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ABSTRACT

Game theory has long been used to model cognitive deci-
sion making in societies. While traditional game theoretic
modelling has focussed on well-mixed populations, recent re-
search has suggested that the topological structure of social
networks play an important part in the dynamic behaviour
of social systems. Any agent or person playing a game em-
ploys a strategy (pure or mixed) to optimise pay-off. Pre-
vious studies have analysed how selfish agents can optimise
their payoffs by choosing particular strategies within a social
network model. In this paper we ask the question that, if
agents were to work towards the common goal of increasing
the public good (that is, the total network utility), what
strategies they should adapt within the context of a hetero-
geneous network. We consider a number of classical and re-
cently demonstrated game theoretic strategies, including co-
operation, defection, general cooperation, Pavlov, and zero-
determinant strategies, and compare them pairwise. We use
the Iterative Prisoners Dilemma game simulated on scale-
free networks, and use a genetic-algorithmic approach to in-
vestigate what optimal placement patterns evolve in terms
of strategy. In particular, we ask the question that, given a
pair of strategies are present in a network, which strategy
should be adopted by the hubs (highly connected people),
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for the overall betterment of society (high network utility).
We find that cooperation as opposed to defection, Pavlov
as opposed to general cooperator, general cooperator as op-
posed to zero-determinant, and pavlov as opposed to zero-
determinant, strategies will be adopted by the hubs, for the
overall increased utility of the network. The results are in-
teresting, since given a scenario where certain individuals
are only capable of implementing certain strategies, the re-
sults give a blueprint on where they should be placed in a
complex network for the overall benefit of the society.

1. INTRODUCTION

Game theory is the science of strategic decision making
among autonomous players[l]. Evolutionary game theory
is the adaptation of game theory in populations of players,
where game theory is used to explain the evolution of strate-
gies in a population of players[2]. On the other hand, most
of the real-world populations are not ‘well-mixed’ but are re-
stricted by spatial limitations. Thus, the players distributed
in heterogeneous networks provide an interesting premise to
study evolutionary games. Particularly,the effect of topol-
ogy of heterogeneous networks on the evolutionary stability
of strategies has been studied thoroughly[3, 4].

Social structures of people have often been modelled as
complex networks. While the ‘well-mixed’ or random models
have been used earlier to characterise social interactions, the
heterogeneous nature of some interactions, whereby some
individuals have more links than others, is nowadays taken
into account. It has been found that most social networks
are, in fact, the so-called ‘scale-free’ networks, with power
law degree distributions. As such, networked game theory
has come into prominence, to analyse the payoff of individ-
uals in such scenario. At the same time, public goods games
have begun to be studied as a branch of games where the
individual pay-offs for agents are less important than the



overall payoff (utility) for the community. Not many studies
have been done on networked public good games.

Evolutionary stability of a game refers to the ability of a
particular strategy to dominate over any mutant strategy|[2,
5]. There may be situations however, that weaker strategies
are allowed to sustain within a network, due to the factors
external to the game itself. A good real-world example of
this is the welfare systems that are in place in many financial
environments to safeguard the financially weaker individuals
or organisations.

Normally, evolution within the context of game theory
or networked game theory is taken to mean that individual
agents adopt or evolve strategies with the view of maximis-
ing their individual payoff. This is indeed often the case:
each deer in the forest adapts strategies to maximize its life-
time and food intake, and such strategies are passed on to
the next generation, either by observation or as some kind of
genetic memory. However, environmental pressures may also
dictate collective evolution, whereby each individual tries to
adapt the best strategy for the collective gain of the society,
as opposed to its individual gain. For example, a society of
deers may be forced to evolve collective strategies to better
survive against a pride of lions. The strategy adapted by
each deer, then, is dictated not so much by its individual
gain but the collective gain of the society. It is easy to find
similar examples in the human society as well.

In this work, we observe how the evolutionarily stable
and evolutionarily unstable strategies should be distributed
within a network in order to maximize the cumulative pay-
off of the entire network. That is, how best to assign the
strategies over the nodes of a network to maximize the cu-
mulative payoff of all players. In order to do that, first we
try to determine whether the spatial distribution of play-
ers have an effect on the cumulative payoff of the network.
Next, we observe the variation of average degree of players
with each strategy to see which strategies tend to occupy
the hubs and which occupy the peripheral nodes when the
cumulative payoff increases. Since we need to keep the ra-
tios of different strategies and their distributions fixed, we
assume that there is no evolution of strategies among the
players when a game is played iteratively. Instead, merely
the initial configurations of players are varied to observe
which configuration would provide the best overall utility of
the network over time.

We use a genetic algorithm-based approach, where a pop-
ulation of networks, structurally identical but employing dif-
ferent placement of strategies, evolve to maximise the net-
work utility. The evolving networks answer the question of
how best to distribute strategies in order to maximise payoff
for the society. We use the well known Iterative Prisoners
Dilemma game as the game of choice. We use a number
of well known strategies, including cooperation, defection,
general cooperation, Pavlov, and the recently introduced
zero-determinant strategies. We compare strategies pair-
wise, and our particular goal is to identify which strategy
must occupy the hubs (highly connected nodes) against the
other for maximum network utility.

Potential applications of such optimisation may be found
in organisational structures. Quite often, even the weaker
strategies are allowed to survive due to the external environ-
mental conditions (e.g. welfare, legal or political pressures).
Thus, the optimisation technique suggested in this work may
help to determine the optimum distribution of strategies to

maximise the overall utility of the network, while the strate-
gies are not allowed to freely evolve and the ratios of players
with each strategy remains fixed.

This paper is organised as follows. In the next section,
we elaborate on the game theoretical background used in
this work. Also, we give a brief introduction into genetic
algorithms and scale-free networks. Then, we describe how
genetic optimisation was used to optimise for the cumula-
tive network payoff. Next, we present the results obtained,
followed by the discussion and conclusion.

2. BACKGROUND
2.0.1 Game Theory

Game theory is the study of strategic decision making][1].
One of the key concepts of Game theory is that of Nash
equilibrium[6]. Nash equilibrium suggests that there is an
equilibrium state in a game, which neither player would ben-
efit deviating from. The equivalent concept in evolutionary
game theory, which is the adaptation of game theory in to
the evolution of a population of players, is evolutionary sta-
bility[2]. Evolutionary stability refers to the dynamic sta-
bility and domination of a particular strategy over potential
mutant strategies. Naturally, evolutionary games incorpo-
rate iterative games where a population of players play the
same game iteratively in a well-mixed or a spatially dis-
tributed environment[7].

2.0.2 Prisoner’s Dilemma Game

Prisoner’s dilemma Game is a game that is found in clas-
sical game theory[8]. Given a payoff matrix in Fig. 1,
the inequality T>R>P>S should be satisfied in a prisoner’s
dilemma game. In other words, in the prisoner’s dilemma
game, the highest mutual payoffs are obtained by the players
when both players cooperate. However, if one player coop-
erates while the other defects, the defector would obtain a
higher payoff.

Player 2

Cooperate Defect

Cooperate R, R S, T

Player 1

Defect T' S P' P

Figure 1: The payoff matrix of a prisoner’s dilemma game.

A more simplified representation of the prisoner’s dilemma
game has been suggested in the literature, which we use in
this particular work. Here, we assign the variables 2>T=b>1,
R=1 and P=S=0 and reduce the payoff matrix to a more
simplified version[3]. With this representation, we can en-
sure that there is only one variable that we can vary to alter
the payoff matrix and thus the game behaviour.



It has been observed that the topology of the network is
significant in the evolution of cooperation of strategies in the
PD game[3]. Cooperation evolves to be the dominant strat-
egy in a Scale-free topology, while defection would dominate
in a Erdos-Renyi random network. In this work, we analyse
how these strategies should be distributed in a heteroge-
neous network in order to maximise the overall cumulative
payoff of the network.

Even though prisoner’s dilemma game is usually used in a
micro-economic perspective, that is how the strategies affect
individual players’ payoffs, we use the PD game in a more
holistic approach in this work. We observe how the cumula-
tive payoff of the network can be optimised by placing the
players in different spatial arrangements within a network.
This is analogous to the public goods game[4] where each
player contributes to the collective good, instead of choosing
a strategy to play against a neighbouring opponent. Even
though there isn’t a notion of collective good in the PD game
from the perspective of an individual player, the individual
interactions would affect the cumulative payoffs of the net-
work.

2.0.3 Memory-one strategies

Memory-one strategies[9, 10] are a special sub-class of
strategies in prisoner’s dilemma games, where the current
mixed strategy of a game would depend on the previous in-
teraction between the two players in concern. In a mixed
strategy scenario, there is a probability distribution that
defines the potential strategies that could be adopted by a
particular player against an opponent strategy. In memory-
one strategies, this distribution is conditional to the imme-
diate previous state of the two players in concern. In fact,
Memory-one strategies are a specialisation of a more gen-
eral class of strategies called finite-memory strategies[9, 10],
where the current strategy would be dependent of n number
of historical states between the two players.

When considering the previous state between two players,
in a PD game, there could be four possible states. Namely
CC, CD, DC and DD, where C represents cooperation and
D represents defection, respectively. Memory-one strate-
gies are represented by stipulating the probabilities of co-
operation by a player in the next move, given each type
of interaction of the player with the same opponent. For
example, a strategy (1,1,1,1) would imply that the Player
A would cooperate with player B, irrespective of the pre-
vious encounter between Player A and B. Thus, the pure
strategy cooperation and defection can be thought of as a
special case of memory-one or finite memory strategies. By
varying the probabilities of cooperation under each of the
previous encounters, it is possible to define infinite amount
of mixed strategies. Some of the well-known memory-one
strategies include Pavlov strategy (1,0,0,1) and general co-
operator (0.935, 0.229, 0.266, 0.42) strategy. We will con-
sider both these strategies in this study.

Zero-determinant strategies[11, 12] are a special sub-class
of Memory-one strategies that has recently gained much at-
tention in the literature. As the name suggests, ZD strate-
gies denote a class of memory-one strategies that enable a
player to unilaterally set the opponent’s payoff. Due to this
inherent property, ZD strategies have the ability to gain
higher expected payoff against an opposing strategy. How-
ever, it has been shown that ZD strategies do not perform
well against itself. Due to this reason, ZD strategies have

been demonstrated to be evolutionary unstable[9], particu-
larly against the Pavlov strategy. In order to observe how
the distribution of evolutionary stable and unstable strate-
gies affect the overall utility optimisation in a network of
players, we simulated the scenarios where ZD strategy is
mixed with Pavlov and GC strategies.

Suppose pl, p2, p3 and p4 denotes the set of probabilities
that a player would cooperate given that the player’s last
interaction with the opponent resulted in the outcomes CC
(p1), CD (p2), DC (p3), DD (p4). ZD strategies are defined
by fixing p2 and p3 to be functions of p; and p4, denoted by
Eq. 1 and Eq. 2.

o= BT =PI = U400 = B) 0

(L= p)(P =)+ pa(R— 5) o)
R—-P
It was shown by Press and Dyson[11] that when playing
against the ZD strategy, the expected utility of opponent O
can be defined using the probabilities p1 and pa, while ps
and ps are defined as functions of p; and ps. Eq. 3 gives the
expected payoff of the opponent against the ZD strategy.

p3 =

(1 —pl)P+p4R) (3)

(1 —p1+p4)

Here, P and R represent the payoffs earned when both
players defect and cooperate, respectively.

Hence, ZD strategies allow a player to unilaterally set
the opponent’s payoff, effectively making them extortion-
ate strategies. In the simulations performed here, we set
the probabilities p; and p4 as 0.99 and 0.01 respectively, as
in the work done by Adami and Hintze[9], then deriving ps
and ps to be 0.97 and 0.02, according to the ZD conditional
probability equations.

E(0,ZD) =

2.0.4 Genetic Algorithms

Genetic algorithms[13] are widely used as an optimisation
technique. Genetic algorithms adopt the established con-
cepts in biology to optimize a population of candidate solu-
tions based on a particular fitness function. Each potential
solution is identified as a ‘genome’. Recombination and mu-
tation are the genetic operators that are used to ‘evolve’ a
population, until a certain boundary condition is met. In
recombination, two most fit solutions in the population are
selected for ‘reproduction’ and they are randomly recom-
bined to produce a new offspring solution. When each off-
spring is born, it would go through a mutation process with
a relatively small probability to add new genetic informa-
tion to the population. When generating each population
set, the weaker solutions are allowed to die out, keeping the
overall population size fixed. Genetic optimisation is ideal
for optimising the payoff of a network game as there is no
straight-forward computationally efficient algorithm to per-
form that task.

2.0.5 Scale-free networks

Complex Networks are self-organising networks with non-
trivial topological features[15]. In this work, we mainly focus
on the scale-free network topology when analysing the effect
of network topology on the cumulative payoff. In scale-free
networks, the network topology encompasses a power-law



degree distribution[16]. In other words, the degree distri-
bution of the network would fit in a equation of the form
y = ax 7. Here, v is called the scale-free exponent. The
scale-free exponent is obtained by fitting a particular degree
distribution into a power-law curve. Higher the scale-free
exponent, more the power-law nature of the degree distribu-
tion.

Scale-free networks are abundant in real-world networks,
such as in social, biological and collaboration networks[15].
Scale-free networks make a perfect candidate to study the
topological effect of a population of players due to this rea-
son. For example, it has been shown that cooperation be-
comes that dominant strategy in a scale-free topology due
to the heterogeneity of the network[3]. Moreover, scale-free
networks can be generated efficiently using the preferen-
tial attachment based growth, proposed in the Barabasi-
Albert model[15]. Preferential attachment model suggests
that nodes with higher degree have a higher probability of
attracting new nodes, when the network grows. In other
words, there exists a ‘preference’ in attaching to existing
nodes, when a new node joins the network. Therefore, we
use scale-free networks generated using the preferential at-
tachment model for all our simulations in this work.

3. RESEARCH METHOD

We used the genetic optimisation technique to test the
hypothesis whether the strategy distribution in a heteroge-
neous network affects the cumulative payoff of all nodes.
Here, we evolve the assignment the strategies to players
within the network to maximise the overall payoff.

In a heterogeneous network of players, the players at hubs
may play larger number of games compared to the players at
the peripheral nodes. Therefore, depending on the spatial
distribution of strategies, the cumulative payoffs of a par-
ticular game would be different. Thus, given a particular
set of strategies and a spatial distribution, finding the opti-
mum distribution of strategies over the network in order to
maximise the total cumulative payoff could be regarded as
an optimisation problem. Such optimisation may have ap-
plications where the overall benefit of a particular strategic
decision making environment has to be maximised, instead
of maximising a particular player’s payoff.

Initially, we wanted to test whether there’s a correlation
between the cumulative payoff and the initial distribution of
strategies. To do that, we distributed the cooperator and the
defector strategy in 100 different initial configurations, with
the underlying network topology being a scale-free topology.
The configurations were made to remain static without any
evolution. For each configuration, we repeated the game
over 1000 iterations and compared the accumulated payoff
against the average degrees of nodes with each strategy.

When using the genetic optimisation too, a scale-free net-
work was chosen for observation. Scale-free networks make
good candidates as heterogeneous networks as they are com-
monly observed in social networks. A genome is represented
as a binary string to represent the collection of nodes, with
1 and 0’s being used to denote the two strategies assigned
to the nodes. Initially, n number of different initial distribu-
tions of players placed randomly, ensuring that exactly 50%
of the players follow each strategy. Afterwards, the game
in concern is played iteratively for ¢ number of time-steps
among the players within the network. In classical Prisoner’s
dilemma the parameter b was set to 1.8 while for the mem-

ory one strategies, the variables were assigned to constants
as T=5, R=3, P=1 and S=0. Note that the strategies of the
nodes remain fixed during these iterations, thus the game is
not simulated as an ‘evolutionary game’ in the strict sense of
the word. This is necessary as we are interested in observing
the effect of topological arrangement of strategies of players
on the cumulative payoff of the network, for which the topo-
logical distribution of strategies should remain unchanged.
The fitness function of the network game is the total cu-
mulative payoff of all the players after the iterative game is
played. In each generation of candidate player distributions,
the fittest 10% networks are chosen for recombination. Upon
recombining, the positions of players are randomly mutated
with a very small probability. Following each recombination
and mutation, the strategies of players are adjusted to keep
the ratio of two strategies the same. This is done to ensure
that the changing ratios of players’ strategies do not affect
the cumulative payoffs and it is just the arrangement of the
strategies that affect the cumulative payoff of the network.
Following this process, we could observe that genetic opti-
misation of player positions does improve the overall payoff
of the network. Hence, the cumulative payoff of a network
of a players are affected by the spatial distribution of players
with heterogeneous strategies. This also suggests that GA
could be effectively used to identify the optimum distribu-
tion of players/strategies within a network.

4. RESULTS

First we simulated the classical prisoner’s dilemma game
for the optimisation of strategy placement. It has been
shown that the cooperation strategy is the evolutionary sta-
ble strategy in a scale-free network. Fig. 2 depicts the vari-
ation of the cumulative payoff of players in a collection of
randomly distributed strategy distributions in a scale-free
topology. The strategy distributions are sorted based on
their resulting cumulative payoff. Fig. 3 shows the varia-
tion of the average degrees of cooperators and defectors in
the same set of networks. As shown in the figures, there
exists a clear correlation between the cumulative payoffs of
strategy distributions and the average degrees of each strat-
egy. Fig. 4 shows the average cumulative payoffs of network
populations do increase over time when the initial configura-
tion of the strategies is optimised using a genetic algorithm,
suggesting that it is the networks with cooperators occupy-
ing the hubs that generate higher cumulative payoffs. While
the cumulative payoff of the network is increasing, we can
observe that the average degree of the cooperators of net-
work populations do increase over time, while the average
defector degree decreases, as shown in Fig. 5. This sug-
gests that in order to maximise the cumulative payoff of a
network, the cooperators should be placed as hubs.

Next we performed a similar optimisation on memory-
one strategies of Prisoner’s dilemma game. Memory one
strategies are a branch of strategies in PD games where
each the cooperation of each node depends on the previous
move of each node. By varying the probabilities of coop-
eration based on each of the previous combinations (CC,
CD, DC, DD), it is possible to derive different strategies.
Some of the well-known strategies include General Cooper-
ator, Pavlov and Zero-Determinant strategies. ZD strate-
gies have been recently shown to be evolutionary unstable
against Pavlov strategy. Thus, we use the Genetic optimi-
sation technique to identify the optimum positioning of the
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ZD and Pavlov strategies. Fig. 6[a] depicts the increase
of the cumulative payoff of the players when the networks
are being evolved, suggesting that in memory-one strategies
too, strategy placement does contribute to the optimisation
of cumulative network payoff. Fig. 7[a] shows the evolution
of player configuration using genetic optimisation. As the
figure shows, there is an apparent increase in the average
degree of the Pavlov strategy compared to the ZD strategy,
within the network population as the average cumulative
payoffs of the networks are optimised. Even though the
payoff of a ZD node would be higher against a Pavlov node,
Pavlov performs well against itself compared to ZD strategy,
making it the evolutionary stable against ZD. This suggests
that when Pavlov and ZD strategies are mixed in a pop-
ulation of players, cumulative payoff of the entire network
could be maximised by assigning the hubs with the Pavlov
strategy.

Similarly when the ZD strategy mixed with the General
Cooperator strategy, GC strategy would tend to occupy the
hubs, as the networks are evolved over time. As with the
case of ZD vs Pavlov strategies, the cumulative payoffs of
the networks would continue to increase when the initial
configuration of the strategies are changed, as shown in Fig.
6[b]. Fig. 7[b] shows the evolution of the average degree of
the nodes occupying the two strategies over time.

Next, we mixed the Pavlov and general cooperator strate-
gies to observe which strategy tends to occupy the hubs as
the cumulative payoff of networks evolve as in Fig. 8. Again,
it is when the Pavlov strategy is placed on the hubs that the
cumulative payoff of the network tends to increase, as shown
in Fig. 9.
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Figure 8: The variation of cumulative network payoff of the
network of players consisting of GC and Pavlov strategies.
The network is a scale-free network consisting of 1000 nodes.
The game was iterated for 200 time-steps.

S. DISCUSSION

The observations made above can be summarised as fol-
lows:

Given a society which can be modelled as a scale-free net-
work (bearing in mind the fact that most social networks
have been indeed proven to be scale-free), and considering
a scenario where nodes in that social network can choose
from one of two strategies, and the overall balance of strate-
gies across the network should be maintained such that at
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any given time, the number of agents playing either strat-
egy must be the same, certain strategies evolutionarily win
the competition against certain other strategies in occupy-
ing the hubs (highest connected nodes) in the network.

Cooperation occupies the hubs against defection

Pavlov occupies the hubs against general cooperation

gies

e General cooperation occupies the hubs against zero-
determinant strategies

These results are arrived at by comparing the average de-
grees of nodes implementing each strategy, after ‘evolution’.
Let us note well here that nodes evolve (switch strategies)
not to maximise their own pay-off, but to maximise the cu-
mulative network payoff. Thus, the environmental pressure
is for maximisation of the ‘public good’.

These results are significant for the following reasons. The
constraint of the network having to have an equal number
of nodes implementing a pair of strategies might seem artifi-
cial at first. However, if we consider a scenario where nodes
are merely ‘place-holders’ for individuals who roam in the
network, while the strategies for these individuals is actu-
ally fixed, it is conceivable that such a scenario may indeed
occur in real world. Therefore, nodes do not actually change
strategies, but swap individuals who themselves always use a
certain strategy. Thus, all individuals ‘coordinate’ by swap-
ping positions for the ‘public good’. For example, consider a
soccer team, which has eleven fixed positions (left extreme,
right extreme, centre back, goal keeper etc). The positions
can be thought of as a complex network (the goal keeper po-
sition is connected to the three backs, and so forth). There
would be certain players who are better at offence and others
who are better at defence. The coach could rotate players
around the positions in order to maximize the ‘public good’,
which, in this case, is to increase the ‘net’ number of goals
(goals scored by the side minus goals scored by the opposi-
tion). Similar scenarios can be described in the case of an

Pavlov occupies the hubs against zero-determinant strate-

army comprising many strategic units advancing, or a coop-
erate moghul placing his subordinates in various parts of his
business empire to derive maximum benefit to his business.
Therefore, understanding which classical strategies must be
used by the hubs as opposed to peripheral nodes for maxi-
mum overall utility is of vital importance.

6. CONCLUSION AND FUTURE WORK

Game theory can be successfully applied to understand
the dynamics of a society. The concept of public goods
games has recently gained prominence, where the emphasis
is not on the individual gains of agents but the overall payoff
for the society. In this paper, we take a novel approach by
utilising the classical Iterative Prisoners Dilemma game as a
public goods game. That is, agents play prisoners dilemma
repeatedly, and yet adapt their strategies with the goal of
increasing the total network utility. We simulated evolution
by implementing a version of genetic algorithm optimisation,
where each member of the population is a network, with a
particular distribution of strategies. Thus, we consider the
evolution of networks (social structures), rather than evolu-
tion of individuals.

We found that networks evolve which prefer a certain type
of strategy to be at their hub over another type, for high
network utility. As such, the evolved networks preferred
cooperation over defection, general cooperation over zero-
determinant, pavlov over general cooperation, and pavlov
over zero determinant at their hubs. This indicates that
when societies compete, societies that can efficiently order
individuals within those societies according to their strate-
gies have a better chance of gaining high overall payoff. This
is a significant result in understanding ‘cooperation’ for pub-
lic good.

Genetic algorithm is only one form of optimisation. In
future, we plan to undertake similar experiments with an-
other optimisation techniques, including simulated anneal-
ing, ant-colony optimisation etc. We also intend to consider
a broader range of memory-one and other strategies (tit-
for-tat, for example). Furthermore, we may perform exper-
iments on particular application domains, such as defence
and project management, to better demonstrate the utility
of our results. Still, we believe that the results as reported
here are of value to the scientific community.
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