Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/2904
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRankothge, W. H-
dc.contributor.authorGamage, N. D. U-
dc.contributor.authorSuhail, S. A. A-
dc.contributor.authorAriyawansa, M. M. T. R.-
dc.contributor.authorDewwiman, H. G. H-
dc.contributor.authorSenevirathne, M. D. B. P-
dc.date.accessioned2022-08-23T05:07:33Z-
dc.date.available2022-08-23T05:07:33Z-
dc.date.issued2021-12-01-
dc.identifier.citationW. H. Rankothge, N. D. U. Gamage, S. A. A. Suhail, M. M. T. R. Ariyawansa, H. G. H. Dewwiman and M. D. B. P. Senevirathne, "A Deep Learning Model Optimized with Genetic Algorithms for Resource Allocation of Virtualized Network Functions," 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 2021, pp. 1-6, doi: 10.1109/ICRAIE52900.2021.9704012.en_US
dc.identifier.isbn978-1-6654-3402-7-
dc.identifier.urihttp://rda.sliit.lk/handle/123456789/2904-
dc.description.abstractSoftware Defined Networking (SDN) has gained a significant attention of Cloud Service providers (CSPs) for managing their network infrastructure. With the popularity of services such as virtualized applications and Virtualized Network Functions (VNFs), many organizations are outsourcing their entire data centers to the CSPs. From the perspective of CSPs, effective and efficient cloud resource management plays an important role, in terms of continuing a successful business model. This research focuses on proposing a resource allocation algorithm for a cloud platform where VNFs are offered as a service. It is a tier-based resource allocation approach, where different resource tiers are defined in terms of network bandwidth, processor speed, RAM, vCPUs and number of users. Once the client's request is submitted for VNFs, we have used a deep learning approach (a Keras model which was optimized using Genetic Algorithms) to forecast the most suitable resource tier. Our results show that the proposed resource allocation algorithms can forecasts the most suitable resource tier for given scenario, in the order of seconds, with high accuracy.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE);-
dc.subjectDeep Learningen_US
dc.subjectModel Optimizeden_US
dc.subjectGenetic Algorithmsen_US
dc.subjectResource Allocationen_US
dc.subjectNetwork Functionsen_US
dc.subjectVirtualizeden_US
dc.titleA Deep Learning Model Optimized with Genetic Algorithms for Resource Allocation of Virtualized Network Functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ICRAIE52900.2021.9704012en_US
Appears in Collections:Department of Computer systems Engineering-Scopes
Research Papers - Dept of Computer Systems Engineering
Research Papers - IEEE
Research Papers - SLIIT Staff Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.