Please use this identifier to cite or link to this item:
https://rda.sliit.lk/handle/123456789/1454
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jayasuriya, P | - |
dc.contributor.author | Munasinghe, R | - |
dc.contributor.author | Thelijjagoda, S | - |
dc.date.accessioned | 2022-03-03T08:00:00Z | - |
dc.date.available | 2022-03-03T08:00:00Z | - |
dc.date.issued | 2021-12-09 | - |
dc.identifier.citation | P. Jayasuriya, R. Munasinghe and S. Thelijjagoda, "Sentiment Classification of Sinhala Content in Social Media: An Ensemble Approach," 2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS), 2021, pp. 140-145, doi: 10.1109/ICIIS53135.2021.9660656. | en_US |
dc.identifier.issn | 2164-7011 | - |
dc.identifier.uri | http://rda.sliit.lk/handle/123456789/1454 | - |
dc.description.abstract | We focus on the binary classification of Sinhala social media content in the sports domain using machine learning algorithms. In particular, we improve upon the accuracy achieved in a previous study of ours that utilized word and character N-grams. We use the base learners from that study to implement a probability-based stacking ensemble approach. This is done by creating a base learner library of 1066 base learners, using 13 different algorithms and different N-gram feature extraction methods. Different base learner combinations from the library are then stacked together to find the best stacking ensemble model. The best stacking ensemble model achieves an accuracy of 83.8% which is an improvement of over 1.5% of our previous study. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartofseries | 2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS);Pages 140-145 | - |
dc.subject | Sentiment Classification | en_US |
dc.subject | Sinhala Content | en_US |
dc.subject | Social Media | en_US |
dc.subject | Ensemble Approach | en_US |
dc.title | Sentiment Classification of Sinhala Content in Social Media: An Ensemble Approach | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/ICIIS53135.2021.9660656 | en_US |
Appears in Collections: | Department of Information Management-Scopes Research Papers Research Papers - Dept of Information of Management Research Papers - SLIIT Staff Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sentiment_Classification_of_Sinhala_Content_in_Social_Media_An_Ensemble_Approach.pdf Until 2050-12-31 | 456.63 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.