Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/3086
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSenanayaka, S.A.M.A.S-
dc.contributor.authorPerera, R.A.D.B.S-
dc.contributor.authorRankothge, W.-
dc.contributor.authorUsgalhewa, S.S.-
dc.contributor.authorHettihewa, H.D-
dc.date.accessioned2022-11-29T06:37:32Z-
dc.date.available2022-11-29T06:37:32Z-
dc.date.issued2022-08-29-
dc.identifier.citationS. A. M. A. S. Senanayaka, R. A. D. B. S. Perera, W. Rankothge, S. S. Usgalhewa, H. D. Hettihewa and P. K. W. Abeygunawardhana, "Continuous American Sign Language Recognition Using Computer Vision And Deep Learning Technologies," 2022 IEEE Region 10 Symposium (TENSYMP), 2022, pp. 1-6, doi: 10.1109/TENSYMP54529.2022.9864539.en_US
dc.identifier.issn2642-6102-
dc.identifier.urihttps://rda.sliit.lk/handle/123456789/3086-
dc.description.abstractSign language is a non-verbal communication method used to communicate between hard of hearing or deaf and ordinary people. Automatic Sign language detection is a complex computer vision problem due to the diversity of modern sign languages and variations in gesture positions, hand and finger form, and body part placements. This research paper aims to conduct a systematic experimental evaluation of computer vision-based approaches for sign language recognition. The present research focuses on mapping non-segmented video streams to glosses to gain insights into sign language recognition. The proposed machine learning model consists of Recurrent Neural Network (RNN) layers such as Long Short-Term Memory (LSTM). The model is implemented using current deep learning frameworks such as Google TensorFlow and Keras API.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2022 IEEE Region 10 Symposium (TENSYMP);-
dc.subjectContinuousen_US
dc.subjectAmerican Sign Languageen_US
dc.subjectRecognitionen_US
dc.subjectComputer Visionen_US
dc.subjectDeep Learningen_US
dc.subjectTechnologiesen_US
dc.titleContinuous American Sign Language Recognition Using Computer Vision And Deep Learning Technologiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TENSYMP54529.2022.9864539en_US
Appears in Collections:Department of Computer Science and Software Engineering
Research Papers - Dept of Computer Science and Software Engineering
Research Papers - IEEE
Research Papers - SLIIT Staff Publications

Files in This Item:
File Description SizeFormat 
Continuous_American_Sign_Language_Recognition_Using_Computer_Vision_And_Deep_Learning_Technologies.pdf
  Until 2050-12-31
513.12 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.