matches with the average degrees of
other topologies.

Therefore, we use separate scale-free, small-world,
hierarchical-modular, random and lattice topologies to
study evolution of coordination in social systems.

3 Simulation design

In order to simulate the coordination game played on a
population of nodes, we used an ensemble of scale-free
networks, small-world networks, hierarchical-modular net-
works, E-R random networks, and lattices. The scale-free
networks were generated using a version of preferential
attachment [48], varying the average degree of the net-
works. The small-world networks were generated using the
algorithm proposed in Watts and Strogatz [36] using a
rewiring probability of p = 0.5 (unless otherwise speci-
fied), again varying the average degree of the networks.
To produce hierarchical-modular networks, we follow the
method described by Sarkar and Dong [49]. This method-
ology involves ‘rewiring’ each edge in a perfectly modu-
lar network to take away intra-community edges in each
module with a rewiring probability p. By varying p, we
obtain networks that have varying levels of hierarchy. The
Erdős-Rènyi random networks were generated simply by
randomly choosing M pairs among N nodes and connect-
ing them. Generating lattices is trivial. We typically used
network size N = 103 and averaged over one hundred
networks for each parameter configuration. In evolution
scenarios, we typically considered Te = 1500 timesteps to
be sufficient for the network to achieve steady state. This
number was chosen based on the preliminary results.

The payoff matrix of the game was constructed in such
a manner that the reward for both parties coordinating S
would be a variable β, such that β > 1. When one node is
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coordinating and the other is not coordinating, the coor-
dinator would not get any return (T = 0) while the non-
coordinator would get a return of unity (R = 1). Thus,
we could manipulate the game environment by varying
the single parameter β. Each pair of nodes connected by a
link would engage in a single round of coordination game,
after which the collective returns for each node pi would
be stored and used to adjust the accumulated payoff, Pi.

At the beginning, players were randomly assigned as
coordinators or non-coordinators. After each iteration, the
players would adopt the role of the neighbours based on a
certain probability. This probability would be affected by
the current accumulated payoff of each node. In the case of
complete information diffusion, suppose that two nodes x
and y are connected and their current accumulated pay-
off values are Px and Py . These are the payoffs that are
accumulated within each node after a certain number of
timesteps. If x and y are different in their respective roles
(that is, one is a coordinator and the other is a non co-
ordinator), the probability p that x would adopt the role
of y is given by:

p = max
{

0,
(Py − Px)

kmax(R − T )β

}
(1)

where kmax is the larger of the degree of x, kx and the
degree of y, ky. This is a model commonly used in recent
literature [35] to simulate evolutionary adaptation in a
game scenario1.

We modified this model to quantify information dif-
fusion, by introducing a parameter α which signifies the
level of information a node can gather about its neigh-
bours. Therefore, a node may change strategies either (i)
randomly (ii) based on information of its neighours’ pay-
offs. Therefore, we model the adaptation probability as:

p = (1 − α)ρ + α max
{

0,
(Py − Px)

kmax(R − T )β

}
(2)

where ρ is a uniformly distributed random number be-
tween zero and one, and represents white noise. Therefore,
the higher the α, the more the ability of the system to dis-
tinguish real cumulative payoff information from noise.

Later in the paper, we also analyse the influence of
time-lags on the information diffusion and the emergence
of coordination. Therefore, we introduce a time-lag λ and
the pay-offs considered are those payoffs which each node
had accumulated λ timesteps before the current time, P λ

x

and Pλ
y . As such, the diffusion equation becomes

p = (1 − α)ρ + α max

{
0,

(
Pλ

y − Pλ
x

)
kmax(R − T )β

}
. (3)

1 However, note well that [35] uses different symbolism, with
a pay-off ordering where T > R > S, and their application is to
a Prisoners Dilemma game, thus the update rule we propose
may seem slightly different at first glance. However, simple
analysis will reveal that the rules are essentially very similar.
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Fig. 2. The average score of coordinators and non-coordinators
in 100 scale-free networks after a single round of coordination
game. Note that results for Te = 1500 timesteps were identical
(results do not vary with time). The nodes do not have a pri-
ori knowledge about the strategy used by their neighbours. It
can be seen that for coordination rewards β ≤ 2.0, the average
reward for non-coordinators is higher. Similar results were ob-
tained for small-world, hierarchical-modular, random network,
and regular lattice classes.

4 Simulation results

4.1 Pre-evolutionary balance

First of all, we set out to understand the balance between
payoffs of the coordinators and non-coordinators on av-
erage, when nodes do not adapt. Therefore we simulated
single rounds of coordination game on scale-free, small-
world, hierarchical-modular, random and lattice networks,
without any evolution. In the case of scale-free networks,
one-hundred networks (with a size N = 1000 and an aver-
age degree k̄ = 4 in all cases) were used, and we calculated
the average payoffs for coordinators and non-coordinators
for a range of β values. The results are shown in Fig-
ure 2. When we undertook the same process for Te = 1500
rounds, the results were identical: understandably, since,
in the absence of evolution, number of rounds would not
make any difference, and the results were averaged across
networks anyway.

From the results, we can see that, predictably, the rela-
tive payoff for coordinators steadily increases with β. Only
when β > 2, is the average payoff for coordinators higher
than that of non-coordinators. Therefore, the total payoff
for a pair of coordinators must be four times higher than
the individual return of a non-coordinator (the stag must
have four times more meat than the rabbit) for people in
a scale-free network to decide to adopt the coordination
strategy, in the absence of information about strategies
adopted by others and their payoffs. If β = 1.5 for exam-
ple, (the stag has three times more meat than the rabbit),
it may intuitively seem better to coordinate, since half
a stag still has more meat than a rabbit, yet due to the
chance of the other node (person) not-coordinating, this is
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Fig. 3. Proportion of coordinators against the timestep for
the five different types of networks considered. The network
size was N = 1000 nodes in all cases, and Te = 1500 timesteps
are considered (though only up to 500 are shown in figure, since
the trend is clear after this point). β = 1.8, k̄ = 4.

not the case. This is an important observation. We found
very similar results for the small-world, E-R random and
hierarchical-modular networks (not shown), therefore it is
also obvious that this result does not depend on the net-
work topology. We also analysed regular lattices of various
average degrees (starting from four up to N − 1, where N
is network size), and found that this result (β > 2 for
coordinators to have higher relative payoff) holds also for
well-mixed populations: not surprising, since this simply
is a consequence of the relative proportion of coordina-
tors and non-coordinators in the population (50% each).
As such, it is clear that in the absence of evolutionary
adaptation, topology does not determine the relative pay-
offs of coordinators and non-coordinators (when the net-
work concerned is sufficiently large to negate finite-scale
effects).

4.2 Evolution of coordination

Now, we simulate evolution of coordination. First, we as-
sume complete information diffusion and use equation (1)
to simulate the evolution of strategies in all five classes
of networks. We used three different average degree val-
ues (k̄ = 4, 8, 12, respectively), and utilised the average
over 100 networks in each case. We simulated evolution for
Te = 1500 timesteps for each network, and measured the
proportion of coordinators during and after the evolution.

Figure 3 shows the evolution of proportion of coordina-
tors, for networks of k̄ = 4, and β = 1.8 was used. It could
be seen that in all classes of networks, coordinators begin
to dominate after a certain stage. We have seen earlier
that in pre-evolutionary balance, for a β less than two, it
is advantageous to be a non-coordinator. However, it ap-
pears that in evolved systems where players are aware of
the payoffs of their neighbours, it is advantageous to be a
coordinator after a certain time frame. This is confirmed
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Fig. 4. Average payoff of coordinators against the timestep
for the five different types of networks considered. The network
size was N = 1000 nodes in all cases, and Te = 1500 timesteps
are considered. β = 1.8, k̄ = 4.

by Figure 4, which shows the average payoff of coordina-
tors against timestep, for β = 1.8, and for all five classes
of networks. In all cases, this average payoff initially in-
creases with time, though it decreases in some cases once
coordinators become a majority. Obviously, for β ≥ 2.0, it
is advantageous from the beginning to be a coordinator,
and we found that this is not changed by the evolution of
the system.

Interestingly, we also find from Figure 4 that while
for scale-free and hierarchical-modular networks (as well
as the well-mixed population), the average payoff of co-
ordinators increases and stabilises with evolution, this is
not the case with small-world and E-R random networks.
With these networks, the average payoff for coordinators
increases, then decreases and stabilises. Considered with
Figure 3, it is clear that in these two classes of networks,
the non-coordinators become extinct after a certain num-
ber of timesteps. Thus, in these networks, the lower aver-
age payoffs are derived at larger timesteps when all players
within the network are coordinating.

We note however, that there is not much difference
in the time taken for the coordinators to dominate, be-
tween the classes of networks that we have studied. How-
ever, in the case of hierarchical-modular networks, non-
coordinators are able to survive and hold a proportion of
the network. In all other topologies, non-coordinators are
“wiped out” by evolution.

To complement this analysis, we also looked at the
“information content” of the node states in each class
of networks, and how they evolved as the simulation
progressed over time. Shannon information is a generic
measure of “information content” in a system. In refer-
ence [50] an information content measure I(q) was defined
based on Shannon information for complex networks and
on the remaining degree distribution of the network qk,
and [51] extended this definition so that node states are
considered. The mutual information measure defined in
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Fig. 5. Information content in the network against the
timestep for the five types of networks considered. The net-
work size was N = 1000 nodes in all cases, and Te = 500
timesteps are considered. β = 1.8, k̄ = 4.

reference [51] is

I
(
qt

)
=

∑
y

∑
z

et
y,z log

et
y,z

qt
yqt

z

(4)

where et
y,z is the proportion of links connecting, at time t,

the nodes with states y, z, respectively; qt
y is the pro-

portion of links, at time t, with a node (at one end) in
the state y; and similarly, qt

z is the proportion of links,
at time t, with a node (at one end) in the state z. We
used this measure to analyse how the mutual informa-
tion in terms of node states (coordinator/non-coordinator)
changes during simulation, and our results are presented in
Figure 5. Interestingly, we see that the information content
increases rapidly during the initial stages of evolution, and
peaks at a point much earlier than when coordinators sat-
urate the networks in the respective class. It appears that
the timestep when the mutual information peaks is the
timestep when the coordinators “break-through”, when
they attain a critical number after which their eventual
complete domination becomes inevitable. However, when
coordinators completely dominate, the mutual informa-
tion content is close to zero. This is not surprising since
there is no “information” left to be gained regarding the
node status with respect to topology. Subsequently, we
note that the steady state information content for hier-
archical networks is greater than the other classes, since
we saw earlier that the domination of coordinators is not
complete in this class and some non-coordinators manage
not to convert.

Now we consider how the payoff parameter, β, in-
fluences the domination of coordinators. For this, let us
consider each class of networks separately. In the case of
scale-free networks, we used three different average de-
gree values (k̄ = 4, 8, 12, respectively), and again sim-
ulated evolution for Te = 1500 timesteps for each net-
work, and measured the proportion of coordinators after

the evolution in each case. Our results against various β
values are shown in Figure 6a.

We may see from this figure that, even though non-
coordination is initially the better strategy, coordination
emerges as the better strategy and adopted by a majority
of nodes after a period of time, for a range of β values
less than 2.0. Moreover, there is phase transition in terms
of β, which occurs when β ≤ 2.0 in most cases. For exam-
ple, when k̄ = 4.0, it appears that coordination is a better
strategy and adopted by more nodes eventually, if β ≥ 1.6.
Therefore, we can come to the important conclusion that
there is a range of β values (e.g. 2.0 ≥ β ≥ 1.6 for net-
works with average degree 4.0), for which it is beneficial to
adopt the non-coordination strategy if there is no informa-
tion diffusion, however coordination is the evolutionarily
winning strategy (and the evolutionarily stable strategy,
ESS) if there is information diffusion about the cumu-
lative payoff of the neighbours. However, if the relative
payoff of coordination is sufficiently low (but higher than
payoffs for non-coordination, e.g. 1.6 ≥ β ≥ 1.0 for net-
works with average degree 4.0), it is evolutionarily better
strategy to adopt non-coordination. We can also observe
that for higher network density, it takes higher rewards of
coordination for coordinators to become dominant.

Now we undertake a similar analysis in the case of
small-world networks, to ascertain the influence of payoff
parameter β on the evolution of coordination. We gen-
erated small-world networks with size N = 1000 nodes
and varying average degrees (k̄ = 4, 8, 12). We again sim-
ulated 100 networks in each case, for number of time steps
Te = 1500. We find similar results to scale-free networks
in small-world networks, as shown in Figure 6b. That is,
coordination emerges as the better strategy through evolu-
tion for higher values of β. We find one important differ-
ence though. The phase transitions we observe in terms
of β are much sharper compared to scale-free networks.
Therefore, a slight increase in the actual amount of pay-
off can very quickly change the evolutionary dynamics of
coordination in small-world networks. The phase transi-
tion, for this particular set of parameters, seems to occur
around 1.9 ≥ β ≥ 1.7.

We may also observe that, comparing the results be-
tween various k̄ values, for both scale-free and small-world
networks, the phase transition begins “later” for higher
average degrees, and coordinators begin to dominate only
for higher values of β. For example, in the case of scale-
free networks, when the average degree is 4.0, β is approxi-
mately 1.6 when the coordinators begin to dominate, while
for average degree of 8.0, coordinators begin to dominate
for β = 1.8 approximately. Even though the difference is
small, we can come to the important conclusion that when
more links (relationships) are added to an existing net-
work, increasing link density and average degree, it takes
higher relative rewards for coordination, for it to become
the evolutionary dominant strategy. In a more densely
connected society, the “stag” has to have relatively more
“meat” for hunters to adopt coordination.

We now turn to hierarchical-modular networks. As
Figure 6c shows, here also there is a sharp phase
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Fig. 6. Proportion of coordinators against the game parameter β for five classes of networks with different average degrees, after
evolution. It can be seen that for each class of network there is a value β above which coordination dominates non-coordination.
For low β values, non-coordinators dominate in all networks. The network size was N = 1000 nodes in all cases, and Te = 1500
timesteps were used for evolution.

transition. Does hierarchy in social systems favour the
evolution of coordination? To answer this, we under-
take further analysis using the hierarchical-modular net-
works generated by the method described in Sarkar and
Dong [49]. Namely, we generated ensembles of 100 net-
works each for various values of wiring parameter p,
from 0.3 to 0.9. Sarkar and Dong explain that the higher
this parameter, the higher the hierarchical nature of the
networks. For each set of networks, we simulated evolution

of coordination as described before and measured the pro-
portion of coordinators at the end of simulation (after
Te = 1500 timesteps) against the payoff parameter, β.
Figure 7 shows some of our results. We observe from the
figure that hierarchy indeed aids the dominance of coordi-
nators in a certain way. While coordinators do not domi-
nate below a certain payoff parameter (β = 1.6), and the
value of this cut-off is not influenced by the parameter p,
the evolutionary behaviour for values higher than this β
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Fig. 7. Proportion of coordinators against the game pa-
rameter β for hierarchical-modular networks with different
rewiring p probabilities, after evolution. The network size was
N = 1000 nodes in all cases, and Te = 1500 timesteps were
used for evolution.

is influenced by the amount of hierarchy represented by p.
For lower values of p, the coordinators do not dominate
at all for any β. However, for higher values of p, the co-
ordinators dominate and a phase transition is vaguely ob-
servable around β = 1.6. Therefore, we may conclude that
other topological features being similar, the presence of hi-
erarchy encourages the emergence of coordinators (given
sufficient relative payoff) in a social system.

Similarly, we may ask if “small-worldness” of small-
world networks encourages or discourages the evolution of
coordination. The “small-world” nature is quantified by
(i) relatively high clustering coefficient, (ii) relatively low
characteristic path lengths of a network [15,17]. There-
fore, we also analysed how these two parameters influ-
enced the evolution of coordination in small-world net-
works. Some typical results are shown in Figure 8. We
could see from the figure that, when clustering coefficient
increases and network diameter decreases in a set of sim-
ilar sized (N = 1000, M = 2000) small-world networks,
again generated using the Watts- Strogatz algorithm, the
phase transition in terms of relative coordinator payoff
(β) becomes more pronounced. Thus, we may conclude
that small-world nature again encourages rapid evolution
of coordination, when the relative payoffs for coordinators
increase.

Backing and intuitive explanations for these observa-
tions may be found in other recent studies, which looked
at other games on graphs. For example, Masuda and
Aihara [52] found that cooperative behaviour in spa-
tial Prisoners Dilemma (similar to coordination in stag-
hunting) is optimised when network is small-world. They
arrived at this conclusion by comparing a range of graphs
from regular lattices to random graphs, and the small-
world characteristic was determined by the amount of ran-
domness introduced into the lattice (as explained by Watts
and Strogatz [36]). The topology was shown to be most
conducive to cooperative behaviour when the randomness
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Fig. 8. Proportion of coordinators against the game param-
eter β for small-world networks with different (a) network di-
ameters, (b) clustering coefficients after evolution. The network
size was N = 1000 nodes in all cases, and Te = 1500 timesteps
were used for evolution.

parameter was intermediate in value, which also max-
imises “small-worldness”. On the other hand, in a hawks
and dove game, where coordination does not result in the
highest payoff for an individual (the best scenario for an
individual is to be the hawk themselves while the other
player plays dove, whereas both players playing hawk in
fact get a negative payoff), no such optimisation for coor-
dination was observed in small-world networks [53]. The
reason for these observations may be that, in games where
mutual cooperation/coordination is not detrimental (in
stag-hunting it results in best possible payoff, whereas in
prisoners dilemma it results in the second best possible
payoff for an individual), the high clustering introduced
by “small-worldness” helps sustain a group of coordina-
tors/cooperators while the “short-cuts” available in topol-
ogy help it spread. If the network is lattice like, there are
no short-cuts to further parts of the graph, hindering the
spread of coordinators, while if it is totally random, the
clustering is lost, making it harder for coordinators to sus-
tain each other.

Similarly, in terms of modularity and hierarchy, we
may note that in networks which are highly modular, most
nodes belong to certain “groups” (modules), while there
are other links which maintain the hierarchical structure.
Recent work has shown that there is an optimal propor-
tion of inter-group links, for which the spreading of coop-
erative behaviour for Prisoners Dilemma is optimised [54].
Assuming a similar phenomena occurs in the case of the
coordination game, it is possible that the increase in hi-
erarchy as proposed by Sarkar and Dong [49] moves the
fraction of inter-module links towards this optimal propor-
tion, thus facilitating the spread of coordination. Detailed
examination of this particular relationship is of interest;
however, it is beyond the scope of this paper.

Finally, the case with E-R random networks is shown
in Figure 6d, and well-mixed populations in Figure 6e.
Here, too, we could observe a sharp phase transition,
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Fig. 9. Evolution of coordinators by degree for four classes of networks (regular lattices are not considered since there is
no variation of degree in them). The figure shows the fraction of coordinators for a number of degree intervals, averaged
over 100 networks, at the beginning and at an intermediate time Ti evolution. Since strategies were initially randomly assigned,
the proportion of coordinators is about half for each degree interval at the beginning. At the intermediate time however, the
proportion of coordinators is much higher overall but highest among the provincial hubs. The network size was N = 1000 nodes
in all cases, and Ti = 100 timesteps were used for evolution, k̄ = 4 and β = 2.1.

around 1.9 ≥ β ≥ 1.7. The average degree of network
does not seem to influence much where this transition oc-
curs. Therefore, we may conclude that while all classes of
networks display some degree of phase transition in terms
of β, it is sharpest in small-world networks. This is an im-
portant result, since it means that in a small-world net-
work, with a scenario of increasing relative payoffs for co-
ordinators, the decision to become coordinator has to be
made quite swiftly in order not to lose out. On the other
hand, in a society where social links are scale-free, it is
possible to decide more “slowly” (given that coordinator
payoffs increase at a fixed temporal rate) about becoming
a coordinator.

4.3 Drivers of coordination and node degree

To gain some understanding of how coordination ends
up being the winning strategy, we analysed the degree
distribution of coordinating and non-coordinating nodes
during the process of evolution. An example is shown in
Figure 9 where we consider the average of 100 networks

with k̄ = 4.0, for a β of 2.1. Therefore, according to Fig-
ure 6, these are networks on which coordination dominates
after Te timesteps. We deliberately chose an intermedi-
ate timestep, Ti = 100, with the view of understanding
which degree range is first dominated by the coordina-
tors. In case of scale-free networks, we find that it is the
provincial hubs, which first start to show higher propor-
tion of coordinators. It appears that main hubs resist the
adaptation longer, and once they become predominantly
coordinators, the evolution of coordination is almost com-
plete. Some of the peripheral nodes also can remain non-
coordinators for a long time. It is the provincial hubs,
which are the quickest to adapt.

In the case of small-world networks, we again looked
at the degree distribution of the network in terms of strat-
egy at an intermediate time step (Ti = 100). The re-
sults, averaged over 100 networks of thousand nodes each,
are shown in Figure 9b. Note that the small-world net-
works, by nature, have much smaller hubs compared to
scale-free networks. Again we find that it is the provin-
cial hubs, which seem to be first adopting the coordina-
tion strategy completely. We obtained similar results for
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Fig. 10. Average degrees of coordinators/non-coordinators against timestep. Four different network types are considered.

hierarchical-modular and random networks, as shown in
Figures 9c and 9d. We ignored regular lattices since node
degrees are homogenous in them and the analysis is unnec-
essary. That is, in all cases, it is the provincial hubs which
are first fully “converted” into becoming coordinators.

Now let us consider the question of which types of
nodes “convert” first to coordination. To do this, we plot
the average degree of coordinators and non-coordinators
throughout evolution for each class of networks (again av-
eraged over 100 networks of N = 1000 each) in Figure 10.
Here we can see that while the average degree for coordi-
nators remain more or less the same, the average degree of
non-coordinators decline steadily. This is not inconsistent
with provincial hubs first adopting coordination, because
it means that once provincial hubs (which have degrees
higher than the network average) start becoming coordi-
nators, the average degree of non-coordinators begins to
decrease. However, we notice a special feature in terms of
small-world networks. In this class, the average degree of
non-coordinators briefly becomes higher than the average
degree of coordinators, before the average degree of non-
coordinators decreases rapidly. This can only mean that
in small-world networks, non-coordinators find refuge in
main hubs (while provincial hubs are “invaded” by coor-
dinators) and resist the spread of coordinators for a while,
before giving up and retreating to a few peripheral nodes.

It is intriguing that players who play a large number of
games tend to adapt slower in small-world networks than
in other topologies.

4.4 Influence of information diffusion

It is often unrealistic to expect that members of a commu-
nity would know, or can correctly predict, the strategies
adopted by their neighbours or the payoffs they are receiv-
ing. Indeed, as we saw earlier, a non-coordination strategy
is transiently competitive and pays better dividends in the
short term, so many members of the community may be-
lieve that it is not in their interests to share correct in-
formation about their strategies or their payoffs. If nodes
only have partial information about payoffs of their neigh-
bours, which is the evolutionarily competitive strategy in
each of the network classes mentioned before? This is the
primary question that we are addressing in this section.

We therefore use equation (2) to introduce stochastic-
ity in the adaptation. Nodes have “noise” in the informa-
tion which they have about the payoffs of their neighbours,
and therefore have a level of randomness in changing de-
cisions. The lower the parameter α, the higher the ran-
domness. If α = 0, no correct information diffuses about
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Fig. 11. Influence of the information diffusion parameter, α, on the proportion of coordinators during evolution. The figure
shows that the more information available about neighbour strategies, the higher the likelihood of coordinators dominating. If
the levels of information available is relatively very low, non coordinators dominate even after evolution. The network size was
N = 1000 nodes in all cases, and Te = 1500 timesteps were used for evolution, k̄ = 4, 8, 12 and β = 2.3.

neighbours’ payoffs and all decisions to change strategy
are made randomly.

We again simulated evolution under these conditions
on the five classes of networks that we studied. We start
with scale-free networks of size N = 1000, and the sim-
ulation was done for Te = 1500 timesteps, for various α
values. A typical set of results (for β = 2.3) is shown in
Figure 11a. We saw earlier that, for this β, under com-
plete information diffusion the coordinators will dominate

after some time. Therefore, we compare the proportion of
coordinators for a range of α values.

We predictably find that the proportion of coordina-
tors increases with α. We also find that there is a very
small, but non-zero alpha value below which the non-
coordinators dominate. Therefore, we can surmise that
if the levels of information diffusion is sufficiently low
then it is an evolutionarily winning strategy to be a non-
coordinator. We undertook similar experiments with other
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β values. While the starting points of plots vary with these
β values (for smaller β, non-coordinators dominate for
larger ranges of α), the results were qualitatively similar.

In the case of the small-world networks, we also found
that the proportion of coordinators increased with in-
formation diffusion proportion α. However small-world
networks were able to adopt coordination with smaller
amounts of neighbour payoff information (smaller α), and
the transition was sharper. Figure 11b shows some of
our results, again for β = 2.3, for hundred networks of
size N = 1000 each after Te = 1500 timesteps. We can
find that for α ≥ 0.2, coordinators completely dominate.
Therefore small-world networks seem even more resilient
to noise in neighbour payoff information than scale-free
networks.

Our experiments with E-R random networks,
hierarchical-modular networks, and well-mixed lattices
produce similar results, as shown in Figures 11c–11e.

4.5 Influence of time-lag in information diffusion

In many real-world scenarios, information about the
strategies adopted by other players, or the payoff received
by them, is not immediately available, since players tend
to think that it is advantageous to hold such personal in-
formation secret. However, with the passage of time, the
strategies adopted by players in the past and the pay-
offs received by them may become available, and this out-
dated information may partially help players to decide
their current strategies. Even if players do not deliber-
ately withhold information, it takes time for information
to be transmitted and received. In other words, informa-
tion about payoffs received by other players tend to have a
time-lag. In this section, we concentrate on analysing how
such a time lag influences the evolutionary patterns.

We therefore modified the equation (2) such that there
is a lag in the payoffs known, which gave us equation (3).
For ease of reference, we repeat it here:

p = (1 − α)ρ + α max

{
0,

(
Pλ

y − Pλ
x

)
kmax(R − T )β

}
(5)

where P λ
y , Pλ

x are the cumulative payoff values of play-
ers x and y, λ timesteps before the present time. Even
though a particular player may know their current cumu-
lative payoff, it might make more sense for cumulative pay-
offs from the same time-step to be compared, since we use
the lag λ for both nodes. For α = 1.0, our results for scale-
free networks, small-world networks, hierarchical-modular
networks, random networks and lattices are shown in Fig-
ures 12a, 12b, 12c, 12d, 12e, respectively. All these figures
are for β = 2.1 and k̄ = 4. The results were obtained after
1500 timesteps.

We have seen earlier that, if there is no time lag, then
coordinators dominate the network after a certain number
of timesteps for this particular β. However, we could see
from the figures that if there is time lag, the dominance of
coordinators is less pronounced. Beyond a certain amount
of time lag, non coordinators become the dominant play-
ers. Importantly, the effect of time lag depends on the

topology of the network. The evolutionary dynamics of
scale-free networks change quickly, so that if the time lag is
higher than 100 timesteps, then non-coordinators become
the dominant players even after evolution. Whereas in the
case of E-R random networks, hierarchical-modular net-
works and small-world networks, and indeed well-mixed
populations, the time lag has to be much larger before the
non-coordinators dominate evolved networks. The scale-
free networks are the least resilient in coping with time
lags in payoff information.

Since most real world networks are scale-
free [15,17,55–57], it is a very important observation
that scale-free networks are more sensitive to time-lags
in payoff information than almost any other conceivable
topology. The inherent heterogeneity of the degree
distribution of scale-free networks could be a reason for
this. This question could be further analysed by varying
the amount of heterogeneity of synthesized scale-free
networks by, for example, changing the scale-free expo-
nent γ, and analysing the value of threshold λ after which
each network fails to evolve coordination. The λthreshold

vs. γ plot would then give us an indication about the
relationship between time-lag sensitivity and scale-free
nature. Such a detailed analysis, however, is beyond
the scope of this preliminary study and subject to future
research.

5 Conclusions and future work

In this paper, we analysed evolution of coordination in
social systems by simulating a coordination(“stag-hunt”)
game on an ensemble of complex networks. We under-
took a comparative study of topologies that are com-
monly found in social systems, by focussing on (i) scale-
free networks, (ii) small-world networks, (iii) hierarchical-
modular networks, (iv) Erdős-Rènyi random networks. We
also considered well-mixed populations or lattices which
approximate them, where relevant. In all classes, we saw
that if nodes are unaware of the payoffs of their neighbours
and cannot adapt, the relative payoff for coordination has
to be quite high, for the average payoff of coordinators
to be higher than the average payoff of non-coordinators.
However, when nodes are aware of the payoffs of their
neighbours are receiving and can evolutionarily adapt, co-
ordination quickly emerges as the winning strategy, even
for relatively lower levels of coordination payoff.

We came up with a number of general and topology-
specific findings which can be summarised as follows.
General findings: (i) when there is no evolution, the
relative coordinator payoff, β, has to be above two for co-
ordinating nodes to have higher average payoff than non-
coordinators. This result is independent of the topology
of the system. However, after payoff information based
evolution and adaptation, there emerges a range of β
less than two for which coordinators are still a major-
ity. (ii) In most topologies, the proportion of coordina-
tors after sufficient evolution and adaptation goes through
a phase transition when the relative coordinator payoff,
β, is increased. (iii) It is the peripheral hubs, which first
completely adopt coordination and drive the evolution of
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Fig. 12. Proportion of coordinators against the time delay parameter λ for five classes of networks after evolution. The network
size was N = 1000 nodes in all cases, and Te = 1500 timesteps were used for evolution. β = 2.1, k̄ = 4.

coordination. (iv) Noise and time-lags in payoff informa-
tion adversely affect the evolution of coordination, though
the level of this effect depends on topology.

Topology-specific findings: (i) the evolution of co-
ordination is most pronounced, and the phase transition
in terms of relative coordinator payoff, β, is sharpest,
in small-world networks. On the other hand, the emer-
gence of coordination after evolution is least rapid in
scale-free networks. (ii) Scale-free networks are most sen-
sitive to noise in payoff information, and the evolution
of coordinators is most affected by such noise in them.

Small-world networks are not so sensitive. (iii) Similarly,
scale-free networks are most sensitive to time-lags in in-
formation about payoff. (iv) After the evolution of coordi-
nation, the average payoff of coordinators is higher than
the initial stage in scale-free and hierarchical networks.
On the other hand, it is lower than the payoff at ini-
tial stage for small-world and E-R random networks. Note
however that the proportion of coordinators is higher than
initial stage in all classes. (v) The “amount” of hierarchy
in hierarchical-modular networks, and the “amount” of
small-worldness in small-world networks, measured by
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appropriate parameters, both seem to aid the emergence
of coordination.

In general, we may note that scale-free networks and
small-world networks display contrasting characteristics in
terms of the evolution of coordination. The hierarchical-
modular class tends to display features similar to scale-free
networks, while the E-R random networks display features
similar to small-world networks. However, the overarch-
ing conclusion is that topological features, qualified here
by the four classes of networks, influence the evolution of
coordination in social systems in non-trivial ways.

There are several implications to the results reported
here. Both small-world and scale-free features are observed
in real-world social systems up to various degrees. We have
shown that while the emergence of coordination can be
aided equally readily by both features, scale-freeness in-
creases the sensitivity of the system to noise and time
lags in information diffusion, while networks which are ex-
clusively small-world are relatively unaffected by it. This
would imply that systems, which are small-world but not
scale-free are likely to evolve into being dominant in co-
ordination and sustain it under difficult information dif-
fusion conditions. This contention is further validated by
the fact that the “small-worldness” itself, measured by
the clustering coefficient and network diameter of the net-
work, seems to aid the phase transition in terms of relative
coordinator payoff. We noted that this has been corrobo-
rated by other studies in different game contexts. We have
also experimented with several network densities (aver-
age degrees) in all classes of networks, and shown that
the sparser the network is, the easier the emergence of
coordination, other parameters being unchanged. There-
fore, the smaller the number of games played within a
network, the easier it seems for coordination to evolve as
the winning strategy. These results are significant to un-
derstand the behaviour of the spatially connected social
system.

Finally, it would be useful to contextualise our results
against some other recent advances made in networked
game theory. A number of studies have looked at the
evolution of cooperation (exemplified by cooperation in
Prisoners Dilemma game), and how it is influenced by
graph topology. For example, reference [35] considered a
range of essentially scale-free networks and showed that
the heterogeneity introduced by them helps in the spread
of co-operation. The relationship between payoff aspira-
tions and cooperation was highlighted by reference [11].
Other studies have looked at the role of assortativity in the
emergence of coordination (for e.g., see [12]). The study
by Jiang and Perc [54] highlighted, again within the con-
text of Prisoners Dilemma, that there exists an optimal
number of inter-modular links which aids the spread of
cooperation between groups. Other studies have looked at
the influence of topology in hawks and doves games [53].
However, most of these studies chose one or two arbi-
trary classes of network topologies, and did not consider
the affects of information diffusion. Our contribution in
this work lies in (i) comparing all well-known classes of
networks, as well as the well-mixed case, in a principled

manner, and (ii) explicitly studying the effects of informa-
tion diffusion, in terms of noise as well as time-lags, in the
evolution of coordination. We also chose to study coordi-
nation rather than cooperation (i.e stag hunt rather than
Prisoners Dilemma), which is, while similar, perhaps less
analysed in literature.

Of course, this study could be enhanced by looking at
a broader set of parameters and network topologies. For
example, we used only a limited range of average degrees,
and mostly studied topological differences based on broad
classifications rather than based on individual topologi-
cal characteristics such as assortativity. The number of
networks and initialisations used also could be increased.
Despite these limitations, we believe the early results are
indicative of some general patterns with respect to dif-
ferent topologies and how coordination evolves in each of
them.
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