Please use this identifier to cite or link to this item:
https://rda.sliit.lk/handle/123456789/3395
Title: | Sinhala Named Entity Recognition Model: Domain-Specific Classes in Sports |
Authors: | .Wijesinghe, W.M.S.K Tissera, M |
Keywords: | Sports Domain-Specific Classes Recognition Model Named Entity Sinhala Named |
Issue Date: | 9-Dec-2022 |
Publisher: | IEEE |
Citation: | W. M. S. K. Wijesinghe and M. Tissera, "Sinhala Named Entity Recognition Model: Domain-Specific Classes in Sports," 2022 4th International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 2022, pp. 138-143, doi: 10.1109/ICAC57685.2022.10025148. |
Series/Report no.: | 2022 4th International Conference on Advancements in Computing (ICAC); |
Abstract: | Named Entity Recognition (NER) is one of the crucial and vital subtasks that must be solved in most Natural Language Processing (NLP) tasks. However, constructing a NER system for the Sinhala Language is challenging. Because it comes under the category of low-resource languages. Therefore, the proposed approach attempted designing a mechanism to identify specific named entities in the sports domain. Firstly, a domain-specific corpus was built using Sinhala sport e-News articles. Then a semi-automated, rule-based component named as “Class_Label_Suggester” was built to annotate pre-defined named entities. After auto annotation, the outcome was further validated manually with a little effort. Finally, it was trained using the annotated data. Linear Perceptron, Stochastic Gradient Descent (SGD), Multinomial Naive Bayes (MNB), and Passive Aggressive classifiers were used to train the NER model. Though, the above Machine Learning (ML) algorithms showed approximately 98% accuracy, the MNB model demonstrated highest accuracy for the identified class labels of which, 99.76% for ‘Ground’, 99.53% for ‘School’, 98.55% for ‘Tournament’, and 97.87% for ‘Other’ classes. Additionally, high precision values of the above classes were 81%, 72%, 62%, and 98% respectively. An accurately annotated Sinhala dataset and the trained Sinhala NER model are main contributions of the study. |
URI: | https://rda.sliit.lk/handle/123456789/3395 |
ISSN: | 979-8-3503-9810-6 |
Appears in Collections: | 4th International Conference on Advancements in Computing (ICAC) | 2022 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sinhala_Named_Entity_Recognition_Model_Domain-Specific_Classes_in_Sports.pdf Until 2050-12-31 | 471.44 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.